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TODAY: Homomorphic Encryption



1. Secure Outsourcing

Client Server (the Cloud)

Input: x Program: P

Enc(P(x))

Enc(x) 

A Special Case: Encrypted Database Lookup

– also called “private information retrieval” (next lec)

x 

P(x)



2. Secure Collaboration
(also called Secure Computation)

Hospital

ID Genome ID Phenotype

“Parties learn the genotype-phenotype correlations and nothing else”



Homomorphic Encryption: Syntax

• 𝑠𝑘, 𝑒𝑘 ← 𝐺𝑒𝑛 1! .
PPT Key generation algorithm generates a secret key as well as a 
(public) evaluation key.

• 𝑐 ← 𝐸𝑛𝑐 𝑠𝑘,𝑚 .
Encryption algorithm uses the secret key to encrypt message 𝑚.

• 𝑚 ← 𝐷𝑒𝑐 𝑠𝑘, 𝑐 .
Decryption algorithm uses the secret key to decrypt ciphertext 𝑐.

4-tuple of PPT algorithms (𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐, 𝐸𝑣𝑎𝑙) s.t.

(can be either secret-key or public-key enc)

• 𝑐′ ← 𝐸𝑣𝑎𝑙 𝑒𝑘, 𝑓, 𝑐 .
Homomorphic evaluation algorithm uses the evaluation key to 
produce an “evaluated ciphertext” 𝑐′.



Homomorphic Encryption: Correctness

𝐷𝑒𝑐(𝑠𝑘, 𝐸𝑣𝑎𝑙 𝑒𝑘, 𝑓, 𝐸𝑛𝑐(𝑥)) = 𝑓(𝑥).

𝑥

𝑐

𝑬𝒏𝒄 𝑫𝒆𝒄

𝑬𝒗𝒂𝒍(?, 𝒇,?)
𝑐′

𝑓(𝑥)



Homomorphic Encryption: Security

𝑥

Client Server (the Cloud)

Input: x Function: f

Enc(f(x))

Enc(sk,x) 

Security against the curious cloud = standard IND-
security of secret-key encryption  

Key Point: Eval is an entirely public algorithm with public 
inputs. 



Here is a homomorphic encryption scheme…

• 𝑠𝑘, − ← 𝐺𝑒𝑛 1! .
Use any old secret key enc scheme.

• 𝑐 ← 𝐸𝑛𝑐 𝑠𝑘,𝑚 .
Just the secret key encryption algorithm…

• 𝑚 ← 𝐷𝑒𝑐 𝑠𝑘, 𝑐′ .
Parse 𝑐! = 𝑐||𝑓 as a ciphertext concatenated with a function 
description. Decrypt 𝑐 and compute the function 𝑓.

• 𝑐′ ← 𝐸𝑣𝑎𝑙 𝑒𝑘, 𝑓, 𝑐 .
Output 𝑐′ = 𝑐 || 𝑓.  So Eval is basically the identity function!!

This is correct and it is IND-secure.



Homomorphic Encryption: Compactness

The size (bit-length) of the evaluated ciphertext and the 
runtime of the decryption is independent of the 
complexity of the evaluated function.

A Relaxation:  The size (bit-length) of the evaluated 
ciphertext and the runtime of the decryption depends 
sublinearly on the complexity of the evaluated function.



Big Picture:  Two Steps to FHE

Bootstrapping Theorem:
From “circular secure” Leveled FHE to Pure FHE 
(at the cost of an additional assumption)

Leveled Secret-key Homomorphic Encryption:
Evaluate circuits of a-priori bounded depth d 
“you give me a depth bound d, I will give you a homomorphic scheme that 
handles depth-d circuits…”

“I will give you homomorphic scheme that handles circuits of ANY size/depth”



How to Compute Arbitrary Functions

X+

X

For us, programs = functions = Boolean circuits with 
XOR (+𝑚𝑜𝑑 2) and AND (×𝑚𝑜𝑑 2) gates.

Takeaway: If you can compute XOR and AND on 
encrypted bits, you can compute everything.

