MIT 6.875 & Berkeley CS276

Foundations of Cryptography
Lecture 20

TODAY: Lattice-based Cryptography

Why Lattice-based Crypto?

[1 Exponentially Hard (so far)

[1 Quantum-Resistant (so far)

Worst-case hardness

(unique feature of lattice-based crypto)

I Simple and Efficient

Enabler of Surprising Capabilities

(computing on encrypted data)

Solving Linear Equations

551 + 1182 — 2

251"‘ 52:6

751 + Sz —_ 26

_ /

where all equations are over Z, the integers

Solving Linear Equations

Given: A and A

GOAL: Finds.

More generally, n variables and m > n equations.

Solving Linear Equations

Given: A and A

GOAL: Finds.

EASY! ror example, by Gaussian Elimination @

Solving Linear Equations

Given: A and A

GOAL: Finds.

How to make it hard: Chop the head?
That is, work modulo some g. (1121 mod 100 = 21)

Still EASY! Gaussian Elimination mod g

Solving Linear Equations

Given: A and A +

GOAL: Finds.

How to make it hard: Chop the tail?

Add a small error to each equation.

Still EASY! Linear regression.

Solving Linear Equations

Given: A and A +

GOAL: Finds.

How to make it hard: Chop the head and the tail?

Add a small error to each equation and work mod g.

Turns out to be very HARD! **

SobgamriiagvvithaE trens {(dWMDNs

Given: A and A

GOAL: Finds.

Parameters: dimensions n and m, modulus g, error
distribution y = uniform in some interval [—B, ..., B].

A is chosen at random from Zg**", s from Zg
and e from y™.

Learning with Errors (LWE)

€ Decoding Random Linear Codes

(over F, with L, errors)

€ Learning Noisy Linear Functions

€ Worst-case hard Lattice Problems
[Regev’05, Peikert'09]

Attack 1: Linearization

Given A, As + e, find s.

Idea (a) Each noisy linear equation is an exact polynomial eqgn.

Consider b = {(a,s) + e =)i, a;S; + e.

Imagine for now that the error bound B = 1. So, e €
{—1,0,1}. In other words, b — }.7*; a;s; € {—1,0,1}.

So, here is a noiseless polynomial equation on s;:

(b —2ic1aisi — 1) (b— it as)(b— Xy a5,+1) =0

Attack 1: Linearization

Given A, As + e, find s.

BUT: Solving (even degree 2) polynomial equations is NP-hard.

(b Zl 14iS; — 1) b Zl 1a51)(b Zl 1a51+1):O

Attack 1: Linearization

(b—ic1a;si — 1) (b — Xz a;s)(b — Xi1 a5, +1) =0

Idea (b) Easy to solve given sufficiently many equations.

(using a technique called

z AijkSiSjSk + z a;;jS;iSj T Z a o

Treat each “monomial”, e.g. s;s
variable, e.g. tjjx.

Now, you have a noiseless linear equation in tj;!!!

Attack 1: Linearization

z aijktijk + z al-jtl-j + z Cliti + (b — 1)b(b + 1) =0

The real solution

Attack 1: Linearization

z aijktijk + z al-jtl-j + z Cliti + (b — 1)b(b + 1) =0

The real solution

Attack 1: Linearization

z aijktijk + z al-jtij + z Cliti + (b — 1)b(b + 1) =0

The real solution

Attack 1: Linearization

z aijktijk + z al-jtij + z Cliti + (b — 1)b(b + 1) =0

The real solution

Attack 1: Linearization

z Aijklijr T z ajjtij + z a;t; +(b—1b(b+1) =0

\

When #egns = #vars = 0(n?)
the only surviving solutionto t
real solution.

he linear system is the

Attack 1: Linearization

Given A, As + e, find s.

Can solve/break as long as

m >> nZB-I-l

We will set B = n®(in other words polynomial in
n so as to blunt this attack.

-,
n,

\,

The famed Lenstra-Lenstra-Lovasz algorithm decodes
in polynomial time when q/B > 2"

; N 7 S, ,
N, /

Setting Parameters

Put together, we are safe with:

n = security parameter (= 1 — 10K)
m = arbitrary poly in n
B = small poly in n, say \n

g = polyinn, larger than B, and could be

. 0.99
as large as sub-exponential, say 2™

even from quantum computers, AFAWK! %

Decisional LWE

Can you distinguish between:

and

Theorem: “Decisional LWE is as hard as LWE".

OWF and PRG

[ga(s,e) = As+e J

nxXm
(A€ Z
S E ZZ; random “small” secret vector

e € Zg: random “small” error vector)

ga IS a one-way function (assuming LWE)

ga IS a pseudo-random generator (decisional LWE)
ga IS also a trapdoor function...

also a homomorphic commitment...

