MIT 6.875 & Berkeley CS276

Foundations of Cryptography Lecture 20

TODAY: Lattice-based Cryptography

Why Lattice-based Crypto?

Exponentially Hard (so far)

Quantum-Resistant (so far)

☐ Worst-case hardness

(unique feature of lattice-based crypto)

□ Simple and Efficient

□ Enabler of Surprising Capabilities

(computing on encrypted data)

Solving Linear Equations

$$5s_{1} + 11s_{2} = 2$$

$$2s_{1} + s_{2} = 6$$

$$7s_{1} + s_{2} = 26$$

where all equations are over \mathbb{Z} , the integers

More generally, n variables and $m \gg n$ equations.

How to make it hard: Chop the head?

That is, work modulo some q. $(1121 \mod 100 = 21)$

Still EASY! Gaussian Elimination mod q

How to make it hard: Chop the tail?

Add a small error to each equation.

Still EASY! Linear regression.

How to make it hard: Chop the head *and* the tail?

Add a small error to each equation and work mod q.

Turns out to be very HARD!

SolveranningweithaErrens (4.44/E)ns

GOAL: Find s.

<u>Parameters</u>: dimensions \boldsymbol{n} and \boldsymbol{m} , modulus \boldsymbol{q} , error distribution χ = uniform in some interval $[-\boldsymbol{B}, \dots, \boldsymbol{B}]$.

A is chosen at random from $\mathbb{Z}_q^{m \times n}$, **s** from \mathbb{Z}_q^n and **e** from χ^m .

Learning with Errors (LWE)

Decoding Random Linear Codes

(over F_q with L_1 errors)

Learning Noisy Linear Functions

Worst-case hard Lattice Problems [Regev'05, Peikert'09]

Given A, As + e, find s.

Idea (a) Each noisy linear equation is an exact polynomial eqn.

Consider
$$b = \langle \boldsymbol{a}, \boldsymbol{s} \rangle + e = \sum_{i=1}^{n} a_i s_i + e$$
.

Imagine for now that the error bound B = 1. So, $e \in \{-1,0,1\}$. In other words, $b - \sum_{i=1}^{n} a_i s_i \in \{-1,0,1\}$.

So, here is a noiseless polynomial equation on s_i :

$$(b - \sum_{i=1}^{n} a_i s_i - 1) (b - \sum_{i=1}^{n} a_i s_i) (b - \sum_{i=1}^{n} a_i s_i + 1) = 0$$

Given A, As + e, find s.

BUT: Solving (even degree 2) polynomial equations is NP-hard.

$$(b - \sum_{i=1}^{n} a_i s_i - 1) (b - \sum_{i=1}^{n} a_i s_i) (b - \sum_{i=1}^{n} a_i s_i + 1) = 0$$

$$(b - \sum_{i=1}^{n} a_i s_i - 1) (b - \sum_{i=1}^{n} a_i s_i) (b - \sum_{i=1}^{n} a_i s_i + 1) = 0$$

Idea (b) Easy to solve given sufficiently many equations.

(using a technique called '

$$\sum a_{ijk}s_is_js_k + \sum a_{ij}s_is_j + \sum a_k$$

Treat each "monomial", e.g. s_is variable, e.g. t_{ijk} .

Now, you have a noiseless linear equation in t_{ijk} !!!

 $\sum_{ijk} a_{ijk} t_{ijk} + \sum_{ijk} a_{ij} t_{ij} + \sum_{ijk} a_{ij} t_{ij} + \sum_{ijk} a_{ijk} t_{ijk} + (b-1)b(b+1) = 0$

 $\sum a_{ijk}t_{ijk} + \sum a_{ij}t_{ij} + \sum a_it_i + (b-1)b(b+1) = 0$

 $\sum a_{ijk}t_{ijk} + \sum a_{ij}t_{ij} + \sum a_{i}t_{i} + (b-1)b(b+1) = 0$ Solution space equisition space equisition space equilibrium even more equilibrium even The real solution $t_{ijk} = s_i s_j s_k$ etc.