𝐸𝑛𝑐(𝑥!) 𝐸𝑛𝑐(𝑥") 𝐸𝑛𝑐(𝑥#) 𝐸𝑛𝑐(𝑥$)

𝐸𝑛𝑐(𝑥! + 𝑥") 𝐸𝑛𝑐(𝑥#𝑥$)

𝐸𝑛𝑐((𝑥! + 𝑥")𝑥#𝑥$)



GOAL:  Find s.

A is chosen at random from ℤ)*×!, s from ℤ)!
and e from 𝜒*.

andA A
s

Given: + e

Parameters: dimensions 𝒏 and 𝑚, modulus 𝒒, error 
distribution 𝜒 = uniform in some interval [−𝑩,… ,𝑩].     

Learning with Errors (LWE)



Setting Parameters
Put together, we are safe with: 

𝑛 = security parameter (≈ 1 − 10K)

𝑚 = arbitrary poly in 𝑛

𝐵 = small poly in 𝑛, say 𝑛

𝑞 = poly in 𝑛, larger than 𝐵, and could be 
as large as sub-exponential, say 2!!.##

even from quantum computers, AFAWK!



Decisional LWE

Theorem: “Decisional LWE is as hard as LWE”. 

Can you distinguish between:

,A A s
+ e and

,A b



Basic (Secret-key) Encryption

• Secret key sk = Uniformly random vector s Î 𝑍"#

• Encryption Encs(𝜇):   // 𝜇 Î {0,1}

– Sample uniformly random a Î 𝑍"#, “small” noise e Î 𝑍

– The ciphertext c = (a, b = áa, sñ + e +𝜇 𝑞/2 )

n = security parameter, q = “small” modulus
[Regev05]

• Decryption Decsk(c): Output Roundq/2(b − áa, sñ mod q)

// correctness as long as |e| < q/4



• Private-key Encryption of a bit 𝑚 ∈ {𝟎, 𝟏}:

C = 𝑨
𝒔𝑨 +𝑚 𝑰

• Private key:  a vector s ∈ 𝒁𝒒𝒏

Priv key Ciphertext matrix= Eigenvector Message = Eigenvalue

[s || -1]         C      =         m [s || -1]  (mod q) 

(𝑨 is random (n+1) X n matrix)

• Decryption:

🙁 INSECURE! Easy to solve linear equations.

New (Secret-key) Encryption: Take 1



t . C = m . t (mod q) 

►Homomorphic addition: C1 + C2

– t is an eigenvector of C1+C2 with eigenvalue m1+m2

►Homomorphic multiplication: C1C2

– t is an eigenvector of C1C2 with eigenvalue m1m2

Proof: t . C1 C2 = (m1 . t) . C2 = m1 . m2 . t

But, remember, the scheme is insecure?

Key idea: fix insecurity while retaining homomorphism.

t = [s || -1]

New (Secret-key) Encryption: Take 1



• Private-key Encryption of a bit 𝑚 ∈ {𝟎, 𝟏}:

• Private key:  a vector s ∈ 𝒁𝒒𝒏

Priv key Ciphertext matrix= Approx
Eigenvector

Message = Approx
Eigenvalue

(𝑨 is random (n+1) X n matrix)

• Decryption:

🙂 CPA-secure by LWE.

C = 𝑨
𝒔𝑨 + 𝒆 +𝑚 𝑰

[s || -1]           C         ≈ m [s || -1]  (mod q) 

New (Secret-key) Encryption: Take 2



t . C = m . t + e (mod q) 

►Homomorphic addition: C1 + C2

t = [s || -1]

New (Secret-key) Encryption: Take 2

= 𝑡𝐶& + 𝑡𝐶'
= 𝑚&𝑡 + 𝑒& +𝑚'𝑡 + 𝑒'
= (𝑚&+𝑚')𝑡 + (𝑒&+𝑒')

Noise grows a 
little

≈ (𝑚& +𝑚')𝑡

𝑡 ⋅ (𝐶& + 𝐶')



t . C = m . t + e (mod q) 

►Homomorphic multiplication: C1C2

t = [s || -1]

New (Secret-key) Encryption: Take 2

𝑡 ⋅ (𝐶& ⋅ 𝐶') = 𝑚&𝑡 + 𝑒& 𝐶'
= 𝑚&𝑡𝐶' + 𝑒&𝐶'
= 𝑚& 𝑚'𝑡 + 𝑒' + 𝑒&𝐶'

𝑒()*+

Noise grows. 
Need 𝑪𝟐 to be 
small! How?!

