MIT 6.875 & Berkeley CS276

Foundations of Cryptography Lecture 3

Roadmap of the Course: Worlds in Crypto

Today

1. Define one-way functions (OWF).

2. Define Hardcore bits (HCB).

3. Show that one-way functions * + HCB \Rightarrow PRG

4. Goldreich-Levin Theorem: every OWF has a HCB.

One-way Functions (Informally)

One-way Functions (Take 1)

A function (family) $\{F_n\}_{n \in \mathbb{N}}$ where $F_n: \{0,1\}^n \rightarrow \{0,1\}^{m(n)}$ is one-way if for every p.p.t. adversary A, there is a negligible function μ s.t.

 $\Pr[x \leftarrow \{0,1\}^n; y = F_n(x): A(1^n, y) = x] \le \mu(n)$

Consider $F_n(x) = 0$ for all x.

This is one-way according to the above definition. In fact, impossible to find *the* inverse even if A has unbounded time.

Conclusion: not a useful/meaningful definition.

One-way Functions (Take 1)

A function (family) $\{F_n\}_{n\in\mathbb{N}}$ where $F_n: \{0,1\}^n \to \{0,1\}^{m(n)}$ is one-way if for every p.p.t. adversary A, there is a negligible function μ s.t.

 $\Pr[x \leftarrow \{0,1\}^n; y = F_n(x): A(1^n, y) = x] \le \mu(n)$

The Right Definition: Impossible to find an inverse in p.p.t.

One-way Functions: The Definition

A function (family) $\{F_n\}_{n\in\mathbb{N}}$ where $F_n: \{0,1\}^n \to \{0,1\}^{m(n)}$ is one-way if for every p.p.t. adversary A, there is a negligible function μ s.t.

Pr[x ← {0,1}ⁿ; y = F_n(x); A(1ⁿ, y) = x': y = F_n(x')] ≤ μ(n)

- Can always find *an* inverse with unbounded time
- ... but should be hard with probabilistic polynomial time

One-way Permutations:

One-to-one one-way functions with m(n) = n.

One-way Functions: Candidates

Subset sum:

 $G(a_1, ..., a_n, x_1, ..., x_n) = (a_1, ..., a_n, \sum_{i=1}^n x_i a_i \mod 2^{n+1})$

where a_i are random n-bit numbers, and x_i are random bits.

One-way functions candidates are abundant in nature.

We will see many other candidates from number theory, coding theory, combinatorics later in class.

1. Define one-way functions (OWF).

2. Define Hardcore bits (HCB).

3. Show that one-way *permutations* (OWP) \Rightarrow PRG

4. Goldreich-Levin Theorem: every OWF has a HCB.

If F is a one-way function, we know it's hard to compute a pre-image of F(x) for a randomly chosen x.

How about computing partial information about an inverse?

Exercise: There are one-way functions for which it is easy to compute the first half of the bits of the inverse.

If F is a one-way function, we know it's hard to compute a pre-image of F(x) for a randomly chosen x.

HARDCORE BIT (Take 1)

Nevertheless, there has to be a hardcore set of hard to invert inputs. Concretely: Does there exeise scarrie/ beix isof sothetbit loafind that is sawittopromotivability non-negligibly better than 1/2?

- Any bit can be guessed correctly w.p. 1/2
- So, "hard to compute" → "hard to guess with probability non-negligibly better than 1/2"

If F is a one-way function, we know it's hard to compute a pre-image of F(x) for a randomly chosen x.

HARDCORE BIT (Take 1)

For any function (family) $F: \{0,1\}^n \rightarrow \{0,1\}^m$, a bit i = i(n) is hardcore if for every p.p.t. adversary A, there is a negligible function μ s.t.

$$\Pr[x \leftarrow \{0,1\}^n; y = F(x): A(y) = x_i] \le \frac{1}{2} + \mu(n)$$

Does every one-way function have a hardcore bit?

(Hard) Exercise: There are functions that are one-way, yet every bit is somewhat easy to predict (say, with probability $\frac{1}{2} + 1/n$).