 $\sum a_{ijk}t_{ijk} + \sum a_{ij}t_{ij} + \sum a_it_i + (b-1)b(b+1) = 0$

 $\sum a_{ijk}t_{ijk} + \sum a_{ij}t_{ij} + \sum a_it_i + (b-1)b(b+1) = 0$

When #eqns = #vars $\approx O(n^3)$ the only surviving solution to the linear system is the real solution.

Given A, As + e, find s.

Can solve/break as long as

 $m \gg n^{2B+1}$

We will set $B = n^{\Omega(1)}$, in other words polynomial in n so as to blunt this attack.

The famed Lenstra-Lenstra-Lovasz algorithm decodes in polynomial time when $q/B > 2^n$

Setting Parameters

Put together, we are safe with:

 $n = \text{security parameter} (\approx 1 - 10 \text{K})$

m =arbitrary poly in n

 $B = \text{small poly in } n, \text{say } \sqrt{n}$

q = poly in n, larger than B, and could be as large as sub-exponential, say $2^{n^{0.99}}$

even from quantum computers, AFAWK!

QUANTUM COMPUTER

Decisional LWE

Can you distinguish between:

Theorem: "Decisional LWE is as hard as LWE".

OWF and PRG

$$g_A(s,e) = As+e$$

 $(\mathbf{A} \in Z_q^{nXm}$ $\mathbf{s} \in Z_q^n$ random "small" secret vector $e \in Z_q^n$: random "small" error vector)

- g_A is a one-way function (assuming LWE)
- g_A is a pseudo-random generator (decisional LWE)
- g_A is also a trapdoor function...
- also a homomorphic commitment...

Basic (Secret-key) Encryption

n = security parameter, q = "small" modulus

- Secret key sk = Uniformly random vector $\mathbf{s} \in Z_q^n$
- Encryption $Enc_{s}(\mu)$: // $\mu \in \{0,1\}$
 - Sample uniformly random $\mathbf{a} \in \mathbb{Z}_q^n$, "small" noise $\mathbf{e} \in \mathbb{Z}$
 - The ciphertext **c** = (**a**, **b** = \langle **a**, **s** \rangle + **e** + μ [q/2])

Decryption Dec_{sk}(c): Output Round_{q/2}(b - (a, s) mod q)

// correctness as long as |e| < q/4

Basic (Secret-key) Encryption

We already saw that this scheme is additively homomorphic.

 $c = (a, b = \langle a, s \rangle + e + \mu \lfloor q/2 \rfloor) \leftarrow +$ Enc_s(m)

 $c' = (a', b' = \langle a', s \rangle + e' + \mu' \lfloor q/2 \rfloor) \leftarrow \text{Enc}_{s}(m')$

 $c + c' = (a+a', b+b') = \langle a + a', s \rangle + (e+e') + (\mu + \mu') \lfloor q/2 \rfloor)$

In words: c + c' is an encryption of $\mu + \mu'$ (mod 2)

Basic (Secret-key) Encryption

You can also negate the encrypted bit easily.

We will see how to make this scheme into a fully homomorphic scheme (in the next lec)

For now, note that the error increases when you add two ciphertexts. That is, $|e_{add}| \approx |e_1| + |e_2| \leq 2B$.

Setting $q = n^{\log n}$ and $B = \sqrt{n}$ (for example) lets us support any polynomial number of additions.

Public-key Encryption

- Secret key sk = Uniformly random vector $\mathbf{s} \in Z_q^n$
- Public key pk: for i from 1 to m = poly(n) **TBD**

$$c_i = (a_i, \langle a_i, s \rangle + e_i)$$

Public-key Encryption

- Secret key sk = Uniformly random vector $\mathbf{s} \in Z_q^n$
- Public key pk: for i from 1 to m = poly(n)

$$(A, b = As + e) \qquad A , A s +$$

• Encrypting a message bit μ : pick a random vector $\boldsymbol{r} \in \{0,1\}^m$

$$(rA, rb + \mu [q/2])$$

• Decryption: compute

$$rb + \mu \lfloor q/2 \rfloor - (rA)s$$

and round to nearest multiple of q/2.