Can also 
use 𝐶"𝐶!

= 𝑚&𝑚'𝑡 + 𝑚&𝑒' + 𝑒&𝐶'



Aside: Binary Decomposition
Break each entry in 𝐶 into its binary representation

𝐶 = 3 5
1 4 (𝑚𝑜𝑑 8) 𝑏𝑖𝑡𝑠 𝐶 =

0
1
1

1
0
1

0
0
1

1
0
0

(𝑚𝑜𝑑 8)⇒
Small entries like we wanted!

Consider the “reverse” operation:

4 2 1 0 0 0
0 0 0 4 2 1 ⋅ 𝑏𝑖𝑡𝑠 𝐶 = 𝐶

𝐺

⇒ 𝑡 ⋅ 𝐶 = 𝑡 ⋅ 𝐺 ⋅ 𝐺!"(𝐶)

Denote: 𝐺,& 𝐶 which has “small” entries

𝑘

𝑘 log 𝑞



• Private-key Encryption of a bit 𝑚 ∈ {𝟎, 𝟏}:

• Private key:  a vector s ∈ 𝒁𝒒𝒏

Priv key Ciphertext matrix= Approx
Eigenvector

Message = Approx
“Eigenvalue”

(𝑨 is random (n+1) X n log q  matrix)

• Decryption:

🙂 Still CPA-secure by LWE.

C = 𝑨
𝒔𝑨 + 𝒆 +𝑚 𝐺

[s || -1]           C         ≈         m [s || -1] G (mod q) 

New (Secret-key) Encryption: Take 3



t . C = m . t . G + e (mod q) 

►Homomorphic multiplication:

t = [s || -1]

New (Secret-key) Encryption: Take 3

𝐶*123 = 𝐶4 ⋅ 𝐺54(𝐶6)

𝑠 ⋅ 𝐶& ⋅ 𝐺,& 𝐶' = (𝑒& +𝑚& ⋅ 𝑠 ⋅ 𝐺) ⋅ 𝐺,& 𝐶'

= 𝑒& ⋅ 𝐺,& 𝐶' +𝑚& ⋅ 𝑠 ⋅ 𝐺 ⋅ 𝐺,& 𝐶'
= 𝑒& ⋅ 𝐺,& 𝐶' +𝑚& ⋅ 𝑠 ⋅ 𝐶'

= 𝑒& ⋅ 𝐺,& 𝐶' +𝑚& ⋅ (𝑒' +𝑚' ⋅ 𝑠 ⋅ 𝐺)

= 𝑒& ⋅ 𝐺,& 𝐶' +𝑚& ⋅ 𝑒' +𝑚&𝑚' ⋅ 𝑠 ⋅ 𝐺

𝑒&'() ≤ 𝑛 log 𝑞 ⋅ 𝑒* +𝑚* ⋅ 𝑒+ ≤ 𝑛 log 𝑞 + 1 ⋅ max{ 𝑒* , 𝑒+ }
𝑒&'()



Homomorphic Circuit Evaluation

𝑒-)+.)+ ≤ 𝑁 + 1 / ⋅ 𝐵0 ≈ 𝑁/𝐵0

𝑒1#.)+ ≤ 𝐵0𝑒*+,')

𝑒-'),')

Noise grows during homomorphic eval

Depth 𝑑

𝑒12& ≤ (𝑁 + 1) 𝑒1

…

⇒	Decryptable if 𝑞 ≫ 𝑁.𝐵/.
(for security:  𝑞 ≪ 2+)

So this can support 𝒅 ≈ 𝒏𝟎.𝟗𝟗

𝐿𝑒𝑡 𝑁 = 𝑛 log 𝑞



Big Picture:  Two Steps to FHE

Bootstrapping Theorem:
From “circular secure” Leveled FHE to Pure FHE 
(at the cost of an additional assumption)

Leveled Secret-key Homomorphic Encryption:
Evaluate circuits of a-priori bounded depth d 
“you give me a depth bound d, I will give you a homomorphic scheme that 
handles depth-d circuits…”

“I will give you homomorphic scheme that handles circuits of ANY size/depth”



From Leveled to Fully Homomorphic

𝑥

Client Server (the Cloud)

Input: x Function: f

Enc(sk,x) 

The cloud keeps homomorphically computing, but 
after a certain depth, the ciphertext is too noisy to 
be useful. What to do?

