MIT 6.875 \& Berkeley CS276

Foundations of Cryptography Lecture 21

TODAY: Homomorphic Encryption

1. Secure Outsourcing

A Special Case: Encrypted Database Lookup

- also called "private information retrieval" (next lec)

2. Secure Collaboration

(also called Secure Computation)

ID	Genome

"Parties learn the genotype-phenotype correlations and nothing else"

Homomorphic Encryption: Syntax (can be either secret-key or public-key enc)

4-tuple of PPT algorithms (Gen, Enc, Dec, Eval) s.t.

- $(s k, e k) \leftarrow G e n\left(1^{n}\right)$.

PPT Key generation algorithm generates a secret key as well as a (public) evaluation key.

- $c \leftarrow E n c(s k, m)$.

Encryption algorithm uses the secret key to encrypt message m.

- $\quad c^{\prime} \leftarrow \operatorname{Eval}(e k, f, c)$.

Homomorphic evaluation algorithm uses the evaluation key to produce an "evaluated ciphertext" c^{\prime}.

- $m \leftarrow \operatorname{Dec}(s k, c)$.

Decryption algorithm uses the secret key to decrypt ciphertext c.

Homomorphic Encryption: Correctness

$$
\operatorname{Dec}(\operatorname{sk}, \operatorname{Eval}(e k, f, \operatorname{Enc}(x)))=f(x)
$$

Homomorphic Encryption: Security

Function: f

Security against the curious cloud = standard INDsecurity of secret-key encryption

Key Point: Eval is an entirely public algorithm with public inputs.

Here is a homomorphic encryption scheme...

- $(s k,-) \leftarrow \operatorname{Gen}\left(1^{n}\right)$.

Use any old secret key enc scheme.

- $c \leftarrow E n c(s k, m)$.

Just the secret key encryption algorithm...

- $\quad c^{\prime} \leftarrow \operatorname{Eval}(e k, f, c)$.

Output $c^{\prime}=c \| f$. So Eval is basically the identity function!!

- $m \leftarrow \operatorname{Dec}\left(s k, c^{\prime}\right)$.

Parse $c^{\prime}=c \| f$ as a ciphertext concatenated with a function description. Decrypt c and compute the function f.

This is correct and it is IND-secure.

Homomorphic Encryption: Compactness

The size (bit-length) of the evaluated ciphertext and the runtime of the decryption is independent of the complexity of the evaluated function.

A Relaxation: The size (bit-length) of the evaluated ciphertext and the runtime of the decryption depends sublinearly on the complexity of the evaluated function.

Big Picture: Two Steps to FHE

Leveled Secret-key Homomorphic Encryption: Evaluate circuits of a-priori bounded depth d

"you give me a depth bound d, I will give you a homomorphic scheme that handles depth-d circuits..."

Bootstrapping Theorem:

From "circular secure" Leveled FHE to Pure FHE (at the cost of an additional assumption)
"I will give you homomorphic scheme that handles circuits of ANY size/depth"

How to Compute Arbitrary Functions

For us, programs $=$ functions $=$ Boolean circuits with XOR $(+\bmod 2)$ and AND $(\times \bmod 2)$ gates.

Takeaway: If you can compute XOR and AND on encrypted bits, you can compute everything.

Learning with Errors (LWE)

GOAL: Find s .
Parameters: dimensions \boldsymbol{n} and m, modulus \boldsymbol{q}, error distribution $\chi=$ uniform in some interval $[-\boldsymbol{B}, \ldots, \boldsymbol{B}]$.
\mathbf{A} is chosen at random from $\mathbb{Z}_{q}^{m \times n}, \mathbf{s}$ from \mathbb{Z}_{q}^{n} and \mathbf{e} from χ^{m}.

Setting Parameters

Put together, we are safe with:

$$
\begin{aligned}
& n=\text { security parameter }(\approx 1-10 \mathrm{~K}) \\
& m=\text { arbitrary poly in } n \\
& B=\text { small poly in } n, \text { say } \sqrt{n} \\
& q=\text { poly in } n \text {, larger than } B, \text { and could be } \\
& \quad \text { as large as sub-exponential, say } 2^{n^{0.99}}
\end{aligned}
$$

even from quantum computers, AFAWK!