Correctness

• Encrypting a message bit μ : pick a random vector $\mathbf{r} \in \{0,1\}^m$

 $(\boldsymbol{rA}, \boldsymbol{rb} + \mu \lfloor q/2 \rfloor)$

• Decryption:

$$rb + \mu \lfloor q/2 \rfloor - (rA)s = r(As + e) + \mu \lfloor q/2 \rfloor - (rA)s$$

Decryption works as long as |re| < q/4 or in other words, if the

LWE error bound $B < q/4m \approx q/poly(n)$.

Theorem: under decisional LWE, the scheme is INDsecure. In fact, even more: a ciphertext together with the public key is pseudorandom.

We show this by a hybrid argument.

Let's stare at a public key, ciphertext pair.

$$pk = (A, b = As + e), c = Enc(pk, \mu) = rA, rb + \mu \lfloor q/2 \rfloor)$$

Call this distribution Hybrid 0.

Theorem: under decisional LWE, the scheme is INDsecure. In fact, even more: a ciphertext together with the public key is pseudorandom.

Hybrid 1. Change the public key to random (from LWE).

$$\widetilde{\mathbf{pk}} = (\mathbf{A}, \mathbf{b}), \widetilde{\mathbf{c}} = \mathbf{Enc}(\widetilde{\mathbf{pk}}, \mu) = \mathbf{rA}, \mathbf{rb} + \mu \lfloor q/2 \rfloor)$$

Hybrids 0 and 1 are comp. indist. by decisional LWE.

Detour: Leftover Hash Lemma [Impagliazzo-Levin-Luby'90]

We want to understand how rA, rb = r[A | b] is distributed when A, b is random (and public).

$$\begin{array}{|c|c|c|c|c|} r \\ \hline A & b \\ \hline \approx & \hline a' & b' \\ \hline \end{array}$$

If r is truly random, so is r[A | b].

But *r* is NOT truly random! It has small entries.

Nevertheless, r has entropy. Leftover hash lemma tells us that matrix multiplication turns (sufficient) entropy into true randomness. We need $m \gg (n + 1) \log q$.

Theorem: under decisional LWE, the scheme is INDsecure. In fact, even more: a ciphertext together with the public key is pseudorandom.

Hybrid 1. Change the public key to random (from LWE).

$$\widetilde{\mathbf{pk}} = (\mathbf{A}, \mathbf{b}), \widetilde{\mathbf{c}} = \mathbf{Enc}(\widetilde{\mathbf{pk}}, \mu) = \mathbf{rA}, \mathbf{rb} + \mu \lfloor q/2 \rfloor)$$

Hybrids 0 and 1 are comp. indist. by decisional LWE.

Theorem: under decisional LWE, the scheme is INDsecure. In fact, even more: a ciphertext together with the public key is pseudorandom.

Hybrid 2. Change *rA*, *rb* into random.

$$\widetilde{\mathbf{pk}} = (\mathbf{A}, \mathbf{b}), \widetilde{\mathbf{c}} = \mathbf{Enc}(\widetilde{\mathbf{pk}}, \mu) = \mathbf{a}', \mathbf{b}' + \mu \lfloor q/2 \rfloor)$$

Hybrids 1 and 2 are stat. indist. by leftover hash lemma.

Theorem: under decisional LWE, the scheme is INDsecure. In fact, even more: a ciphertext together with the public key is pseudorandom.

Hybrid 2. Change *rA*, *rb* into random.

$$\widetilde{\mathbf{pk}} = (\mathbf{A}, \mathbf{b}), \widetilde{\mathbf{c}} = \mathbf{Enc}(\widetilde{\mathbf{pk}}, \mu) = \mathbf{a}', \mathbf{b}' + \mu \lfloor q/2 \rfloor)$$

Now, we have the message μ encrypted with a one-time pad which perfectly hides μ .

Public-key Encryption

- Secret key sk = Uniformly random vector $\mathbf{s} \in Z_q^n$
- Public key pk: for *i* from 1 to $m = 2(n + 1) \log q$

$$(A, b = As + e)$$

• Encrypting a message bit μ : pick a random vector $r \in \{0,1\}^m$

$$(rA, rb + \mu [q/2])$$

• Decryption: compute

$$rb + \mu \lfloor q/2 \rfloor - (rA)s$$

and round to nearest multiple of q/2.

Next Lecture: Fully Homomorphic Encryption