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Introduction 
Shadows make 3D computer graphics look better.  Without them, scenes often feel 

unnatural and flat, and the relative depths of objects in the scene can be very unclear.  
The trouble with rendering high quality shadows is that they require a visibility test for 
each light source at each rasterized fragment.  For ray tracers, adding an extra visibility 
test is trivial, but for rasterizers, it is not.  Fortunately, there are a number of common 
cases where the light visibility test can be efficiently performed by a rasterizer.  The two 
most common techniques for hardware accelerated complex shadowing are stenciled 
shadow volumes and shadow mapping. This document will focus on using shadow 
mapping to implement shadowing for spotlights. 

Shadow mapping is an image-based shadowing technique developed by Lance 
Williams [8] in 1978.  It is particularly amenable to hardware implementation because it 
makes use of existing hardware functionality – texturing and depth buffering.  The only 
extra burden it places on hardware is the need to perform a high-precision scalar 
comparison for each texel fetched from the shadow map texture.  Shadow maps are also 
attractive to application programmers because they are very easy to use, and unlike 
stenciled shadow volumes, they require no additional geometry processing. 

Hardware accelerated shadow mapping [5] is available today on GeForce3 GPUs.  It 
is exposed in OpenGL [4] through the SGIX_shadow and SGIX_depth_texture 
extensions [6], and in Direct3D 8 through a special texture format. 

With Shadows Without Shadows 
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How It Works 
The clever insight of shadow mapping is that the depth buffer generated by rendering 

the scene from the light’s point of view is a pre-computed light visibility test over the 
light’s view volume.  The light’s depth buffer (a.k.a. the shadow map) partitions the view 
volume of the light into two regions: the shadowed region and the unshadowed region.  
The visibility test is of the form   

where p is a point in the light’s image space.  Shadow mapping really happens in the 
texture unit, so the comparison actually looks like: 

Note that this form of comparison is identical to the depth test used for visible surface 
determination during standard rasterization.  The primary difference is that the rasterizer 
always generates fragments (primitive samples) on the regular grid of the eye’s 
discretized image plane for depth test, while textures are sampled over a continuous space 
at irregular intervals. If we made an effort to sample the shadow map texture in the same 
way that we sample the depth buffer, there would be no difference at all.  In fact, we can 
use shadow maps in this way to perform more than one depth test per fragment [2]. 

Figure 1 illustrates the depth comparison that takes place in shadow mapping.  The 
eye position and image plane are shown, but they are not relevant to the visibility test 
because shadowing is view-independent.  

Figure 1.  These diagrams were taken from Mark Kilgard’s shadow mapping presentation at 
GDC 2001.  They illustrate the shadowing comparison that occurs in shadow mapping. 

.,2_ 









≤

q

t

q

s

q

r

p
p

p
pDtexture

p
p

( )yxz ppmapshadowp ,_≤



How To Do It 
The basic steps for rendering with shadow maps are quite simple: 

Figure 2 shows an example scene with shadows, the same scene shown from the 
light’s point of view, and the corresponding shadow map (or depth buffer). Note that 
samples that are closer to the light are darker than samples that are further away. 

Since applications already have to be able to render the scene, rendering from the 
light’s point of view is trivial.  If it is available, polygon offset should be used to push 
fragments back slightly during this rendering pass. 

Why Is Polygon Offset Needed? 
If implemented literally, the light visibility test described in the previous section 

is prone to self-shadowing error due to it’s razor’s edge nature in the case of 
unshadowed objects.  In the hypothetical “infinite resolution, infinite precision” case, 
surfaces that pass the visibility test would have depth equal to the depth value stored 
in the shadow map.  In the real world of finite precision and finite resolution, 
precision and sampling issues cause problems.  These problems can be solved by 
adding a small bias to the shadow map depths used in the comparison.   

If the problem were only one of precision, a constant bias of all the shadow map 
depths would be sufficient, but there is also a less obvious sampling issue that affects 
the magnitude of bias necessary.  Consider the case illustrated in Figure 3.  When the 
geometry is rasterized from the eye’s point of view, it will be sampled in different 

• render the scene from the light’s point of view, 

• use the light’s depth buffer as a texture (shadow map), 

• projectively texture the shadow map onto the scene, and 

• use “texture color” (comparison result) in fragment shading. 