So, we will generalize the notion of a hardcore "bit".

HARDCORE PREDICATE (Definition)

For any function (family) $F: \{0,1\}^n \rightarrow \{0,1\}^m$, a function $B: \{0,1\}^n \rightarrow \{0,1\}$ is a hardcore **predicate** if for every p.p.t. adversary *A*, there is a negligible function μ s.t.

$$\Pr[x \leftarrow \{0,1\}^n; y = F(x): A(y) = B(x)] \le \frac{1}{2} + \mu(n)$$

For us, henceforth, a hardcore bit will mean a hardcore predicate.

Hardcore Predicate (in pictures)

Discussion on the Definition

HARDCORE PREDICATE (Definition)

For any function (family) $F: \{0,1\}^n \rightarrow \{0,1\}^m$, a bit $B: \{0,1\}^n \rightarrow \{0,1\}$ is a hardcore **predicate** (HCP) if for every p.p.t. adversary A, there is a negligible function μ s.t.

$$\Pr[x \leftarrow \{0,1\}^n; y = F(x): A(y) = B(x)] \le \frac{1}{2} + \mu(n)$$

1. Definition of HCP makes sense for *any* function family, not just one-way functions.

2. Some functions can have information-theoretically hard to guess predicates (e.g., compressing functions)

3. We'll be interested in settings where x is uniquely determined given F(x), yet B(x) is hard to predict given F(x)

1. Define one-way functions (OWF).

2. Define Hardcore bits (HCB).

3. Show that one-way *permutations* (OWP) \Rightarrow PRG

4. Goldreich-Levin Theorem: every OWF has a HCB.

CONSTRUCTION

Let F be a one-way permutation, and B an associated hardcore predicate for F.

Then, define G(x) = F(x) | B(x).

Theorem: *G* is a PRG assuming *F* is a one-way permutation.

(Note that G stretches by one bit. Shafi will tell you how to extend the stretch of G to any poly number of bits.)

CONSTRUCTION

Let F be a one-way permutation, and B an associated hardcore predicate for F.

Then, define G(x) = F(x) | B(x).

Theorem: *G* is a PRG assuming *F* is a one-way permutation.

Proof (next slide): From Distinguishing to Predicting.

Theorem: *G* is a PRG assuming *F* is a one-way permutation.

Proof: Assume for contradiction that G is not a PRG. Therefore, there is a p.p.t. distinguisher D and a polynomial function p such that

$$\Pr[x \leftarrow \{0,1\}^n; y = G(x): D(y) = 1] - \\\Pr[y \leftarrow \{0,1\}^{n+1}: D(y) = 1] \ge 1/p(n)$$

Think: D outputs "1" = D thinks its input is pseudorandom

Theorem: G is a PRG assuming F is a one-way permutation and B is its hardcore predicate .

Proof: Assume for contradiction that G is not a PRG. Therefore, there is a p.p.t. distinguisher D and a polynomial function p such that

$$\Pr[x \leftarrow \{0,1\}^n; y = G(x): D(y) = 1] - \\\Pr[y \leftarrow \{0,1\}^{n+1}: D(y) = 1] \ge 1/p(n)$$

We will construct a hardcore predictor A and show:

$$\Pr[x \leftarrow \{0,1\}^n : A(F(x)) = B(x)] \ge \frac{1}{2} + 1/p'(n)$$

Theorem: G is a PRG assuming F is a one-way permutation and B is its hardcore predicate .

Proof: Assume for contradiction that G is not a PRG. Therefore, there is a p.p.t. distinguisher D and a polynomial function p such that

$$\Pr[x \leftarrow \{0,1\}^n; y = G(x): D(y) = 1] - \\\Pr[y \leftarrow \{0,1\}^{n+1}: D(y) = 1] \ge 1/p(n)$$

We will construct a hardcore predictor A and show:

$$\Pr[x \leftarrow \{0,1\}^n : A(F(x)) = B(x)] \ge \frac{1}{2} + 1/p'(n)$$

Let's look closely at D.