Decisional LWE

Can you distinguish between:

Theorem: "Decisional LWE is as hard as LWE".

Basic (Secret-key) Encryption

 [Regev05]$\mathrm{n}=$ security parameter, $\mathrm{q}=$ "small" modulus

- Secret key sk $=$ Uniformly random vector $\mathbf{s} \in Z_{q}^{n}$
- Encryption $\operatorname{Enc}_{\mathbf{s}}(\mu): \quad / \mu \mu \in\{0,1\}$
- Sample uniformly random $\mathbf{a} \in Z_{q}^{n}$, "small" noise $\mathrm{e} \in Z$
- The ciphertext $\mathbf{c}=(\mathbf{a}, \mathrm{b}=\langle\mathrm{a}, \mathbf{s}\rangle+\mathrm{e}+\mu\lfloor q / 2\rfloor)$
- Decryption $\operatorname{Dec}_{\text {sk }}(\mathbf{c}):$ Output $\operatorname{Round}_{q / 2}(\mathrm{~b}-\langle\mathbf{a}, \mathbf{s}\rangle \bmod q)$ // correctness as long as $|\mathrm{e}|<\mathrm{q} / 4$

New (Secret-key) Encryption: Take 1

- Private key: a vector $\mathbf{s} \in \boldsymbol{Z}_{\boldsymbol{q}}^{\boldsymbol{n}}$
- Private-key Encryption of a bit $m \in\{\mathbf{0}, \mathbf{1}\}$:

$$
\mathrm{C}=\left[\begin{array}{c}
A \\
S A
\end{array}\right]+m I \quad(A \text { is random }(\mathrm{n}+1) \mathrm{X} \mathrm{n} \text { matrix })
$$

- Decryption:

$$
\underbrace{\mathbf{s} \|-1]}_{\text {Eigenvector }} \underbrace{\mathbf{C}}_{\text {Ciphertext matrix }}=\underbrace{\mathrm{m}}_{\text {Message }=\text { Eigenvalue }}[\mathbf{s} \|-1](\bmod q)
$$

Priv key = Eigenvector

INSECURE! Easy to solve linear equations.

New (Secret-key) Encryption: Take 1

$$
\mathbf{t} \cdot \mathbf{C}=\mathrm{m} \cdot \mathbf{t}(\bmod q)
$$

$$
t=[s| |-1]
$$

- Homomorphic addition: $\mathbf{C}_{\mathbf{1}}+\mathbf{C}_{\mathbf{2}}$
$-t$ is an eigenvector of $C_{1}+C_{2}$ with eigenvalue $m_{1}+m_{2}$
- Homomorphic multiplication: $\mathbf{C}_{1} \mathbf{C}_{\mathbf{2}}$
$-t$ is an eigenvector of $C_{1} C_{2}$ with eigenvalue $m_{1} m_{2}$

$$
\text { Proof: } t \cdot \mathrm{C}_{1} \mathrm{C}_{2}=\left(\mathrm{m}_{1} \cdot t\right) \cdot \mathrm{C}_{2}=\mathrm{m}_{1} \cdot \mathrm{~m}_{2} \cdot \mathrm{t}
$$

But, remember, the scheme is insecure?

Key idea: fix insecurity while retaining homomorphism.

New (Secret-key) Encryption: Take 2

- Private key: a vector $\mathbf{s} \in \boldsymbol{Z}_{\boldsymbol{q}}^{\boldsymbol{n}}$
- Private-key Encryption of a bit $m \in\{\mathbf{0}, \mathbf{1}\}$:

$$
\mathbf{C}=\left[\begin{array}{c}
\boldsymbol{A} \\
\boldsymbol{S} \boldsymbol{A}+\boldsymbol{e}
\end{array}\right]+m \boldsymbol{I} \quad(\boldsymbol{A} \text { is random }(\mathrm{n}+1) \mathrm{X} \mathrm{n} \text { matrix })
$$

- Decryption:

(-) CPA-secure by LWE.