Idea: “Bootstrapping”!



Bootstrapping: How

“Best Possible” Noise Reduction = Decryption!

𝐷𝑒𝑐(P, 𝐶𝑇)

SK

m

Decryption Circuit

“Very Noisy” ciphertext

“Noiseless ciphertext”

But the 
evaluator/cloud

does not have SK! 



Bootstrapping, Concretely
Next Best = Homomorphic Decryption!

EncSK(m)

EncSK(SK)

Assume server knows  ek = EncSK(SK).
(OK assuming the scheme is “circular secure”)

*

𝐷𝑒𝑐(P, 𝐶𝑇)



Bootstrapping, Concretely
Next Best = Homomorphic Decryption!

EncSK(m)

Assume server knows  ek = EncSK(SK).
(OK assuming the scheme is “circular secure”)

*

Noise = Binput

Noise = Bdec

Bdec Independent of Binput

EncSK(SK)

𝐷𝑒𝑐(P, 𝐶𝑇)



g

Assume Circular Security:

Wrap Up: Bootstrapping
Function f

Evaluation key is EncSK(SK)



g

Each Gate g → Gadget G:

g

Assume Circular Security:

𝐷𝑒𝑐(L, 𝑐3)

g

sk
a b

g(a,b)

sk

a b

g(a,b)

Wrap Up: Bootstrapping
Function f

Evaluation key is EncSK(SK)

𝐷𝑒𝑐(L, 𝑐4)



g

Each Gate g → Gadget G:

g

Assume Circular Security:

𝐷𝑒𝑐(L, 𝑐3)

g

a b

g(a,b)

Enc(sk)

a b

Enc(g(a,b))

Wrap Up: Bootstrapping
Function f

Evaluation key is EncSK(SK)

𝐷𝑒𝑐(L, 𝑐4)

Enc(sk)



How about Function Privacy?

𝑥

Client Server (the Cloud)

Input: x Function: f

Enc(f(x))

Enc(sk,x) 

Security against the curious cloud = standard IND-
security of secret-key encryption  

Security against a curious user?



Function Privacy

𝑥

Client Server (the Cloud)

Input: x Function: f

Enc(f(x))

Enc(sk,x) 

Function Privacy: Enc(f(x)) reveals no more 
information (about f) than f(x).



HOMOMORPHIC ENCRYPTION IN PRACTICE

PALISADE

HELib

SEAL

HEEAN

DARPA $60M investment [2012-17].

Many Open Source Libraries.



APPLICATIONS of HOMOMORPHIC ENCRYPTION

Winner of the 2018 iDash
International Homomorphic 
Encryption competition

1

Healthcare
Applying genomic analysis 
to 1K patients 
13 seconds

Financial
Benchmarking cyberrisk on 
1M 
records 
12 seconds

Synergy of Algorithms & Data Science & HPC & Crypto

Collaboration with Dana Farber 
and Duality Technologies.

Collaboration with Andrew Lo@Sloan and Danny 
Weitzner@CSAIL Internet Policy Research Initiative.

Medical Imaging
Breast density detection on  
encrypted mammograms 
60 seconds

Collaboration with Regina Barzilay@CSAIL
and Anantha Chandrakasan@EECS.



THE DREAM

Ho
m

om
or

ph
ic 
ST
AC

K

Homomorphic
Instruction Set

Homomorphic
Linear Algebra Layer

Homomorphic
ML Algorithms

Many Secure Computing Startups.

Standardization Efforts.
homomorphicencryption.org

Data Science 
Platforms



Next Lecture: 
Homomorphic Encryption and Database Lookup


