MIT 6.875 \& Berkeley CS276

Foundations of Cryptography Lecture 20

TODAY: Lattice-based Cryptography

Why Lattice-based Crypto?

\square Exponentially Hard (so far)
\square Quantum-Resistant (so far)
\square Worst-case hardness
(unique feature of lattice-based crypto)
\square Simple and Efficient
\square Enabler of Surprising Capabilities
(computing on encrypted data)

Solving Linear Equations

$$
\begin{aligned}
& 5 s_{1}+11 s_{2}=2 \\
& 2 s_{1}+s_{2}=6 \\
& 7 s_{1}+s_{2}=26
\end{aligned}
$$

where all equations are over \mathbb{Z}, the integers

Solving Linear Equations

GOAL: Find s .

More generally, n variables and $m \gg n$ equations.

Solving Linear Equations

GOAL: Find s .

EASY! For example, by Gaussian Elimination

Solving Linear Equations

GOAL: Find s .
How to make it hard: Chop the head?
That is, work modulo some q. $(1121 \bmod 100=21)$
Still EASY! Gaussian Elimination $\bmod q$

Solving Linear Equations

Given:

GOAL: Find s.
How to make it hard: Chop the tail?
Add a small error to each equation.
Still EASY! Linear regression.

Solving Linear Equations

GOAL: Find s .
How to make it hard: Chop the head and the tail?
Add a small error to each equation and work $\bmod q$.
Turns out to be very HARD!
$\ddot{\ddot{O}}$

GOAL: Find s .
Parameters: dimensions \boldsymbol{n} and m, modulus \boldsymbol{q}, error distribution $\chi=$ uniform in some interval $[-\boldsymbol{B}, \ldots, \boldsymbol{B}]$.
\mathbf{A} is chosen at random from $\mathbb{Z}_{q}^{m \times n}, \mathbf{s}$ from \mathbb{Z}_{q}^{n} and \mathbf{e} from χ^{m}.

Learning with Errors (LWE)

Decoding Random Linear Codes (over F_{q} with L_{1} errors)

Learning Noisy Linear Functions

Worst-case hard Lattice Problems
[Regev'05, Peikert'09]

Attack 1: Linearization

$\underline{\text { Given } \boldsymbol{A}, \boldsymbol{A} \boldsymbol{s}+\boldsymbol{e}, \text { find } \boldsymbol{s}}$.

Idea (a) Each noisy linear equation is an exact polynomial eqn.
Consider $b=\langle\boldsymbol{a}, \boldsymbol{s}\rangle+e=\sum_{i=1}^{n} a_{i} s_{i}+e$.
Imagine for now that the error bound $B=1$. So, $e \in$
$\{-1,0,1\}$. In other words, $\mathrm{b}-\sum_{i=1}^{n} a_{i} s_{i} \in\{-1,0,1\}$.
So, here is a noiseless polynomial equation on s_{i} :

$$
\left(\mathrm{b}-\sum_{i=1}^{n} a_{i} s_{i}-1\right)\left(\mathrm{b}-\sum_{i=1}^{n} a_{i} s_{i}\right)\left(\mathrm{b}-\sum_{i=1}^{n} a_{i} s_{i}+1\right)=0
$$

Attack 1: Linearization

Given $\boldsymbol{A}, \boldsymbol{A} \boldsymbol{s}+\boldsymbol{e}$, find \boldsymbol{s}.

BUT: Solving (even degree 2) polynomial equations is NP-hard.

$$
\left(\mathrm{b}-\sum_{i=1}^{n} a_{i} s_{i}-1\right)\left(\mathrm{b}-\sum_{i=1}^{n} a_{i} s_{i}\right)\left(\mathrm{b}-\sum_{i=1}^{n} a_{i} s_{i}+1\right)=0
$$

Attack 1: Linearization

$$
\left(\mathrm{b}-\sum_{i=1}^{n} a_{i} s_{i}-1\right)\left(\mathrm{b}-\sum_{i=1}^{n} a_{i} s_{i}\right)\left(\mathrm{b}-\sum_{i=1}^{n} a_{i} s_{i}+1\right)=0
$$

Idea (b) Easy to solve given sufficiently many equations. (using a technique called ‘

$$
\sum a_{i j k} s_{i} S_{j} s_{k}+\sum a_{i j} s_{i} s_{j}+\sum a_{i}
$$

Treat each "monomial", e.g. $\mathrm{s}_{\mathrm{i}} \mathrm{S}$ variable, e.g. $\mathrm{t}_{\mathrm{ijk}}$.

Now, you have a noiseless linear equation in $\mathrm{t}_{\mathrm{ijk}}$!!!

