MIT 6.875 & Berkeley CS276

Foundations of Cryptography

Lecture 9
Secret-Key Encryption
(also called symmetric encryption)

The Key Agreement Problem:
How did Alice and Bob get the same sk to begin with?!
Secret-Key Encryption

The Key Agreement Problem:
How did Alice and Bob get the same sk to begin with?!

Physical Exchange of Keys is Clunky and Impractical:

• What if Alice and Bob have never met in person?
• Even so, what if they need to refresh their keys?
• Too expensive and cumbersome: Each user will need to store N keys, too expensive!
Secret-Key Encryption

The Key Agreement Problem: Can Alice and Bob, who never previously met, exchange messages securely?
This Lecture and the Next

• **Key Exchange and Public-key Encryption:**
 Definition and Properties

• **Constructions**

 1: Trapdoor Permutations (RSA)

 2: Quadratic Residuosity/Goldwasser-Micali

 3: Diffie-Hellman/El Gamal

 4: Learning with Errors/Regev
Project Proposal

Topic: Establishing secure communications between separate secure sites over insecure communication lines.

Assumptions: No prior arrangements have been made between the two sites, and it is assumed that any information known at either site is known to the enemy. The sites, however, are now secure, and any new information will not be divulged.

Method 1: Guessing. Both sites guess at keywords. These guesses are one-way encrypted, and transmitted to the other site. If both sites should chance to guess at the same keyword, this fact will be discovered when the encrypted versions are compared, and this keyword will then be used to establish a communications link.

Discussion: No, I am not joking. If the keyword space is of size N, then the probability that both sites will guess at a common keyword rapidly approaches one after the number of guesses exceeds \sqrt{N}. Anyone listening in on the line must examine all N possibilities. In more concrete terms, if the key size is at least 1000-bits long, the probability of guessing the key is 2^{-1000}.

I believe that it is possible for two people to communicate securely without having made any prior arrangements that are not completely public. My quarter project would be to investigate any method by which this could be accomplished, and what advantages and disadvantages these methods might have over other ways of establishing secure communications.

Merkle (1974)

Secure Communications Over Insecure Channels

Ralph C. Merkle
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

According to traditional conceptions of cryptographic security, it is necessary to transmit a key, by secret means, before encrypted messages can be sent securely. This paper shows that it is possible to select a key over open communications channels in such a fashion that communications security can be maintained. A method is described which forces any enemy to expend an amount of work which increases as the square of the work required of the two communicants to select the key. The method provides a logically new kind of protection against the passive eavesdropper. It suggests that further research on this topic will be highly rewarding, both in a theoretical and a practical sense.

Key Words and Phrases: security, cryptography, cryptology, communications security, wiretap, computer network security, passive eavesdropping, key distribution, public key cryptosystem

CR Categories: 3.56, 3.81
Merkle’s Idea

Assume that $H: [n^2] \rightarrow [n^2]$ is an injective OWF.

Pick n random numbers x_1, \ldots, x_n

Pick n random numbers y_1, \ldots, y_n
Merkle’s Idea

Assume that $H : [n^2] \to [n^2]$ is an injective OWF.

Pick n random numbers x_1, \ldots, x_n

There is a common number (say $x_i = y_j$ w.h.p.)

Alice and Bob can detect it in time $O(n)$, and they set it as their shared key.
Merkle’s Idea

Assume that $H: [n^2] \to [n^2]$ is an injective OWF.

Pick n random numbers x_1, \ldots, x_n

\[
\{H(x_1), H(x_2), \ldots, H(x_n)\}
\]

Pick n random numbers y_1, \ldots, y_n

\[
\{H(y_1), H(y_2), \ldots, H(y_n)\}
\]

How long does it take Eve to compute the shared key?

She knows i and j, but she needs to invert the OWF. Assuming the OWF is very strong, that is $\Omega(n^2)$ time!
Merkle’s Idea

Assume that \(H: [n^2] \to [n^2] \) is an injective OWF.