Figure 2.  A shadow mapped scene rendered from the eye’s point of view (left), the scene as 
rendered from the light’s point of view (center), and the corresponding depth/shadow map 
(right).  



locations than when it was rasterized from the light’s point of view.  The difference in 
the depths of the samples is based on the slope of the polygon in light space, so in 
order to account for this we must supply a positive “slope factor” (typically about 1.0) 
to the polygon offset.  

Direct3D does not expose polygon offset, so applications must provide this bias 
through matrix tweaks.  This approach is workable, but because it fails to account for 
z slope, the uniform bias is generally much larger than it would otherwise need to be, 
which may introduce incorrectly unshadowed samples, or “light leaking”. 

The depth map as rendered from the light’s point of view is the shadow map.  With 
OpenGL, turning it into a real texture requires copying it into texture memory via 
glCopyTex{Sub}Image2D().  Even though the copy is card-local, it is still somewhat 
expensive.  Direct3D’s render-to-texture capability makes this copy unnecessary.  You 
can render directly to the shadow map texture.  This render-to-texture capability will also 
be available soon in OpenGL through extensions. 

Once the shadow map texture is generated, it is projectively textured onto the scene.  
For shadow mapping, we compute 3D projective texture coordinates, where r is the 
sample depth in light space, and s and t index the 2D texture.  Figure 4 shows these 
quantities, which are compared during rendering to determine light visibility. 

Figure 4.  A shadow mapped scene (left), the scene showing each sample’s distance from the 
light source (center), and the scene with the shadow map shadow map projected onto it (right).  
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Figure 3.  These figures illustrate the need for polygon offsetting to eliminate self-
shadowing artifacts.  The variable sampling location necessitates the use of z slope-based 
offset. 
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The final step in rendering shadows is to actually factor the shadow computation 
result into the shading equation.  The result of the comparison is either 1 or 0, and it is 
returned as the texture color.  If linear filtering is enabled, the comparison is performed at 
the four neighboring shadow map samples, and the results are bilinearly filtered just as if 
they had been colors.  

 With GeForce3 hardware, it is easiest to use NV_register_combiners to implement 
the desired per-fragment shading based on the shadow comparison.  One simple approach 
is to use the shadowing result directly to modulate the diffuse and specular intensity.  
Kilgard points out [3] that leaving some fraction of diffuse intensity in helps keep 
shadows areas from looking too “flat”. 

OpenGL API Details 
Support for shadow mapping in OpenGL is provided by the SGIX_shadow and 

SGIX_depth_texture extensions.  The SGIX_shadow extension exposes the per-texel 
comparison as a texture parameter, and SGIX_depth_texture defines a texture internal 
format of DEPTH_COMPONENT, complete with various bits-per-texel choices.  It also 
provides semantics for glCopyTex{Sub}Image*() calls to read from the depth buffer 
when performing a copy. 

Figure 5.  A very low resolution shadow map is used to demonstrate the difference 
between nearest (left) and linear (right) filtering for shadow maps.  Credit: Mark 
Kilgard. 



 

 

Direct3D API Details 
 Support for shadow mapping in Direct3D is provided by special depth texture 
formats exposed in drivers version 21.81 and later.  Support for both 24-bit 
(D3DFMT_D24S8) and 16-bit (D3DFMT_D16) shadow maps is included.   

Setup 
The following code snippet checks for hardware shadow map support on the 
default adapter in 32-bit color: 

HRESULT hr = pD3D->CheckDeviceFormat( 

D3DADAPTER_DEFAULT,  //default adapter 

D3DDEVTYPE_HAL,   //HAL device 

D3DFMT_X8R8G8B8,   //display mode 

D3DUSAGE_DEPTHSTENCIL,  //shadow map is a depth/s surface 

D3DRTYPE_TEXTURE,   //shadow map is a texture 

D3DFMT_D24S8   //format of shadow map 

); 

Note that since shadow mapping in Direct3D relies on “overloading” the meaning 
of an existing texture format, the above check does not guarantee hardware 
shadow map support, since it’s feasible that a particular hardware / driver combo 
could one day exist that supports depth texture formats for another purpose.  For 
this reason, it’s a good idea to supplement the above check with a check that the 
hardware is GeForce3 or greater. 