$$\Pr[x \leftarrow \{0,1\}^n; y = G(x): D(y) = 1] - \\\Pr[y \leftarrow \{0,1\}^{n+1}: D(y) = 1] \ge 1/p(n)$$

By definition:

$$\Pr[x \leftarrow \{0,1\}^n; y = F(x) | B(x): D(y) = 1] - \\\Pr[y \leftarrow \{0,1\}^{n+1}: D(y) = 1] \ge 1/p(n)$$

Let's look closely at D.

$$\Pr[x \leftarrow \{0,1\}^n; y = G(x): D(y) = 1] - \\\Pr[y \leftarrow \{0,1\}^{n+1}: D(y) = 1] \ge 1/p(n)$$

A syntactic change:

 $\Pr[x \leftarrow \{0,1\}^n; y = F(x)|B(x):D(y) = 1] - \\\Pr[y_0 \leftarrow \{0,1\}^n, y_1 \leftarrow \{0,1\}, y = y_0|y_1:D(y) = 1] \ge 1/p(n)$

Let's look closely at D.

$$\Pr[x \leftarrow \{0,1\}^n; y = G(x): D(y) = 1] - \\\Pr[y \leftarrow \{0,1\}^{n+1}: D(y) = 1] \ge 1/p(n)$$

Rewriting the second term:

$$\Pr[x \leftarrow \{0,1\}^n; y = F(x) | B(x): D(y) = 1] - \\\Pr[x \leftarrow \{0,1\}^n, y_1 \leftarrow \{0,1\}, y = F(x) | y_1: D(y) = 1] \ge 1/p(n)$$

$$\stackrel{(0,1)^n}{\longrightarrow}$$

 $\Pr[x \leftarrow \{0,1\}^n, y = F(x) | \mathbf{0}: D(y) = 1] + \Pr[x \leftarrow \{0,1\}^n, y = F(x) | \mathbf{1}: D(y) = 1]$

Let's look closely at D.

$$\Pr[x \leftarrow \{0,1\}^n; y = G(x): D(y) = 1] - \\\Pr[y \leftarrow \{0,1\}^{n+1}: D(y) = 1] \ge 1/p(n)$$

Rewriting the second term (again):

$$\Pr[x \leftarrow \{0,1\}^n; y = F(x) | B(x): D(y) = 1] - \\\Pr[x \leftarrow \{0,1\}^n, y_1 \leftarrow \{0,1\}, y = F(x) | y_1: D(y) = 1] \ge 1/p(n)$$

 $\Pr[x \leftarrow \{0,1\}^n, y = F(x) | \mathbf{B}(x): D(y) = 1] + \Pr[x \leftarrow \{0,1\}^n, y = F(x) | \mathbf{B}(x): D(y) = 1]$

Let's look closely at D.

$$\Pr[x \leftarrow \{0,1\}^n; y = G(x): D(y) = 1] - \\\Pr[y \leftarrow \{0,1\}^{n+1}: D(y) = 1] \ge 1/p(n)$$

Putting things together:

$$\frac{1}{2} (\Pr[x \leftarrow \{0,1\}^n; y = F(x) | \mathbf{B}(x): D(y) = 1] - \Pr[x \leftarrow \{0,1\}^n, y = F(x) | \overline{\mathbf{B}(x)}: D(y) = 1]) \ge 1/p(n)$$

In English: D says "1" more often when fed with the "right bit" than the "wrong bit".

Let's look closely at D.

$$\Pr[x \leftarrow \{0,1\}^n; y = G(x): D(y) = 1] - \\\Pr[y \leftarrow \{0,1\}^{n+1}: D(y) = 1] \ge 1/p(n)$$

Putting things together:

(*)
$$\frac{1}{2} (\Pr[x \leftarrow \{0,1\}^n; y = F(x) | \mathbf{B}(x): D(y) = 1] - \Pr[x \leftarrow \{0,1\}^n, y = F(x) | \overline{\mathbf{B}(x)}: D(y) = 1]) \ge 1/p(n)$$

Now, let's use D to *predict* the right bit.

The Predictor A works as follows:

Get as input z = F(x); Pick a random bit b; and feed D with input z|b.