Pick \(n \) random numbers \(x_1, \ldots, x_n \)

\[\{H(x_1), H(x_2), \ldots, H(x_n)\} \]

Pick \(n \) random numbers \(y_1, \ldots, y_n \)

\[\{H(y_1), H(y_2), \ldots, H(y_n)\} \]

Problem: Only protects against quadratic-time Eves (still an excellent idea)
New Directions in Cryptography

Invited Paper

WHITFIELD DIFFIE AND MARTIN E. HELLMAN, MEMBER, IEEE

Abstract—Two kinds of contemporary developments in cryptography are examined. Widening applications of teleprocessing have given rise to a need for new types of cryptographic systems, which minimize the need for secure key distribution channels and supply the equivalent of a written signature. This paper outlines ways to solve these currently open problems. It also discusses how the theories of communication and computation are beginning to provide the tools to solve cryptographic problems of long standing.

I. INTRODUCTION

WE STAND TODAY on the brink of a revolution in cryptography. The development of cheap digital hardware has freed it from the design limitations of mechanical computing and brought the cost of high-grade cryptographic devices down to where they can be used in such commercial applications as remote cash dispensers and computer terminals. In turn, such applications create a need for new types of cryptographic systems which minimize the necessity of secure key distribution channels and supply the equivalent of a written signature. At the same time, theoretical developments in information theory and computer science show promise of providing provably secure cryptosystems, changing this ancient art into a science.

The development of computer controlled communications networks processes effortless and inexpensive contact between people or computers on opposite sides of the world, replacing secret mail and many excursions with telecommunications. For many applications these contacts must be made secure against both eavesdropping and the injection of illegitimate messages. At present, however, the solution of security problems lies well behind other areas of communications technology. Contemporary cryptography is unable to meet the requirements, in that its use would impose such severe inconveniences on the system users, as to eliminate many of the benefits of teleprocessing.

Manuscript received June 1, 1975. This work was partially supported by the National Science Foundation under NSF Grant ECS 75-25721. Portions of this work were presented at the 1976 Information Theory Workshop, Lassen, CA, June 23–25, 1976 and the IEEE International Symposium on Information Theory in Rome, Sweden, June 15–16, 1976.

W. Diffie is with the Department of Electrical Engineering, Stanford University, Stanford, CA, and the Stanford Artificial Intelligence Laboratory, Stanford, CA 94305.

M. E. Hellman is with the Department of Electrical Engineering, Stanford University, Stanford, CA 94305.

The best known cryptographic problem is that of privacy: preventing the unauthorized extraction of information from communications over an insecure channel. In order to use cryptography to secure privacy, however, it is currently necessary for the communicating parties to share a key which is known to no one else. This is done by sending the key in advance over some secure channel such as private courier or registered mail. A private conversation between two people with no prior acquaintance is a common occurrence in business, however, and it is unrealistic to expect initial business contacts to be postponed long enough for keys to be transmitted by some physical means.

The cost and delay imposed by this key distribution problem is a major barrier to the transfer of business communications to large teleprocessing networks.

Section III proposes two approaches to transmitting keying information over public (i.e., insecure) channels without compromising the security of the system. In a public key cryptosystem, encrypting and deciphering are governed by distinct keys, E and D, such that computing D from E is computationally infeasible (i.e., requiring 10^{100} instructions). The deciphering key E can thus be publicly disclosed without compromising the deciphering key D. Each user of the network can, therefore, place his deciphering key in a public directory. This enables any user of the system to send a message to any other user enciphered in such a way that only the intended receiver is able to decipher it. As such, a public key cryptosystem is a multiple access cipher. A private conversation can therefore be held between two individuals regardless of whether they have ever communicated before. Each one sends messages to the other enciphered in the receiver’s public deciphering key and deciphering messages he receives using his own secret deciphering key.

We propose some techniques for developing public key cryptosystems, but the problem is still largely open.

Public key distribution systems offer a different approach to eliminating the need for a secure key distribution channel. In such a system, two users who wish to exchange a key communicate back and forth until they arrive at a key in common. A third party eavesdropping on this exchange must find it computationally infeasible to compute the key from the information overheard. A possible solution to the public key distribution problem is given in Section III, and Merkle [1] has a partial solution of a different form.

A second problem, amenable to cryptographic solution, which stands in the way of replacing contemporary busi-

Diffie & Hellman 1976

Marked the birth of public-key cryptography.

