
CS 283 Simple Raytracer for students new to Rendering

Ravi Ramamoorthi

This assignment should be done only by those small number of students who have not yet written a
raytracer. For those students only, it will be a prelude to the Monte Carlo path tracer in assignment 2, and
counts for 30% of the grade of assignment 2. Most students will not do this assignment, but will rather start
with existing raytracing code. However, you may still want to look at this as a reference. As in assignment
2, you can (and are encouraged) to work in groups of two, but not required to do so.

This assignment asks you to write a first simple raytracer. Raytracers can produce some of the most
impressive renderings, with high quality shadows and reflections. They are also conceptually very simple.
However, the actual implementation effort can be considerable. Therefore, you should start early (aim to
do so today, and finish in a couple of weeks, so you’re ready for the path tracing component in regular
assignment 2) and proceed through the assignment strictly in the order of the specifications provided. The
assignment can be fairly hard to debug. You should strive to make progress incrementally. Start with the
simplest functionality (can you render an image with one triangle on the screen?), debug that fully and then
proceed. Trying to write the whole thing at once will lead to a mess of undebuggable code.

Support: Raytracing is well understood and covered in the lecture material, as well as a number of other
texts and online materials. Ask the instructor if you want more references on ray-surface intersections and
so forth. At this time, we do not provide any skeleton code for this assignment. Again, your task is to build
a real system. For an example of some of the effects you can obtain, you could download public domain
raytracers like POVray. As in the previous assignment, I have no objection to your looking at the source
code in them for inspiration and understanding, but all code you write must be your own.

The one piece of support provided is an OpenGL previewer. This takes as input the file you will be using
as input to your raytracer, and uses OpenGL to create an image. The source code is also available, primarily
as an example of the simple parsing I’m doing. It’s probably not too helpful for actually ray-tracing. You can
use the viewer to prototype scenes that you model quickly and get a coarse comparison with respect to the
images in your raytracer. Remember that your raytraced renderings should look a lot nicer with per-pixel
shading, shadows and interreflections.

Besides this, we provide 3 example input scenes, along with the output from the OpenGL previewer for
the early parts of the assignments. Your submission should include these results. In addition, you will need
to model some simple additional scenes to show off the effects from your raytracer.

Finally, for the purpose of actually writing the output image file, you can use any suitable image libraries.
If you feel this would be too much bother, you can also write out ppm files, and potentially convert them
offline. The format for ppm is very simple; just look up portable pixel map on the web.

1 Turning in the Assignment

This applies only to students who have not previously written a raytracer, and are doing this assignment for
30% credit on assignment 2. In these cases only, you will include a description of this assignment either
as part of, or separate from, the regular assignment 2. This should be done in the standard way by e-
mailing the instructor a PDF or creating a website that you don’t modify after the due date. Your website
should also include downloadable source and executable code. You should include a complete description or
writeup showcasing your results. Failure to fully document the results of your program will make the graders
very unhappy. Being honest, noting what works and what doesn’t work for all the features will make the
assignment easy to grade and make us very happy.

1



2 What you need to implement

In general, you should implement a raytracer. The raytracer can be run on the command line with a single
argument, that is an input file. All parameters are contained in the input file, whose format is specified
below. Your raytracer will parse the input file, reading in geometry, materials, lights, transforms etc. It will
then raytrace the scene displaying an image. You may augment the file format below with any commands
you need for specific effects in your raytracer, provided you document them in your writeup. You also have
a little flexibility in modifying this format, if you feel you need to. In that latter case, please check with me
beforehand.

Finally, ray tracers (especially unaccelerated ones like what you are building) tend to be very slow. You
should display some kind of progress indicator to let one see how much of the scene is done (text printed out
is fine). Also, for debugging, always start with low resolution images (say 160 × 120) and make sure things
look reasonable before rendering final high resolution (640 × 480) versions.

