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TODAY: Lattice-based Cryptography



Why Lattice-based Crypto?

o Quantum-Resistant (so far)

o Worst-case hardness

o Exponentially Hard

o Simple and Efficient

(unique feature of lattice-based crypto)

o Enabler of Surprising Capabilities
(computing on encrypted data)

(so far)



Solving Linear Equations

5𝑠! + 11𝑠" = 2

2𝑠! + 𝑠" = 6

7𝑠! + 𝑠" = 26

where all equations are over ℤ, the integers



Solving Linear Equations

More generally, 𝑛 variables and 𝑚 ≫ 𝑛 equations.

andA A
s

Given:

GOAL:  Find s.



Solving Linear Equations

GOAL:  Find s.

EASY!  For example, by Gaussian Elimination

andA A
s

Given:



Solving Linear Equations

GOAL:  Find s.

How to make it hard:
That is, work modulo some 𝑞. (1121 𝑚𝑜𝑑 100 = 21)

Still EASY! Gaussian Elimination mod 𝑞

andA A
s

Given:

Chop the head?



Solving Linear Equations

GOAL:  Find s.

How to make it hard:  Chop the tail?
Add a small error to each equation. 

Still EASY! Linear regression.

andA A
s

Given: + e



Solving Linear Equations

GOAL:  Find s.

How to make it hard:  Chop the head and the tail?
Add a small error to each equation and work mod 𝑞. 

Turns out to be very HARD!

andA A
s

Given: + e



Solving Noisy Modular Linear Equations

GOAL:  Find s.

A is chosen at random from ℤ#$×&, s from ℤ#&
and e from 𝜒$.

andA A
s

Given: + e

Parameters: dimensions 𝒏 and 𝑚, modulus 𝒒, error 
distribution 𝜒 = uniform in some interval [−𝑩,… ,𝑩].     

Learning with Errors (LWE)



Learning with Errors (LWE)

u Decoding Random Linear Codes
(over Fq with L1 errors) 

u Learning Noisy Linear Functions

u Worst-case hard Lattice Problems 
[Regev’05, Peikert’09]



Attack 1: Linearization

Given 𝑨, 𝑨𝒔 + 𝒆, find 𝒔.  

Idea (a) Each noisy linear equation is an exact polynomial eqn.

Consider 𝑏 = 𝒂, 𝒔 + 𝑒 = ∑𝒊(𝟏𝒏 𝑎+𝑠+ + 𝑒.

Imagine for now that the error bound 𝐵 = 1. So, 𝑒 ∈
−1,0,1 . In other words, b − ∑𝒊(𝟏𝒏 𝑎+𝑠+ ∈ −1,0,1 .  

So, here is a noiseless polynomial equation on 𝑠+:

(b − ∑𝒊(𝟏𝒏 𝑎+𝑠+ − 1) (b − ∑𝒊(𝟏𝒏 𝑎+𝑠+)(b − ∑𝒊(𝟏𝒏 𝑎+𝑠+ + 1) = 0



Attack 1: Linearization

Given 𝑨, 𝑨𝒔 + 𝒆, find 𝒔.  

BUT: Solving (even degree 2) polynomial equations is NP-hard.

(b − ∑𝒊(𝟏𝒏 𝑎+𝑠+ − 1) (b − ∑𝒊(𝟏𝒏 𝑎+𝑠+)(b − ∑𝒊(𝟏𝒏 𝑎+𝑠+ + 1) = 0



Attack 1: Linearization
(b − ∑𝒊(𝟏𝒏 𝑎+𝑠+ − 1) (b − ∑𝒊(𝟏𝒏 𝑎+𝑠+)(b − ∑𝒊(𝟏𝒏 𝑎+𝑠+ + 1) = 0

Idea (b) Easy to solve given sufficiently many equations. 
(using a technique called “linearization”)

*𝑎!"#𝑠!𝑠"𝑠# +*𝑎!"𝑠!𝑠" +*𝑎!𝑠! + 𝑏 − 1 𝑏(𝑏 + 1) = 0

Treat each “monomial”, e.g. s,s-s. as an independent 
variable, e.g. t,-..

Now, you have a noiseless linear equation in t,-.!!!



Attack 1: Linearization

*𝑎!"#𝑡!"# +*𝑎!"𝑡!" +*𝑎!𝑡! + 𝑏 − 1 𝑏(𝑏 + 1) = 0

Solutio
n sp

ace 

(with
 so

me eqns):

The real solution

𝑡+/0 = 𝑠+𝑠/𝑠0 etc.



Attack 1: Linearization

*𝑎!"#𝑡!"# +*𝑎!"𝑡!" +*𝑎!𝑡! + 𝑏 − 1 𝑏(𝑏 + 1) = 0

Solutio
n sp

ace 

(with
 more eqns):

The real solution

𝑡+/0 = 𝑠+𝑠/𝑠0 etc.