If *D* says "1", output b as the prediction for the hardcore bit and if *D* says "0", output \overline{b} .

Analysis of the Predictor A

 $\Pr[x \leftarrow \{0,1\}^n : A(F(x)) = B(x)]$

- $= \Pr[x \leftarrow \{0,1\}^n : D(F(x)|b) = 1| \ b = B(x)] \Pr[b = B(x)] + \Pr[x \leftarrow \{0,1\}^n : D(F(x)|b) = 0| \ b \neq B(x)] \Pr[b \neq B(x)]$
- $= \frac{1}{2} \left(\Pr[x \leftarrow \{0,1\}^n : D(F(x)|b) = 1 | b = B(x)] + \Pr[x \leftarrow \{0,1\}^n : D(F(x)|b) = 0 | b \neq B(x)] \right)$
- $= \frac{1}{2} \left(\Pr[x \leftarrow \{0,1\}^n : D(F(x)|B(x)) = 1] + \Pr[x \leftarrow \{0,1\}^n : D(F(x)|\overline{B(x)}) = 0] \right)$
 - $1 = \left[x \leftarrow \{0,1\} : D(F(x)|D(x)) = 0 \right] \right]$
- $= \frac{1}{2} \left(\Pr[x \leftarrow \{0,1\}^n : D(F(x)|B(x)) = 1] + \right)$
- $1 \Pr\left[x \leftarrow \{0,1\}^n : D\left(F(x)|\overline{B(x)}\right) = 1\right]\right)$ $= \frac{1}{2}\left(1 + (*)\right) \ge \frac{1}{2} + \frac{1}{p(n)}$

1. Define one-way functions (OWF).

2. Define Hardcore bits (HCB).

3. Show that one-way *permutations* (OWP) \Rightarrow PRG

4. Goldreich-Levin Theorem: every OWF has a HCB.

A Hardcore Predicate for all OWF

Let's shoot for a *universal* hardcore predicate.

i.e., a single predicate B where it is hard to guess B(x) given F(x)

Is this possible?

Turns out the answer is "no". Pick your favorite amazing B. I claim that you can construct a one-way function F for which B is not hard-core. I will leave it to you as an exercise.

So, what is one to do?

Goldreich-Levin (GL) Theorem

Let $\{B_r: \{0,1\}^n \to \{0,1\}\}$ where

$$B_r(x) = \langle r, x \rangle = \sum_{i=1}^n r_i x_i \mod 2$$

be a collection of predicates (one for each r). Then, a *random* B_r is hardcore for *every* one-way function F. That is, for every one-way function F, every PPT A, there is a negligible function μ s.t.

$$\Pr[x \leftarrow \{0,1\}^n; r \leftarrow \{0,1\}^n; A(F(x),r) = B_r(x)] \le \frac{1}{2} + \mu(n)$$

<u>Alternative Interpretation 1</u>: For every one-way function F, there is a related one-way function F'(x,r) = (F(x),r) which has a *deterministic* hardcore predicate.

Goldreich-Levin (GL) Theorem

Let $\{B_r: \{0,1\}^n \to \{0,1\}\}$ where

$$B_r(x) = \langle r, x \rangle = \sum_{i=1}^n r_i x_i \mod 2$$

be a collection of predicates (one for each r). Then, a *random* B_r is hardcore for *every* one-way function F. That is, for every one-way function F, every PPT A, there is a negligible function μ s.t.

$$\Pr[x \leftarrow \{0,1\}^n; r \leftarrow \{0,1\}^n; A(F(x),r) = B_r(x)] \le \frac{1}{2} + \mu(n)$$

<u>Alternative Interpretation 2</u>: For every one-way function *F*, there exists (non-uniformly) a (possibly different) hardcore predicate $\langle r_F, x \rangle$. (Cool open problem: remove the non-uniformity)

Let's make our lives easier: assume a perfect predictor *P* Assume for contradiction there is a predictor P

 $\Pr[x \Pr[\{x0, 4\}^n 0, 1\}^n; \{y0, 4\}^n 0, 1\}^n; \{y0, 4\}^n 0, 1\}^n (\mathbb{R}(x), \mathbb{R}(x), \mathbb$