Invented the Diffie-Hellman key exchange (secure against all poly-time attackers unlike Merkle).

Used to this day (e.g., TLS 1.3) albeit with different groups than what DH had in mind.

Turing Award 2015
I. Introduction

The era of "electronic mail" [10] may soon be upon us, we must ensure that two important properties of the current "paper mail" system are preserved: (a) messages are private, and (b) messages can be signed. We demonstrate in this paper how to build these capabilities into a public-key system.

At the heart of our proposal is a new encryption method. This method provides an implementation of a public-key cryptosystem, an elegant concept invented by Diffie and Hellman [1]. Their article motivated our research, since they presented the concept but not any practical implementation of such a system. Readers familiar with [1] may wish to skip directly to Section V for a description of our method.

II. Public-key Cryptosystems

A "public-key cryptosystem" is such that each user in a public file has an encryption procedure E. That is, the public key is a direction giving the encryption procedure of each user. The user keeps secret the details of his corresponding decryption procedure D. These procedures have the following four properties:

(a) Deciphering the encrypted form of a message M yields M formally.

$$D(E(M)) = M$$

(b) Both E and D are easy to compute.

(c) By publicly revealing E, the user does not reveal an easy way to compute D. This means that in practice one can decrypt messages encrypted with E, or compute D, efficiently.

(d) If a message M is first deciphered and then enciphered, M is the result formally.

$$E(D(M)) = M$$

An encryption for decryption procedure typically consists of a general method of and an encryption key. The general method, under control of the key, encipher a message M to obtain the enciphered form of the message, called the ciphertext C. Everyone can use the same general method; the security of a given procedure will rest on the security of the key. Revealing an encryption algorithm then means revealing the key.

When the user reveals E, he reveals a very inefficient method of computing $D(C)$: testing all possible messages M until one such that $E(M) = C$ is found. If property (c) is satisfied, the number of such messages to test will be so large that this approach is impractical.

A function F satisfying (a)-(c) is a "trap-door one-way function," if it also satisfies (d) it is a "trap-door one-way permutation." Diffie and Hellman [1] introduced the concept of trap-door one-way functions but

Rivest, Shamir & Adleman 1978

Invented the RSA trapdoor permutation, public-key encryption and digital signatures.

RSA Signatures used to this day (e.g., TLS 1.3) in essentially the original form it was invented.

Turing Award 2002
Goldwasser & Micali 1982

“Probabilistic Encryption”: defined what is now the gold-standard of security for public-key encryption (two equivalent defs: indistinguishability and semantic security)

GM-encryption: based on the difficulty of the quadratic residuosity problem, the first homomorphic encryption.

Turing Award 2012
The Secret History of Public-key Encryption

Claimed to be invented in secret in early 1970s at the GCHQ (British NSA) by James Ellis, Clifford Cocks and Malcolm Williamson.

THE STORY OF NON-SECRET ENCRYPTION

by J H ELLIS

1. Public-key cryptography (PKC) has been the subject of much discussion in the open literature since Diffie and Hellman suggested the possibility in their paper of April 1976 (reference 1). It has captured public imagination, and has been analysed and developed for practical use. Over the past decade there has been considerable academic activity in this field with many different schemes being proposed and, sometimes, analysed.

2. Cryptography is a most unusual science. Most professional scientists aim to be the first to publish their work, because it is through dissemination that the work realises its value. In contrast, the fullest value of cryptography is realised by minimising the information available to potential adversaries. Thus professional cryptographers normally work in closed communities to provide sufficient professional interaction to ensure quality while maintaining secrecy from outsiders. Revelation of these secrets is normally only sanctioned in the interests of historical accuracy after it has been demonstrated clearly that no further benefit can be obtained from continued secrecy.

3. In keeping with this tradition it is now appropriate to tell the story of the invention and development within CESG of non-secret encryption (NSE) which was our original name for what is now called PKC. The task of writing this paper has devolved on me because NSE was my idea and I can therefore describe these early developments from personal experience. No techniques not already public knowledge, or specific applications of NSE will be mentioned. Neither shall I venture into evaluation. This is a simple, personal account of the salient features, with only the absolute minimum of mathematics.