Attack 1: Linearization

$$
\sum a_{i j k} t_{i j k}+\sum a_{i j} t_{i j}+\sum a_{i} t_{i}+(b-1) b(b+1)=0
$$

 $t_{i j k}=s_{i} s_{j} s_{k}$ etc.

Attack 1: Linearization

$$
\sum a_{i j k} t_{i j k}+\sum a_{i j} t_{i j}+\sum a_{i} t_{i}+(b-1) b(b+1)=0
$$

 $t_{i j k}=s_{i} s_{j} s_{k}$ etc.

Attack 1: Linearization

$$
\sum a_{i j k} t_{i j k}+\sum a_{i j} t_{i j}+\sum a_{i} t_{i}+(b-1) b(b+1)=0
$$

The real solution $t_{i j k}=s_{i} s_{j} s_{k}$ etc.

Attack 1: Linearization

$$
\sum a_{i j k} t_{i j k}+\sum a_{i j} t_{i j}+\sum a_{i} t_{i}+(b-1) b(b+1)=0
$$

The real solution
 $t_{i j k}=s_{i} s_{j} s_{k}$ etc.

Attack 1: Linearization

$$
\sum a_{i j k} t_{i j k}+\sum a_{i j} t_{i j}+\sum a_{i} t_{i}+(b-1) b(b+1)=0
$$

When \#eqns = \#vars $\approx O\left(n^{3}\right)$
the only surviving solution to the linear system is the real solution.

Attack 1: Linearization

$\underline{\text { Given } \boldsymbol{A}, \boldsymbol{A} \boldsymbol{s}+\boldsymbol{e}, \text { find } \boldsymbol{s} .}$
Can solve/break as long as

$$
m \gg n^{2 B+1}
$$

We will set $B=n^{\Omega(1)}$, in other words polynomial in n so as to blunt this attack.

Attack 2: Lattice Decoding

The famed Lenstra-Lenstra-Lovasz algorithm decodes in polynomial time when $q / B>\mathbf{2}^{\boldsymbol{n}}$

Setting Parameters

Put together, we are safe with:

$$
\begin{aligned}
& n=\text { security parameter }(\approx 1-10 \mathrm{~K}) \\
& m=\text { arbitrary poly in } n \\
& B=\text { small poly in } n, \text { say } \sqrt{n} \\
& q=\text { poly in } n \text {, larger than } B, \text { and could be } \\
& \quad \text { as large as sub-exponential, say } 2^{n^{0.99}}
\end{aligned}
$$

even from quantum computers, AFAWK!

Decisional LWE

Can you distinguish between:

Theorem: "Decisional LWE is as hard as LWE".

OWF and PRG

$g_{A}(\mathrm{~s}, \mathrm{e})=\mathbf{A s}+e$

$$
\begin{aligned}
& \left(\mathbf{A} \in Z_{q}^{n X m}\right. \\
& \mathbf{s} \in Z_{q}^{n} \text { random "small" secret vector } \\
& \left.\boldsymbol{e} \in Z_{q}^{n}: \text { random "small" error vector }\right)
\end{aligned}
$$

- g_{A} is a one-way function (assuming LWE)
- g_{A} is a pseudo-random generator (decisional LWE)
- g_{A} is also a trapdoor function...
- also a homomorphic commitment...

Basic (Secret-key) Encryption

 [Regev05]$\mathrm{n}=$ security parameter, $\mathrm{q}=$ "small" modulus

- Secret key sk $=$ Uniformly random vector $\mathbf{s} \in Z_{q}^{n}$
- Encryption $\operatorname{Enc}_{\mathbf{s}}(\mu): \quad / \mu \mu \in\{0,1\}$
- Sample uniformly random $\mathbf{a} \in Z_{q}^{n}$, "small" noise $\mathrm{e} \in Z$
- The ciphertext $\mathbf{c}=(\mathbf{a}, \mathrm{b}=\langle\mathrm{a}, \mathbf{s}\rangle+\mathrm{e}+\mu\lfloor q / 2\rfloor)$
- Decryption $\operatorname{Dec}_{\text {sk }}(\mathbf{c}):$ Output $\operatorname{Round}_{q / 2}(\mathrm{~b}-\langle\mathbf{a}, \mathbf{s}\rangle \bmod q)$ // correctness as long as $|\mathrm{e}|<\mathrm{q} / 4$

Basic (Secret-key) Encryption

 [Regev05]We already saw that this scheme is additively homomorphic.