Once shadow map support has been determined, you can create the shadow map 
using the following call: 

pD3DDev->CreateTexture(texWidth, texHeight, 1, 
 D3DUSAGE_DEPTHSTENCIL, D3DFMT_D24S8, D3DPOOL_DEFAULT, 
 &pTex); 

Note that you must create a corresponding color surface to go along with your 
depth surface since Direct3D requires you to set a color surface / z surface pair 
when doing a SetRenderTarget().  If you’re not using the color buffer for 
anything, it’s best to turn off color writes when rendering to it using the 
D3DRS_COLORWRITEENABLE renderstate to save bandwidth. 

 

Rendering 
Rendering uses the same ideas as in OpenGL: you render from the point of view 
of the light to the shadow map you created, then set the shadow map texture in a 
texture stage and set the texture coordinates in that stage to index into the shadow 
map at (s / q, t / q) and use the depth value (r / q) for the comparison.  There are a 
few Direct3D-specific idiosyncrasies to be aware of, however: 



• The (z / w) value used to compare with the value in the shadow map is in 
the range [0..2bitdepth-1], not [0..1], where ‘bitdepth’ is the bitdepth of the 
shadowmap (24 or 16 bits).  This means you have to put an additional 
scale factor into your texture matrix. 

• Direct3D addresses pixels and texels in different ways [1], where integral 
screen coordinates address pixel centers and integral texture coordinates 
address texel boundaries.  You need to take this into account when 
addressing the shadow map.  There are two ways to do this: either offset 
the viewport by half a texel when rendering the shadow map, or offset by 
half a texel when addressing the shadow map. 

• As stated earlier, there is no native polygon offset support in Direct3D.  
The closest thing is D3DRS_ZBIAS, but this doesn’t help us when 
shadow mapping since it can only be used to bias depth a constant amount 
towards the camera, not away.  Instead we can get similar functionality, 
albeit without taking into account polygon slope, by adding a small bias 
amount to our texture matrix. 

Here is a sample texture matrix that takes into account these limitations: 
float fOffsetX = 0.5f + (0.5f / fTexWidth); 

float fOffsetY = 0.5f + (0.5f / fTexHeight); 

D3DXMATRIX texScaleBiasMat( 0.5f,     0.0f,     0.0f,      0.0f, 

                            0.0f,    -0.5f,     0.0f,      0.0f, 

           0.0f,     0.0f,     fZScale,   0.0f, 

           fOffsetX, fOffsetY, fBias,     1.0f ); 

Where fZScale is the (2bitdepth-1) and fBias is a small negative value.  Note that 
this matrix is applied post-projection, not in eye space. 

 

Once the texture coordinates have been setup properly, the hardware will 
automatically compare (r / q) > shadowMap[s / q, t / q] and return zero to indicate 
in shadow or one to indicate in light (or potentially something in between if 
you’re on the shadow edge and using D3DTEXF_LINEAR).  The following pixel 
shader shows a simple use of shadow mapping (but note that you don’t have to 
use pixel shaders to use shadow maps, DirectX7-style texture stage states work as 
well): 
 tex t0   // normal map 

tex t1   // decal texture 

 tex t2   // shadow map 

 dp3_sat r0, t0_bx2, v0_bx2  //light vector is in v0 

 mul r0, r0, t2   //modulate lighting contribution by shadow result 

 mul r0, r0, t1   //modulate lighting contribution by decal 

 



Advantages and Limitations 
As with any technique, shadow mapping has certain advantages and limitations to be 

aware of.  The fact that it is image-based turns out to be both an advantage and a 
limitation.  It’s advantageous, because it doesn’t require additional application geometry 
processing, it works well with GPU-created and GPU-altered geometry and correctly 
handles fragment culling like alpha test.  The associated limitation is that because it’s 
image based, it works well for spotlights, but not point light sources.  One could imagine 
a cube map –based shadow mapping system, but they would require six 90-degree frusta, 
which would each need to be fairly high resolution, and five more passes over the 

geometry to generate the shadow map.   

Along the same lines, the quality of shadow mapping depends on how well the 
shadow map sampling frequency matches the eye’s sampling frequency.  When the eye 
and light have similar location and orientation, the sampling frequencies match pretty 
well, but when the light and eye are looking toward each other, the sampling frequencies 
rarely match well.  Figure 6 illustrates this “dueling frusta” situation. 

Another problem that comes up with any projective texture mapping is the phantom 
“negative projection”.  This is actually pretty simple to remove at the cost of an 
additional texture unit, or per-vertex color.  The goal is just to make sure that the shadow 
test always returns “shadowed” for surfaces behind the light. 