New (Secret-key) Encryption: Take 2

$$
\mathbf{t} \cdot \mathbf{C}=\mathrm{m} \cdot \mathbf{t}+\mathbf{e}(\bmod q)
$$

$$
t=[s| |-1]
$$

\rightarrow Homomorphic addition: $\mathrm{C}_{1}+\mathrm{C}_{2}$

$$
\begin{aligned}
\vec{t} \cdot\left(C_{1}+C_{2}\right) & =\vec{t} C_{1}+\vec{t} C_{2} \\
& =m_{1} \vec{t}+\vec{e}_{1}+m_{2} \vec{t}+\vec{e}_{2} \\
& =\left(m_{1}+m_{2}\right) \vec{t}+\left(\vec{e}_{1}+\vec{e}_{2}\right) \\
& \approx\left(m_{1}+m_{2}\right) \vec{t}
\end{aligned}
$$

New (Secret-key) Encryption: Take 2

$$
\mathbf{t} \cdot \mathbf{C}=\mathrm{m} \cdot \mathbf{t}+\mathbf{e}(\bmod q)
$$

$$
t=[s| |-1]
$$

- Homomorphic multiplication: $\mathbf{C}_{1} \mathbf{C}_{\mathbf{2}}$

Can also use $C_{2} C_{1}$

$$
\begin{aligned}
\vec{t} \cdot\left(C_{1} \cdot C_{2}\right) & =\left(m_{1} \vec{t}+\vec{e}_{1}\right) C_{2} \\
& =m_{1} \vec{t} C_{2}+\vec{e}_{1} C_{2} \\
& =m_{1}\left(m_{2} \vec{t}+\vec{e}_{2}\right)+\vec{e}_{1} C_{2} \\
& =m_{1} m_{2} \vec{t}+\underbrace{m_{1} \vec{e}_{2}+\vec{e}_{1} C_{2}}_{1}
\end{aligned}
$$

Noise grows. Need C_{2} to be small! How?!

Aside: Binary Decomposition

Break each entry in C into its binary representation
$C=\left[\begin{array}{ll}3 & 5 \\ 1 & 4\end{array}\right](\bmod 8) \Rightarrow \operatorname{bits}(C)=\left[\begin{array}{ll}0 & 1 \\ 1 & 0 \\ 1 & 1 \\ 0 & 1 \\ 0 & 0 \\ 1 & 0\end{array}\right](\bmod 8)$

Consider the "reverse" operation:

Denote: $G^{-1}(C)$ which has "small" entries

New (Secret-key) Encryption: Take 3

- Private key: a vector $\mathrm{s} \in \boldsymbol{Z}_{q}^{n}$
- Private-key Encryption of a bit $m \in\{\mathbf{0}, \mathbf{1}\}$:

$$
\mathbf{C}=\left[\begin{array}{c}
\boldsymbol{A} \\
\boldsymbol{S} \boldsymbol{A}+\boldsymbol{e}
\end{array}\right]+m G \quad(\boldsymbol{A} \text { is random }(\mathrm{n}+1) \mathrm{X} \mathrm{n} \text { log q matrix })
$$

- Decryption:

- Still CPA-secure by LWE.

New (Secret-key) Encryption: Take 3

$$
\mathbf{t} \cdot \mathbf{C}=\mathrm{m} \cdot \mathbf{t} \cdot \mathbf{G}+\mathbf{e}(\bmod q)
$$

$$
\mathrm{t}=[\mathrm{s} \|-1]
$$

- Homomorphic multiplication: $\quad C_{\text {mult }}=C_{1} \cdot G^{-1}\left(C_{2}\right)$

$$
\begin{aligned}
\vec{s} \cdot C_{1} \cdot G^{-1}\left(C_{2}\right) & =\left(\vec{e}_{1}+m_{1} \cdot \vec{s} \cdot G\right) \cdot G^{-1}\left(C_{2}\right) \\
& =\vec{e}_{1} \cdot G^{-1}\left(C_{2}\right)+m_{1} \cdot \vec{s} \cdot G \cdot G^{-1}\left(C_{2}\right) \\
& =\vec{e}_{1} \cdot G^{-1}\left(C_{2}\right)+m_{1} \cdot \vec{s} \cdot C_{2} \\
& =\vec{e}_{1} \cdot G^{-1}\left(C_{2}\right)+m_{1} \cdot\left(\vec{e}_{2}+m_{2} \cdot \vec{s} \cdot G\right) \\
& =\underbrace{\left(\vec{e}_{1} \cdot G^{-1}\left(C_{2}\right)+m_{1} \cdot \vec{e}_{2}\right)}_{\vec{e}_{\text {mult }}}+m_{1} m_{2} \cdot \vec{s} \cdot G
\end{aligned}
$$