$$
\begin{array}{ll}
\boldsymbol{c}=(\mathrm{a}, \mathrm{~b}=\langle\mathrm{a}, \mathbf{s}\rangle+\mathrm{e}+\mu\lfloor q / 2\rfloor) & + \\
\boldsymbol{c}^{\prime}=\left(\mathrm{a}^{\prime}, \mathrm{b}^{\prime}=\left\langle\mathrm{a}^{\prime}, \mathbf{s}\right\rangle+\mathrm{e}^{\prime}+\mu^{\prime}(\mathrm{m})\right. \\
& \operatorname{Enc}_{\mathbf{s}}\left(\mathrm{m}^{\prime}\right)
\end{array}
$$

$\left.\boldsymbol{c} \neq \boldsymbol{c}^{\prime} \equiv\left(\boldsymbol{a} \neq \mathbf{a}^{\prime}, \mathbf{b} \neq \mathbf{b}^{\prime}\right)=\left\langle\mathbf{a}+\mathbf{a}^{\prime}, \mathbf{s}\right\rangle+\left(\mathrm{e}+\mathrm{e}^{\prime}\right)+\left(\mu+\mu^{\prime}\right)\lfloor q / 2\rfloor\right)$

In words: $c+c^{\prime}$ is an encryption of $\mu+\mu^{\prime}(\bmod 2)$

Basic (Secret-key) Encryption [Regev05]

You can also negate the encrypted bit easily.

We will see how to make this scheme into a fully homomorphic scheme (in the next lec)

For now, note that the error increases when you add two ciphertexts. That is, $\left|e_{a d d}\right| \approx\left|e_{1}\right|+\left|e_{2}\right| \leq 2 B$.

Setting $q=n^{\log n}$ and $B=\sqrt{n}$ (for example) lets us support any polynomial number of additions.

Public-key Encryption

[Regev05]

- Secret key sk $=$ Uniformly random vector $\mathbf{s} \in Z_{q}^{n}$
- Public key pk: for i from 1 to $m=\operatorname{poly}(n)$ TBD

$$
\boldsymbol{c}_{\boldsymbol{i}}=\left(\boldsymbol{a}_{\boldsymbol{i}},\left\langle\boldsymbol{a}_{\boldsymbol{i}}, \boldsymbol{s}\right\rangle+e_{i}\right)
$$

Public-key Encryption

[Regev05]

- Secret key sk = Uniformly random vector $\mathbf{s} \in Z_{q}^{n}$
- Public key pk: for i from 1 to $m=\operatorname{poly}(n)$

$$
(A, b=A s+e) \quad \text { A }, \quad \mathrm{A} \quad \mathrm{~S}+
$$

- Encrypting a message bit μ : pick a random vector $\boldsymbol{r} \in\{0,1\}^{m}$

$$
(\boldsymbol{r} \boldsymbol{A}, \boldsymbol{r} \boldsymbol{b}+\mu\lfloor q / 2\rfloor)
$$

- Decryption: compute

$$
\boldsymbol{r} \boldsymbol{b}+\mu\lfloor q / 2\rfloor-(\boldsymbol{r} \boldsymbol{A}) \mathbf{s}
$$

and round to nearest multiple of $\mathrm{q} / 2$.

Correctness

- Encrypting a message bit μ : pick a random vector $\boldsymbol{r} \in\{0,1\}^{m}$

$$
(\boldsymbol{r} \boldsymbol{A}, \boldsymbol{r} \boldsymbol{b}+\mu\lfloor q / 2\rfloor)
$$

- Decryption:

$$
\boldsymbol{r} \boldsymbol{b}+\mu\lfloor q / 2\rfloor-(\boldsymbol{r} \boldsymbol{A}) \mathbf{s}=\boldsymbol{r}(\boldsymbol{A} \boldsymbol{s}+\boldsymbol{e})+\mu\lfloor q / 2\rfloor-(\boldsymbol{r} \boldsymbol{A}) \mathbf{s}
$$

Decryption works as long as $|\boldsymbol{r e}|<\boldsymbol{q} / \mathbf{4}$ or in other words, if the LWE error bound $B<\boldsymbol{q} / \mathbf{4 m} \approx \mathrm{q} /$ poly (n).

Security

Theorem: under decisional LWE, the scheme is INDsecure. In fact, even more: a ciphertext together with the public key is pseudorandom.

We show this by a hybrid argument.

Let's stare at a public key, ciphertext pair.

$$
\boldsymbol{p k}=(\boldsymbol{A}, \boldsymbol{b}=\boldsymbol{A} \boldsymbol{s}+\boldsymbol{e}), \boldsymbol{c}=\boldsymbol{E n c}(\boldsymbol{p k}, \mu)=\boldsymbol{r} \boldsymbol{A}, \boldsymbol{r} \boldsymbol{b}+\mu\lfloor q / 2\rfloor)
$$

Call this distribution Hybrid 0 .