Basic (Secret-key) Encryption

[Regev095]

n = security parameter, q = “small” modulus

 Secret key sk = Uniformly random vector s € Z7

« Encryption Encg(u): // u e {0,1}

— Sample uniformly random a € Z7, "small” noise e € Z

— The ciphertext c = (a, b =(a, s) + e +u |q/2])

* Decryption Decg(c): Output Round,,(b — (a, s) mod q)

// correctness as long as |e| < g/4

Basic (Secret-key) Encryption

[Regev095]

We already saw that this scheme is additively
homomorphic.

c=(a,b={(,s)+e+ulq/2]) «~+—— Encs(m)

c'=(a",b' =@, sy+e +u'lq/2]) + Ence(m’)

c+c'=(ata’, b+b)=(a+a’,s)+(e+e)) + (u+u") lq/2])

In words: ¢ + ¢’ is an encryption of u + u ' (mod 2)

Basic (Secret-key) Encryption

[Regev095]

You can also negate the encrypted bit easily.

We will see how to make this scheme into a fully
homomorphic scheme (in the next lec)

For now, note that the error increases when you add
two ciphertexts. Thatis, |e g4~ |e1| + |lez| < 2B.

Setting ¢ = n'°8™ and B = +/n (for example) lets us
support any polynomial number of additions.

Public-key Encryption

[Regev095]

e Secret key sk = Uniformly random vector s e ZZ}
e Public key pk: fori from 1 to m = poly(n) TBD

c; = (a;(a;s) + e;)

Public-key Encryption

[Regev095]

Secret key sk = Uniformly random vector s € Z]

Public key pk: fori from 1 to m = poly(n)

(A,b=As +e) Al,| Als .|_

P A LR)

Encrypting a message bit u: pick a random vector r € {0,1}"

(rA,rb +plq/2])

Decryption: compute

rb+ulq/2| — (rA)s

and round to nearest multiple of q/2.

Correctness

e Encrypting a message bit u: pick a random vector r € {0,1}"™"

(rA,rb +plq/2])

e Decryption:

rb+ulq/2]| —(rA)s=r(As+e)+ ulq/2| — (rd)s

Decryption works as long as [re| < q/4 or in other words, if the

LWE error bound B < q/4m = q/poly(n).

Security
Theorem: under decisional LWE, the scheme is IND-

secure. In fact, even more: a ciphertext together with
the public key is pseudorandom.

We show this by a hybrid argument.
Let’s stare at a public key, ciphertext pair.

pk = (A, b =As+e),c = Enc(pk,u) =rA,vrb+ ul|q/2])

Call this distribution Hybrid 0.

Security

Theorem: under decisional LWE, the scheme is IND-

secure. In fact, even more: a ciphertext together with
the public key is pseudorandom.

Hybrid 1. Change the public key to random (from LWE).

pk = (A,b),¢ = Enc(pk,u) =rA, b + 11 |q/2))

Hybrids O and 1 are comp. indist. by decisional LWE.

Detour: Leftover Hash Lemma
[Impagliazzo-Levin-Luby’90]

We want to understand how r4,rb = r|A |b] is
distributed when A4, b is random (and public).

ca p
r Alb = i

If r is truly random, so is r|A4 |b].

But 7 is NOT truly random! It has small entries.

Nevertheless, 1 has entropy. Leftover hash lemma tells
us that matrix multiplication turns (sufficient) entropy
into true randomness. We needm >» (n + 1) logg.

Security

Theorem: under decisional LWE, the scheme is IND-

secure. In fact, even more: a ciphertext together with
the public key is pseudorandom.

Hybrid 1. Change the public key to random (from LWE).

pk = (A,b),¢ = Enc(pk,u) =rA, b + 11 |q/2))

Hybrids O and 1 are comp. indist. by decisional LWE.

Security

Theorem: under decisional LWE, the scheme is IND-

secure. In fact, even more: a ciphertext together with
the public key is pseudorandom.

Hybrid 2. Change rA, rb into random.

pk = (A b),¢ = Enc(pk, 1) = a',b" + 1 q/2])

Hybrids 1 and 2 are stat. indist. by leftover hash lemma.

Security

Theorem: under decisional LWE, the scheme is IND-

secure. In fact, even more: a ciphertext together with
the public key is pseudorandom.

Hybrid 2. Change rA, rb into random.

pk = (A b),¢ = Enc(pk, 1) = a',b" + 1 q/2])

Now, we have the message u encrypted with a one-time
pad which perfectly hides u. .

Public-key Encryption

[Regev095]

Secret key sk = Uniformly random vector s € Z]
Public key pk: fori from1tom = 2(n+ 1)loggqg
(A,b = As + e)
Encrypting a message bit u: pick a random vector r € {0,1}"

(rA,rb +plq/2])

Decryption: compute

rb+ulq/2| — (rA)s

and round to nearest multiple of q/2.

Next Lecture:
Fully Homomorphic Encryption