2.1 File Format

The input file consists of a sequence of lines, each of which has a command. For examples and clarifications,
see the example input files as well as the source code for the OpenGL viewer. The lines have the following
form. Note that in practice, you would not implement all these commands at once but implement the smallest
subset to debug the first aspect of your raytracer (camera control), then implement more commands to go
to the next step and so on. This subsection contains the complete file specification for reference.

• # comments This is a line of comments. Ignore any line starting with a #.

• blank line The input file can have blank lines that should be ignored.

• command parameter1 parameter2 . . . The first part of the line is always the command. Based on what
the command is, it has certain parameters which should be parsed appropriately.

We now discuss each of the various commands you need to implement, along with the default values to use
where appropriate.

2.1.1 General

You should implement the following general commands:

1. size width height: The size command must be the first command of the file, which controls the image
size.

2. maxdepth depth: The maximum depth (number of bounces) for a ray (default should be 5).

3. output filename: The output file to which the image should be written. You can either require this to
be specified in the input, or you can use a suitable default like stdout or raytrace.bmp

2.1.2 Camera

The camera is specified as follows. In general, there should be only one camera specification in the input
file; what happens if there is more than one specification can be left undefined1.

1. camera lookfromx lookfromy lookfromz lookatx lookaty lookatz upx upy upz fov: The first set of param-
eters (except fov) is exactly what is specified to gluLookAt, which you should be familiar with. The
next parameter controls the field of view, as in the parameter to gluPerspective. If you are confused
about this, read the (very straightforward) implementation in the OpenGL viewer.

1Because of the structure of the OpenGL viewer, it requires the camera to be specified before any geometry; it is fine if you

require a similar condition, though this is likely to be irrelevant for raytracing.

2



2.1.3 Geometry

For this assignment, you will worry only about spheres and triangles. These can be specified in a number of
different ways. The first set of commands you need to implement are as follows:

1. sphere x y z radius: Defines a sphere with a given position and radius.

2. maxverts number: Defines a maximum number of vertices for later triangle specifications. It must be
set before vertices are defined.

3. maxvertnorms number: Defines a maximum number of vertices with normals for later specifications.
It must be set before vertices with normals are defined.

4. vertex x y z: Defines a vertex at the given location. The vertex is put into a pile, starting to be
numbered at 0. This is very similar to the OFF file format in assignment 2.

5. vertexnormal x y z nx ny nz: Similar to the above, but define a surface normal with each vertex. The
vertex and vertexnormal set of vertices are completely independent (are as maxverts and maxvert-
norms).

6. tri v1 v2 v3: Create a triangle out of the vertices involved (which have previously been specified with
the vertex command). The vertices are assumed to be specified in counter-clockwise order. Your code
should internally compute a face normal for this triangle.

7. trinormal v1 v2 v3: Same as above but for vertices specified with normals. In this case, each vertex has
an associated normal, and when doing shading, you should interpolate the normals for intermediate
points on the triangle.

2.1.4 Transformations

You should be able to apply a transformation to each of the elements of geometry (and also light sources).
These correspond to right-multiplying the modelview matrix in OpenGL and have exactly the same seman-
tics. It is up to you how exactly to implement them. At the very least, you need to keep track of the current
matrix. For triangles, you might simply transform them to the eye coordinates and store them there. For
spheres, you could store the transformation with them, doing the trick of pre-transforming the ray, inter-
secting with a sphere, and then post-transforming the intersection point. The required transformations to
implement are:

1. translate x y z: Translate to a given position.

2. rotate x y z angle: Rotate by angle (in degrees) about the given axis as in OpenGL.

3. scale x y z: Scale by the corresponding amount in each axis.

4. pushTransform: Push the current modeling transform on the stack as in OpenGL. You might want to
do pushTransform immediately after setting the camera to preserve the “identity” transformation.

5. popTransform: Pop the current transform from the stack as in OpenGL. The sequence of popTransform
and pushTransform can be used if desired before every primitive to reset the transformation (assuming
the initial camera transformation is on the stack as discussed above).