4. The story begins in the 60's. The management of vast quantities of key material needed for secure communication was a headache for the armed forces. It was obvious to everyone, including me, that no secure communication was possible without secret key, some other secret knowledge, or at least some way in which the recipient was in a different position from an interceptor. After all, if they were in identical situations how could one possibly be able to receive what the other could not? Thus there was no incentive to look for something so clearly impossible.

5. The event which changed this view was the discovery of a wartime, Bell-Telephone report by an unknown author describing an ingenious idea for secure telephone speech (reference 2). It proposed that the recipient should mask the sender's speech by adding noise to the line. He could subtract the noise afterwards since he had added it and therefore knew what it was. The obvious practical disadvantages of this system prevented it being actually used, but it has some interesting characteristics. One of these, relevant to the main theme, is the
Public-Key Encryption
(also called asymmetric encryption)

GOAL:

Anyone can encrypt to Bob.

Bob, and only Bob, can decrypt.
Public-Key Encryption

1. Bob generates a pair of keys, a public key pk, and a private (or secret) key sk.

2. Bob “publishes” pk and keeps sk to himself.

3. Alice encrypts m to Bob using pk.

$$c \leftarrow \text{Enc}(pk, m)$$

$$m \leftarrow \text{Dec}(sk, c)$$
Public-Key Encryption

A triple of PPT algorithms \((Gen, Enc, Dec)\) s.t.

- \((pk, sk) \leftarrow Gen(1^n)\).
 PPT Key generation algorithm generates a public-private key pair.

- \(c \leftarrow Enc(pk, m)\).
 Encryption algorithm uses the public key to encrypt message \(m\).

- \(m \leftarrow Dec(sk, c)\).
 Decryption algorithm uses the private key to decrypt ciphertext \(c\).

Correctness: For all \(pk, sk, m\): \(Dec(sk, Enc(pk, m)) = m\).
How to Define Security

Eve knows Bob’s public key pk
Eve sees polynomially many ciphertexts c_1, c_2, \ldots of messages m_1, m_2, \ldots
Given this: Eve should not get any partial information about the set of messages.
IND-Security (also called IND-CPA)

Challenger

\((pk, sk) \leftarrow Gen(1^n)\)

Eve

\(pk\)

\(\overrightarrow{m_0} = (m_0^1, m_0^2, ..., m_0^L)\)

\(\overrightarrow{m_1} = (m_1^1, m_1^2, ..., m_1^L)\)

\(s.t. \quad |m_0^i| = |m_1^i| \text{ for all } i\)

\(b \leftarrow \{0,1\}\)

\(c_i \leftarrow Enc(pk, m_b^i)\)

\((c_1, c_2, ..., c_L)\)

\(b'\)

Eve wins if \(b' = b\). The encryption scheme is IND-secure if no PPT Eve can win in this game with probability better than \(\frac{1}{2} + \text{negl}(n)\).

This def is unachievable. Can you spot the issue?
For all PPT pair of algorithms (M, A) there is a negligible fn μ s.t:
\[
\Pr[(pk, sk) \leftarrow Gen(1^n); (\overrightarrow{m_0}, \overrightarrow{m_1}, state) \leftarrow M(pk) \text{ s.t. } |m_0^i| = |m_1^i|; b \leftarrow \{0,1\}, \hat{c} \leftarrow Enc(pk, \overrightarrow{m_b}): A(state, \hat{c}) = b]
\leq \frac{1}{2} + \mu(n)
\]

This can be written in the more traditional (and cumbersome) notation as below, but the game is more fun.
An Alternative Definition

“Semantic Security”: the computational analog of Shannon’s perfect secrecy definition (see Shafi’s Lec 1)

Turns out to be equivalent to IND-security (just as in Lec 1 but the proof is more complex)

We will stick to IND-security as it’s easy to work with.
Simplifying the Definition: One Message to Many Message Security

Challenger

\((pk, sk) \leftarrow \text{Gen}(1^n)\)

Eve

\(b \leftarrow \{0,1\}\)

\(c \leftarrow \text{Enc}(pk, m_b; r)\)

Eve wins if \(b' = b\). The encryption scheme is single-message-IND-secure if no PPT Eve can win with prob. better than \(\frac{1}{2} + \text{negl}(n)\).
Simplifying the Definition:
One Message to Many Message Security

\[(pk, sk) \leftarrow \text{Gen}(1^n)\]