Finally, the polygon offset fudge factor, while quite adequate for virtually all uses of 
shadow mapping, can be a bit dissatisfying.  Andrew Woo [9] suggested an alternative 
shadow map generation that is produced from averaging the nearest and second-nearest 
depth layers from the light’s point of view.  This technique can actually be implemented 
as a two-pass technique on GeForce3 hardware using the depth peeling technique 
described in [2] and with a slight twist.  In the second pass, the shadow map is used to 
peel away the nearest surfaces, but all depths are computed as the average of the 

Figure 6.  The “dueling frusta” problem occurs when the spotlight points toward the eye.  
The eye’s view (left) shows the variation in sampling frequency of the shadow map, blue 
being the highest .  The light’s view (right) shows the very small portion of the light’s 
image plane needs high frequency sampling.  



fragment’s original depth and the nearest depth at that fragment’s (x,y).  The nearest 
surface (that is not peeled away), is then the average of the first and second nearest 
fragments! 

Wang and Molnar introduce another technique to reduce the need for polygon offset [7].   
Their technique works by rendering only back-faces into the shadow map, relying on the 
observation that back-face z-values and front-face z-values are likely far enough apart in 
z to not falsely self-shadow.  This only helps front-faces, of course, but back-faces (with 
respect to the light) are, by definition, not in light, which helps hide artifacts.  Note that 
this algorithm only works for closed polygonal objects. 

Computing Transformations for Shadow Mapping 
Computing the transformations required for shadow mapping can be somewhat 

tricky. This section provides details on the various transformations that need to be applied 
during the two render passes. While this section provides details for the OpenGL case, 
the transformations required for Direct3D are very similar with the main exception being 
that the texture coordinate generation is done directly via a matrix instead of the texgen 
planes.  Also, keep in mind that the scale-bias matrix in Direct3D requires an additional 
offset to account for the discrepancy between pixel and texel coordinates as mentioned 
earlier, and that eye linear texgen is called D3DTSS_TCI_CAMERASPACEPOSITION. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 shows the three primary transformations (and inverses) used in shadow 
mapping. Note that we use the convention of using the forward transforms as going to 
world coordinates. The standard ‘modelview’ matrix using the above notation will 
therefore be: V-1M. In addition to the above transformations, we also have to account for 
the projections involved in the two passes – these could be different depending on the 
frusta for the light and eye. The projection transformation will also be applied during the 
texture coordinate generation phase which is depicted in Figure 8 for OpenGL. As shown 

Figure 7: Schematic view of the basic transformations involved in shadow mapping. 
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in the figure, two transformations are applied to the eye coordinates – the texgen planes, 
and the texture matrix. For eye linear texgen planes, OpenGL will automatically multiply 
the eye coordinates with the inverse of the modelview matrix in effect when the planes 
are specified. (See Appendix A for a more detailed explanation of the texgen planes in 
the eye linear case.)  

 
The resulting texture coordinates are therefore computed as: 

 

[xe,ye,ze,we]T = (modelview) [xo,yo,zo,wo]T 

 

Ee = Epo(modelviewpo)-1  
 

[s,t,r,q]T = T Ee [xe,ye,ze,we]T 

 
Equation 1 

 

Here the subscript ‘o’ denotes object space coordinates, and the subscript ‘e’ refers to eye 
space coordinates, modelviewpo is the modelview matrix in effect when the eye linear 
texgen plane equations are specified, Epo is the matrix composed of the eye linear plane 
equations as specified to OpenGL (i.e. in their own object space),  Ee is the matrix 
composed of the transformed plane equations (these are the plane equations that are 



½  0  0  ½ 
0  ½  0  ½ 
0   0  ½  ½ 
0   0  0  1 

actually stored by OpenGL), T is the texture matrix, and modelview is the modelview 
matrix when rendering the scene geometry. 