Security

Theorem: under decisional LWE, the scheme is INDsecure. In fact, even more: a ciphertext together with the public key is pseudorandom.

Hybrid 1. Change the public key to random (from LWE).

$$
\widetilde{\boldsymbol{p k}}=(\boldsymbol{A}, \boldsymbol{b}), \tilde{\boldsymbol{c}}=\boldsymbol{E n c}(\widetilde{\boldsymbol{p} k}, \mu)=\boldsymbol{r} \boldsymbol{A}, \boldsymbol{r} \boldsymbol{b}+\mu\lfloor q / 2\rfloor)
$$

Hybrids 0 and 1 are comp. indist. by decisional LWE.

Detour: Leftover Hash Lemma [Impagliazzo-Levin-Luby'90]

We want to understand how $\boldsymbol{r} \boldsymbol{A}, \boldsymbol{r} \boldsymbol{b}=\boldsymbol{r}[\boldsymbol{A} \mid \boldsymbol{b}]$ is distributed when A, b is random (and public).

If \boldsymbol{r} is truly random, so is $\boldsymbol{r}[\boldsymbol{A} \mid \boldsymbol{b}]$.
But r is NOT truly random! It has small entries.
Nevertheless, \boldsymbol{r} has entropy. Leftover hash lemma tells us that matrix multiplication turns (sufficient) entropy into true randomness. We need $m \gg(n+1) \log q$.

Security

Theorem: under decisional LWE, the scheme is INDsecure. In fact, even more: a ciphertext together with the public key is pseudorandom.

Hybrid 1. Change the public key to random (from LWE).

$$
\widetilde{\boldsymbol{p k}}=(\boldsymbol{A}, \boldsymbol{b}), \tilde{\boldsymbol{c}}=\boldsymbol{E n c}(\widetilde{\boldsymbol{p} k}, \mu)=\boldsymbol{r} \boldsymbol{A}, \boldsymbol{r} \boldsymbol{b}+\mu\lfloor q / 2\rfloor)
$$

Hybrids 0 and 1 are comp. indist. by decisional LWE.

Security

Theorem: under decisional LWE, the scheme is INDsecure. In fact, even more: a ciphertext together with the public key is pseudorandom.

Hybrid 2. Change $\boldsymbol{r} \boldsymbol{A}, \boldsymbol{r} \boldsymbol{b}$ into random.

$$
\left.\widetilde{\boldsymbol{p k}}=(\boldsymbol{A}, \boldsymbol{b}), \tilde{\boldsymbol{c}}=\boldsymbol{E n c}(\widetilde{\boldsymbol{p k}}, \mu)=\boldsymbol{a}^{\prime}, b^{\prime}+\mu\lfloor q / 2\rfloor\right)
$$

Hybrids 1 and 2 are stat. indist. by leftover hash lemma.

Security

Theorem: under decisional LWE, the scheme is INDsecure. In fact, even more: a ciphertext together with the public key is pseudorandom.

Hybrid 2. Change $\boldsymbol{r} \boldsymbol{A}, \boldsymbol{r} \boldsymbol{b}$ into random.

$$
\left.\widetilde{\boldsymbol{p k}}=(\boldsymbol{A}, \boldsymbol{b}), \tilde{\boldsymbol{c}}=\boldsymbol{E n c}(\widetilde{\boldsymbol{p k}}, \mu)=\boldsymbol{a}^{\prime}, b^{\prime}+\mu\lfloor q / 2\rfloor\right)
$$

Now, we have the message μ encrypted with a one-time pad which perfectly hides μ.

Public-key Encryption

[Regev05]

- Secret key sk $=$ Uniformly random vector $\mathbf{s} \in Z_{q}^{n}$
- Public key pk: for i from 1 to $m=2(n+1) \log q$

$$
(A, b=A s+e)
$$

- Encrypting a message bit μ : pick a random vector $\boldsymbol{r} \in\{0,1\}^{m}$

$$
(\boldsymbol{r} \boldsymbol{A}, \boldsymbol{r} \boldsymbol{b}+\mu\lfloor q / 2\rfloor)
$$

- Decryption: compute

$$
\boldsymbol{r} \boldsymbol{b}+\mu\lfloor q / 2\rfloor-(\boldsymbol{r} \boldsymbol{A}) \mathbf{s}
$$

and round to nearest multiple of $q / 2$.

Next Lecture: Fully Homomorphic Encryption