Challenger

\[b \leftarrow \{0,1\}\]

\[c \leftarrow \text{Enc}(pk, m_b)\]

Eve

\[pk\]

\[m_0, m_1 \text{ s.t. } |m_0| = |m_1|\]

\[c\]

\[b'\]

Theorem: A public-key encryption scheme is IND-secure iff it is single-message IND-secure.
One-way Functions

F

Easy to compute
Hard to invert
Easy to invert given a trapdoor

Domain = Range
A function (family) $F = \{F_n\}_{n \in \mathbb{N}}$ where each F_n is itself a collection of functions $F_n = \{F_i: \{0,1\}^n \rightarrow \{0,1\}^{m(n)}\}_{i \in I_n}$ is a trapdoor one-way function family if:

- Easy to sample function index with a trapdoor: There is a PPT algorithm $Gen(1^n)$ that outputs a function index $i \in I_n$ together with a trapdoor t_i.

Trapdoor Functions: The Definition
A function (family) $\mathcal{F} = \{\mathcal{F}_n\}_{n \in \mathbb{N}}$ where each \mathcal{F}_n is itself a collection of functions $\mathcal{F}_n = \{F_i: \{0,1\}^n \rightarrow \{0,1\}^{m(n)}\}_{i \in I_n}$ is a trapdoor one-way function family if:

- Easy to sample function index with a trapdoor.
- Easy to compute $F_i(x)$ given i and x.
A function (family) $\mathcal{F} = \{\mathcal{F}_n\}_{n \in \mathbb{N}}$ where each \mathcal{F}_n is itself a collection of functions $\mathcal{F}_n = \{F_i: \{0,1\}^n \rightarrow \{0,1\}^{m(n)}\}_{i \in I_n}$ is a trapdoor one-way function family if:

- Easy to sample function index with a trapdoor.
- Easy to compute $F_i(x)$ given i and x.
- Easy to compute an inverse of $F_i(x)$ given t_i.

Trapdoor Functions: The Definition
Trapdoor Functions: The Definition

A function (family) $\mathcal{F} = \{\mathcal{F}_n\}_{n\in\mathbb{N}}$ where each \mathcal{F}_n is itself a collection of functions $\mathcal{F}_n = \{F_i: \{0,1\}^n \rightarrow \{0,1\}^{m(n)}\}_{i\in I_n}$ is a trapdoor one-way function family if:

- Easy to sample function index with a trapdoor.
- Easy to compute $F_i(x)$ given i and x.
- Easy to compute an inverse of $F_i(x)$ given t_i.
- It is one-way: that is, for every p.p.t. A, there is a negligible function μ s.t.

$$\Pr\left[(i, t) \leftarrow \text{Gen}(1^n); \ x \leftarrow \{0,1\}^n; \ y = F_i(x); \ A(1^n, i, y) = x': \ y = F_i(x') \right] \leq \mu(n)$$
From Trapdoor Permutations to IND-Secure Public-key Encryption

- $\text{Gen}(1^n)$: Sample function index i with a trapdoor t_i. The public key is i and the private key is t_i.

- $\text{Enc}(pk = i, m)$: Output $c = F_i(m)$ as the ciphertext.

- $\text{Dec}(sk = t_i, c)$: Output $F_i^{-1}(c)$ computed using the private key t_i.

Could reveal partial info about m! So, not IND-secure!
From Trapdoor Permutations to IND-Secure Public-key Encryption

• $Gen(1^n)$: Sample function index i with a trapdoor t_i. The public key is i and the private key is t_i.

• $Enc(pk = i, m)$ where m is a bit: **Pick a random r. Output $c = (F_i(r), HCB(r) \oplus m)$**.

• $Dec(sk = t_i, c)$: Recover r using the private key t_i, and using it m.

This is IND-secure:
Proof by Hybrid argument (exercise).
Trapdoor Permutations: Candidates

Trapdoor Permutations are exceedingly rare.

Two candidates (both need factoring to be hard):

• The RSA (Rivest-Shamir-Adleman) Function
• The Rabin/Blum-Williams Function