2.1.5 Lights

You should implement the following lighting commands. With respect to comparison to the OpenGL model,
lights here have a single color for both diffuse and specular components.

1. directional x y z r g b: The direction to the light source, and the color, as in OpenGL.

2. point x y z r g b: The location of a point source and the color, as in OpenGL.

3



3. attenuation const linear quadratic: Sets the constant, linear and quadratic attenuations (default 1,0,0)
as in OpenGL.

4. ambient r g b: The global ambient color to be added for each object (default is .2,.2,.2)

2.1.6 Materials

Finally, you need to implement the following material properties.

1. diffuse r g b: Diffuse color as in OpenGL.

2. specular r g b: Specular color as in OpenGL.

3. shininess s: Shininess as in OpenGL.

4. emission r g b: Emissive color as in OpenGL.

2.2 Writeup

Some points will be allocated for a simple and clear writeup that documents your project. For now, keep
the scenes you model relatively simple. The focus should be on showing the technical achievements of your
raytracer, rather than on the modeling.

2.3 Camera

The first step is to implement the camera model. The user should be able to specify the camera, and you
should test using a simple scene. You should in particular, include the images corresponding to the first
test scene which shows a single quad (for now, it’s acceptable if you code up a simple ray-quad intersection
test and don’t worry about shading). For this part of the assignment, you will need to know how to set a
camera, and how to generate corresponding rays for each pixel. Get this part completely debugged before
proceeding further.

2.4 Ray-Surface Intersection tests

Now, you should implement the core of your raytracer, which are the ray-surface intersection tests, in this
case case for triangles and spheres. You should debug separately with each primitive, making sure things
work as expected. In your writeup, at least include the images of the second test scene of a dice (from each
of the camera positions specified)2.

Next, you should implement transformations, allowing the user to specify transformed geometry. You
should at the least show the results of running on the third test scene (the table with ellipses and spheres).
Again, shading is not yet important, but you should be sure the core ray-surface intersection tests for
geometry are debugged.

2.5 Lighting and Shadows

Next, you should implement shading. For this, simply implement the OpenGL shading model essentially. In
particular, the color at each point is given by

C = Ka + Ke +

n
∑

i=1

SiLi

(

Kd max(li · n, 0) + Ks(n · hi)
shininess

)

, (1)

where Ka is the global ambient value, Ke is the emission for the surface, and the rest involves diffuse and
specular sums over all lights. Si is a binary shadowing term for light i. You should cast a shadow ray to
all lights at the intersection point to determine if they are visible. If visible, we simply compute the diffuse

2Shading is not too important for now. I’ve just used a separate ambient color for each face. It’s not clear it makes sense for

your raytracer to follow this trick; you might imagine adding a command to just explicitly set the color for each face without

worrying about lighting for now.

4



contribution (Kd is the surface diffuse color, Li is the light color, and li is the light direction, n is the surface
normal) as well as the specular contribution (Ks is the surface specular color, while hi is the half-angle
for that light). Note that, unlike standard OpenGL, you will compute the shading at each pixel, and take
shadows into account, leading to images that should look much nicer than those produced by the previewer.

To document this part, show some nice scenes which bring out the various shading effects and shadows.
The onus is on you to create good scenes. If you are completely lost in terms of modeling, use the example
in scene 3, adding lights and materials to bring out interesting effects.

2.6 Recursive Ray Tracing

Finally, you should implement a recursive ray tracer for mirror reflections. You will need to model a nice scene
to show this effect off (some limited form of textures like a checkerboard would help here). For inspiration,
look at some of the examples in class; glass spheres are always a nice object for ray tracing. For this part,
you can modify the file format if you think it’s appropriate [for instance adding a mirror material; perhaps if
shininess is set to 0]. The simplest way of doing it is to shoot a single ray in the mirror direction, weighting
its contribution by the specularity or Ks. Since this reflected ray may spawn additional reflections, the
tracing is recursive, with the maximum depth of the ray tree controlled by the maxdepth parameter.

5