We will need to show an inverter A for F

$$\Pr[x \leftarrow \{0,1\}^n : A(F(x)) = x' : F(x') = F(x)] \ge 1/p'(n)$$

Let's make our lives easier: assume a perfect predictor *P* Assume for contradiction there is a predictor P

$$\Pr[x \leftarrow \{0,1\}^n; r \leftarrow \{0,1\}^n: P(F(x),r) = \langle r, x \rangle] = 1$$

The inverter *A* works as follows:

On input y = F(x), A runs the predictor P n times, on inputs (y, e_1) , (y, e_2) , ..., and (y, e_n) where $e_1 = 100..0$, $e_2 = 010 ...0$,... are the unit vectors.

Since A is perfect, it returns $\langle e_i, x \rangle = x_i$, the i^{th} bit of x on the i^{th} invocation.

OK, now let's assume less: assume a pretty good predictor *P* Assume for contradiction there is a predictor P

$$\Pr[x \leftarrow \{0,1\}^n; r \leftarrow \{0,1\}^n; P(F(x),r) = \langle r,x \rangle] \ge \frac{3}{4} + 1/p(n)$$

First, we need an **averaging argument**.

Claim: For at least a 1/2p(n) fraction of the x, $\Pr[r \leftarrow \{0,1\}^n : P(F(x),r) = \langle r,x \rangle] \ge \frac{3}{4} + 1/2p(n)$

Proof: Exercise in counting.

Call these the good *x*.

For at least a 1/2p(n) fraction of the x, $\Pr[r \leftarrow \{0,1\}^n \colon P(F(x),r) = \langle r,x \rangle] \ge \frac{3}{4} + 1/2p(n)$

Key Idea: Linearity

Pick a random r and ask P to tells us $\langle r, x \rangle$ and $\langle r + e_i, x \rangle$. Subtract the two answers to get $\langle e_i, x \rangle = x_i$.

For at least a 1/2p(n) fraction of the x, $\Pr[r \leftarrow \{0,1\}^n : P(F(x),r) = \langle r,x \rangle] \ge \frac{3}{4} + 1/2p(n)$

Inverter A:

Repeat for each $i \in \{1, 2, ..., n\}$:

Repeat $\log n / p(n)$ times:

Pick a random r and ask P to tells us $\langle r, x \rangle$ and $\langle r + e_i, x \rangle$. Subtract the two answers to get a guess for x_i .

Compute the majority of all such guesses and set the bit as x_i

Output the concatenation of all x_i as x.

Analysis: Chernoff + Union Bound

Real Proof (will not do in class)

Assume (after averaging) that for $\geq 1/2p(n)$ fraction of the x, $\Pr[r \leftarrow \{0,1\}^n : P(F(x),r) = \langle r,x \rangle] \geq \frac{1}{2} + 1/2p(n)$

Key Idea: Pairwise independence

Reference: Goldreich Book Part 1, Section 2.5.2. http://www.wisdom.weizmann.ac.il/~oded/PSBookFrag/part2N.ps

The Coding-Theoretic View of GL

 $x \to (\langle x, r \rangle)_{r \in \{0,1\}^n}$ can be viewed as a highly redundant, exponentially long encoding of x = the Hadamard code.

P(F(x),r) can be thought of as providing access to a **noisy** codeword.

What we proved = **unique decoding** algorithm for Hadamard code with error rate $\frac{1}{4} - 1/p(n)$.

The real proof = list-decoding algorithm for Hadamard code with error rate $\frac{1}{2} - 1/p(n)$.

Recap

- 1. Defined one-way functions (OWF).
- 2. Defined Hardcore bits (HCB).
- 3. <u>Goldreich-Levin Theorem</u>: every OWF has a HCB. (showed proof for an important special case)
- 4. Show that one-way *permutations* (OWP) \Rightarrow PRG

(in fact, one-way functions \Rightarrow PRG, but that's a much harder theorem)

Next Lecture: Back to PRGs