Setting Up the Transformations 
We want to set the transformations in Equation 1 to compute texture coordinates 

(s,t,r,q) such that (s/q,t/q) will be the fragment’s location within the depth texture, and 
r/q will be the window-space z of the fragment relative to the light’s frustum. In other 
words, we want to compute:  

 

[s,t,r,q]T = S Plight L-1 M [xo,yo,zo,wo]T 
 

Equation 2 

Here, S is the scale-bias matrix, given by:  

 

 

 

 

 

Plight is the projection matrix for the light frustum. The “texgen matrix” (Ee), however, is 
applied to eye coordinates [xe,ye,ze,we]T but we want to generate the coordinates in light 
space, since that is where the depth map computation takes place. So we need to take 
[xe,ye,ze,we]T back into world space by applying the transform V. That is, we want to 
compute [s,t,r,q]T as:  

 

[s,t,r,q]T = S Plight L-1 V [xe,ye,ze,we]T 
 

Equation 3 

 

Note that the right hand side of Equation 3 reduces to S Plight L-1 M [xo,yo,zo,wo], 
precisely what we want. A straightforward way to compute Equation 3 is to set 
modelviewpo to identity and set: 

 

  

 
 

 

The first observation is that we have two matrices T (the texture matrix) and Epo (the 
eye linear texgen planes specified to OpenGL) so we can compute Equation 4 in several 

T Epo = S Plight L-1 V 
 

Equation 4 



ways. Since we are going to have to set the eye linear planes in any case, the less 
expensive thing to do is to not set the texture matrix at all, and use the texgen matrix G 
for the entire computation†, i.e., set 

 

Epo = S Plight L-1 V 
 

Equation 5 

 

This assumes that the modelview matrix, modelviewpo, was identity at the time the 
texgen planes are set. Another improvement is to make use of the fact that OpenGL 
automatically multiplies [xe,ye,ze,we]T with (modelviewpo)-1 for eye linear texgen. The 
sole purpose of using V in Equation 5 is to eliminate V-1. If we set modelviewpo = V-1, 
then OpenGL will do the elimination for us and we can avoid having to compute V, the 
inverse of the view matrix. The steps can be summarized as follows: 
 
First Pass (Depth Map Generation) 

• Render from light’s point of view. Set projection matrix to Plight. Set the view 
portion of the modelview matrix to L-1.  

• Render scene (with appropriate modeling transform(s) M). 
 

Second Pass (Depth Map Comparison) 

• Render from eye’s point of view. Set projection matrix to be Peye. Set the view 
portion of the modelview matrix to be V-1. 

• Set texgen to be EYE_LINEAR. Specify texgen planes as Epo = S Plight L-1 

• Render scene (with appropriate modeling transform(s) M) 
 

Conclusions 
Shadow mapping is an easy-to-use shadowing technique that makes 3D rendering just 

look better.  It enjoys hardware acceleration on GeForce3 GPUs.  There is example 
source code in the NVSDK (hw_shadowmaps_simple, hw_woo_shadowmaps) that 
demonstrate the technique, and the corresponding OpenGL extensions.  Please direct 
questions or comments to cass@nvidia.com. 
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Appendix A: Another Way to Think about EYE_LINEAR planes in 
OpenGL 

An unfortunate thing about EYE_LINEAR texgen in OpenGL is that the name 
implies that the plane equations are specified in eye space, when they are, in fact, 
specified in their own object space.  There are two ways one can think about the planes 
specified in EYE_LINEAR texgen. As mentioned earlier, OpenGL will automatically 
multiply the planes specified with (modelviewpo)-1, i.e. the inverse of the modelview 
matrix in effect when the planes are specified. From Equation 1 we see that the net effect 
is to map the vertex position in eye coordinates [xe,ye,ze,we]T back to the ‘object space’ 
defined by  (modelviewpo)-1. The transformed coordinates are then evaluated at each 
plane in this object space to get the texture coordinates. An alternate way to think about 
the texgen planes is to consider the matrix Ee = Epo(modelview)-1, which defines a map 
whose domain is eye space, with the planes Epo being specified in object space. Ee 
therefore defines the transformed planes in eye space. In either case, the planes are being 
specified in the ‘object space’ defined by (modelviewpo)-1  and not in eye space. 

 

In the shadow mapping case described earlier, the modelview matrix is set to V-1 
when the texgen plane equations are specified.  This is the same thing as saying that we 
are specifying the plane equations in world space.  If the modelview matrix were set to 
identity, then we would be specifying the equations in eye space.  The same is true if we 
were specifying vertex positions. 
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We could set the modelview matrix to V-1L, and specify the plane equations in light 
space.  This might be handy, because we would only need to update our plane equations 
if the light’s projection (Plight) changed.  We could even put the whole transformation into 
the modelview matrix as V-1LPlight

-1S-1.  In this case, the texgen planes are always just 
specified as identity (Epo = I)! 
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