$\left\|\vec{e}_{\text {mult }}\right\| \leq n \log q \cdot\left\|\vec{e}_{1}\right\|+m_{1} \cdot\left\|\vec{e}_{2}\right\| \leq(n \log q+1) \cdot \max \left\{\left\|\vec{e}_{1}\right\|,\left\|\vec{e}_{2}\right\|\right\}$

Homomorphic Circuit Evaluation

Noise grows during homomorphic eval

$\left\|\vec{e}_{\text {output }}\right\| \leq(N+1)^{d} \cdot B_{0} \approx N^{d} B_{0}$
\Rightarrow Decryptable if $q \gg N^{d} B_{0}$. (for security: $q \ll 2^{n}$)

So this can support $\boldsymbol{d} \approx \boldsymbol{n}^{0.99}$

$$
\left\|\vec{e}_{\text {input }}\right\| \leq B_{0}
$$

Big Picture: Two Steps to FHE

Leveled Secret-key Homomorphic Encryption: Evaluate circuits of a-priori bounded depth d

"you give me a depth bound d, I will give you a homomorphic scheme that handles depth-d circuits..."

Bootstrapping Theorem:

From "circular secure" Leveled FHE to Pure FHE (at the cost of an additional assumption)
"I will give you homomorphic scheme that handles circuits of ANY size/depth"

From Leveled to Fully Homomorphic

The cloud keeps homomorphically computing, but after a certain depth, the ciphertext is too noisy to be useful. What to do?

Idea: "Bootstrapping"!

Decryption Circuit

Bootstrapping, Concretely

Next Best $=$ Homomorphic Decryption!

Assume server knows ek $=\mathrm{Enc}_{\text {sk }}(\mathrm{SK})$.
(OK assuming the scheme is "circular secure")

Bootstrapping, Concretely

Wrap Up: Bootstrapping

Assume Circular Security:
Evaluation key is $\mathrm{Enc}_{\mathbf{S K}}(\mathbf{S K})$

Wrap Up: Bootstrapping

Assume Circular Security:
Evaluation key is $\mathrm{Enc}_{\mathbf{s K}}(\mathbf{S K})$

Each Gate $\mathbf{g} \rightarrow$ Gadget $\mathbf{G}:$

Wrap Up: Bootstrapping

Assume Circular Security:
Evaluation key is $\mathrm{Enc}_{\mathbf{S K}}(\mathbf{S K})$

Each Gate g Gadget G:

How about Function Privacy?

Input: x

Function: f

Security against the curious cloud = standard INDsecurity of secret-key encryption

Security against a curious user?

Function Privacy

Function Privacy: Enc(f(x)) reveals no more information (about f) than $f(x)$.

HOMOMORPHIC ENCRYPTION IN PRACTICE

DARPA \$60M investment [2012-17].
Many Open Source Libraries.

APPLICATIONS of HOMOMORPHIC ENCRYPTION

Healthcare

Applying genomic analysis to 1 K patients
13 seconds

Winner of the 2018 iDash International Homomorphic Encryption competition

Collaboration with Dana Farber and Duality Technologies.

Financial
Benchmarking cyberrisk on
1M
records
12 seconds

Collaboration with Andrew Lo@Sloan and Danny Weitzner@CSAIL Internet Policy Research Initiative.

Breast density detection on encrypted mammograms
60 seconds

Collaboration with Regina Barzilay@CSAIL and Anantha Chandrakasan@EECS.

Synergy of Algorithms \& Data Science \& HPC \& Crypto

THE DREAM

Many Secure Computing Startups.

Standardization Efforts.

Next Lecture:
Homomorphic Encryption and Database Lookup