Attack 1: Linearization

*𝑎!"#𝑡!"# +*𝑎!"𝑡!" +*𝑎!𝑡! + 𝑏 − 1 𝑏(𝑏 + 1) = 0

Solutio
n sp

ace 

(with
 even more eqns):

The real solution

𝑡+/0 = 𝑠+𝑠/𝑠0 etc.



Attack 1: Linearization

*𝑎!"#𝑡!"# +*𝑎!"𝑡!" +*𝑎!𝑡! + 𝑏 − 1 𝑏(𝑏 + 1) = 0

Solutio
n sp

ace 

(keep going):

The real solution

𝑡+/0 = 𝑠+𝑠/𝑠0 etc.



Attack 1: Linearization

*𝑎!"#𝑡!"# +*𝑎!"𝑡!" +*𝑎!𝑡! + 𝑏 − 1 𝑏(𝑏 + 1) = 0

When #eqns = #vars ≈ 𝑂(𝑛1)

the only surviving solution to the linear system is the 

real solution.



Attack 1: Linearization

Given 𝑨, 𝑨𝒔 + 𝒆, find 𝒔.  

Can solve/break as long as 

𝒎 ≫ 𝒏𝟐𝑩4𝟏

We will set 𝐵 = 𝑛5(!), in other words polynomial in 
𝑛 so as to blunt this attack.



a1

O

a2

Attack 2: Lattice Decoding
a1*s1+a2*s2

a1*s1+a2*s2+e

in polynomial time when 𝒒/𝑩 > 𝟐𝒏
The famed Lenstra-Lenstra-Lovasz algorithm decodes



Setting Parameters
Put together, we are safe with: 

𝑛 = security parameter (≈ 1 − 10K)

𝑚 = arbitrary poly in 𝑛

𝐵 = small poly in 𝑛, say 𝑛

𝑞 = poly in 𝑛, larger than 𝐵, and could be 
as large as sub-exponential, say 2&!.##

even from quantum computers, AFAWK!



Decisional LWE

Theorem: “Decisional LWE is as hard as LWE”. 

Can you distinguish between:

,A A s
+ e and

,A b



OWF and PRG

gA(s,e) = As+e

• gA is a one-way function (assuming LWE)
• gA is a pseudo-random generator (decisional LWE)
• gA is also a trapdoor function…
• also a homomorphic commitment… 

𝒆 ∈ 𝑍!": random “small” error vector)

(A ∈ 𝑍!"#$
s ∈ 𝑍!" random “small” secret vector



Basic (Secret-key) Encryption

• Secret key sk = Uniformly random vector s Î 𝑍%&

• Encryption Encs(𝜇):   // 𝜇 Î {0,1}

– Sample uniformly random a Î 𝑍%&, “small” noise e Î 𝑍

– The ciphertext c = (a, b = áa, sñ + e +𝜇 𝑞/2 )

n = security parameter, q = “small” modulus
[Regev05]

• Decryption Decsk(c): Output Roundq/2(b − áa, sñ mod q)

// correctness as long as |e| < q/4



Basic (Secret-key) Encryption
[Regev05]

We already saw that this scheme is additively 
homomorphic.

𝒄 = (a, b = áa, sñ + e + 𝜇 𝑞/2 )

𝒄′ = (a′ , b′ = áa′, sñ + e′ + 𝜇 ′ 𝑞/2 )

𝒄 + 𝒄′ = (a+a′ , b+ b′)

+

In words: 𝑐 + 𝑐′ is an encryption of 𝜇 + 𝜇 ′ (mod 2) 

Encs(m) 

Encs(m’) 

𝒄 + 𝒄′ = (a+a′ , b+ b′ = á a +a′, sñ + (e+e′) + (𝜇 + 𝜇 ′) 𝑞/2 )



Basic (Secret-key) Encryption
[Regev05]

We will see how to make this scheme into a fully 
homomorphic scheme (in the next lec)

Setting 𝑞 = 𝑛9:; & and 𝐵 = 𝑛 (for example) lets us 
support any polynomial number of additions.

For now, note that the error increases when you add 
two ciphertexts. That is,  |𝑒<== ≈ |𝑒! + 𝑒" ≤ 2𝐵.

You can also negate the encrypted bit easily.



Public-key Encryption

• Secret key sk = Uniformly random vector s Î 𝑍%&

[Regev05]

• Public key pk: for 𝑖 𝑓𝑟𝑜𝑚 1 𝑡𝑜 𝑚 = 𝑝𝑜𝑙𝑦(𝑛) TBD

𝒄𝒊 = (𝒂𝒊, 𝒂𝒊, 𝒔 + 𝑒!)



Public-key Encryption

• Secret key sk = Uniformly random vector s Î 𝑍%&

[Regev05]

• Public key pk: for 𝑖 𝑓𝑟𝑜𝑚 1 𝑡𝑜 𝑚 = 𝑝𝑜𝑙𝑦(𝑛)

(𝑨, 𝒃 = 𝑨𝒔 + 𝒆)

• Encrypting a message bit 𝜇: pick a random vector 𝒓 ∈ {0,1}(

(𝒓𝑨, 𝒓𝒃 + 𝜇 𝑞/2 )

,A A s + e

• Decryption: compute 

𝒓𝒃 + 𝜇 𝑞/2 − 𝒓𝑨 𝐬

and round to nearest multiple of q/2.



Correctness

• Encrypting a message bit 𝜇: pick a random vector 𝒓 ∈ {0,1}(

(𝒓𝑨, 𝒓𝒃 + 𝜇 𝑞/2 )

• Decryption:

𝒓𝒃 + 𝜇 𝑞/2 − 𝒓𝑨 𝐬 = 𝒓(𝑨𝒔 + 𝒆) + 𝜇 𝑞/2 − 𝒓𝑨 𝐬

Decryption works as long as |𝒓𝒆| < 𝒒/𝟒 or in other words, if the

LWE error bound  B < 𝒒/𝟒𝒎 ≈ q/poly(n). 



Security
Theorem: under decisional LWE, the scheme is IND-
secure. In fact, even more: a ciphertext together with 
the public key is pseudorandom.

We show this by a hybrid argument.

Let’s stare at a public key, ciphertext pair.

𝒑𝒌 = 𝑨, 𝒃 = 𝑨𝒔 + 𝒆 , 𝒄 = 𝑬𝒏𝒄 𝒑𝒌, 𝜇 = 𝒓𝑨, 𝒓𝒃 + 𝜇 𝑞/2 )

Call this distribution Hybrid 0.



Security
Theorem: under decisional LWE, the scheme is IND-
secure. In fact, even more: a ciphertext together with 
the public key is pseudorandom.

Hybrid 1. Change the public key to random (from LWE).

𝒑𝒌 = 𝑨, 𝒃 , _𝒄 = 𝑬𝒏𝒄 𝒑𝒌, 𝜇 = 𝒓𝑨, 𝒓𝒃 + 𝜇 𝑞/2 )

Hybrids 0 and 1 are comp. indist. by decisional LWE.



Detour: Leftover Hash Lemma
[Impagliazzo-Levin-Luby’90]

We want to understand how 𝒓𝑨, 𝒓𝒃 = 𝒓 𝑨 𝒃] is
distributed when 𝐴, 𝑏 is random (and public).

But 𝒓 is NOT truly random! It has small entries. 

𝑨 𝒃

If 𝒓 is truly random, so is 𝒓 𝑨 𝒃].

𝒓

Nevertheless, 𝒓 has entropy. Leftover hash lemma tells 
us that matrix multiplication turns (sufficient) entropy 
into true randomness.  We need 𝑚 ≫ 𝑛 + 1 log 𝑞.

≈
𝒄 𝒂′ 𝑏′



Security
Theorem: under decisional LWE, the scheme is IND-
secure. In fact, even more: a ciphertext together with 
the public key is pseudorandom.

Hybrid 1. Change the public key to random (from LWE).

𝒑𝒌 = 𝑨, 𝒃 , _𝒄 = 𝑬𝒏𝒄 𝒑𝒌, 𝜇 = 𝒓𝑨, 𝒓𝒃 + 𝜇 𝑞/2 )

Hybrids 0 and 1 are comp. indist. by decisional LWE.



Security
Theorem: under decisional LWE, the scheme is IND-
secure. In fact, even more: a ciphertext together with 
the public key is pseudorandom.

Hybrid 2. Change 𝒓𝑨, 𝒓𝒃 into random.

𝒑𝒌 = 𝑨, 𝒃 , _𝒄 = 𝑬𝒏𝒄 𝒑𝒌, 𝜇 = 𝒂′, 𝑏′ + 𝜇 𝑞/2 )

Hybrids 1 and 2 are stat. indist. by leftover hash lemma.



Security
Theorem: under decisional LWE, the scheme is IND-
secure. In fact, even more: a ciphertext together with 
the public key is pseudorandom.

Hybrid 2. Change 𝒓𝑨, 𝒓𝒃 into random.

𝒑𝒌 = 𝑨, 𝒃 , _𝒄 = 𝑬𝒏𝒄 𝒑𝒌, 𝜇 = 𝒂′, 𝑏′ + 𝜇 𝑞/2 )

Now, we have the message 𝜇 encrypted with a one-time
pad which perfectly hides 𝜇.



Public-key Encryption

• Secret key sk = Uniformly random vector s Î 𝑍%&

[Regev05]

• Public key pk: for 𝑖 𝑓𝑟𝑜𝑚 1 𝑡𝑜 𝑚 = 2 𝑛 + 1 log 𝑞

(𝑨, 𝒃 = 𝑨𝒔 + 𝒆)

• Encrypting a message bit 𝜇: pick a random vector 𝒓 ∈ {0,1}(

(𝒓𝑨, 𝒓𝒃 + 𝜇 𝑞/2 )

• Decryption: compute 

𝒓𝒃 + 𝜇 𝑞/2 − 𝒓𝑨 𝐬

and round to nearest multiple of q/2.



Next Lecture: 
Fully Homomorphic Encryption


