
1

Advanced Computer Graphics Advanced Computer Graphics
(Fall 2009)(Fall 2009)

CS 294-13, Rendering Lecture 1: Introduction and
Basic Ray Tracing

Ravi Ramamoorthi

http://inst.eecs.berkeley.edu/~cs294-13/fa09

Some slides courtesy Thomas Funkhouser and Pat Hanrahan

To DoTo Do

 Start working on raytracer assignment (if necessary)

 Start thinking about path tracer, final project

First AssignmentFirst Assignment

 In groups of two (find partners)

 Monte Carlo Path Tracer

 If no previous ray tracing experience, ray tracer first.

 See how far you go. Many extra credit items
possible, fast multi-dim. rendering, imp. sampling…

 This lecture focuses on basic ray tracing

 Likely to be a review for most of you, go over fast

Ray Tracing HistoryRay Tracing History

Ray Tracing HistoryRay Tracing History

Image courtesy Paul Heckbert 1983

2

OutlineOutline

 Camera Ray Casting (choosing ray directions)

 Ray-object intersections

 Ray-tracing transformed objects

 Lighting calculations

 Recursive ray tracing

Outline in CodeOutline in Code
Image Raytrace (Camera cam, Scene scene, int width, int height)

{

Image image = new Image (width, height) ;

for (int i = 0 ; i < height ; i++)

for (int j = 0 ; j < width ; j++) {

Ray ray = RayThruPixel (cam, i, j) ;

Intersection hit = Intersect (ray, scene) ;

image[i][j] = FindColor (hit) ;

}

return image ;

}

Ray Casting

Virtual Viewpoint

Virtual Screen Objects

Ray misses all objects: Pixel colored blackRay intersects object: shade using color, lights, materialsMultiple intersections: Use closest one (as does OpenGL)

Finding Ray DirectionFinding Ray Direction

 Goal is to find ray direction for given pixel i and j

 Many ways to approach problem
 Objects in world coord, find dirn of each ray (we do this)
 Camera in canonical frame, transform objects (OpenGL)

 Basic idea
 Ray has origin (camera center) and direction
 Find direction given camera params and i and j

 Camera params as in gluLookAt
 Lookfrom[3], LookAt[3], up[3], fov

Similar to Similar to gluLookAtgluLookAt derivationderivation
 gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx,

upy, upz)

 Camera at eye, looking at center, with up direction being up

Eye

Up vector

Center

Constructing a coordinate frame?Constructing a coordinate frame?

a
w

a


We want to associate w with a, and v with b
 But a and b are neither orthogonal nor unit norm
 And we also need to find u

b w
u

b w






v w u 

3

Camera coordinate frameCamera coordinate frame

a
w

a


 We want to position camera at origin, looking down –Z dirn

 Hence, vector a is given by eye – center

 The vector b is simply the up vector

b w
u

b w





v w u 

Eye

Up vector

Center

Canonical viewing geometryCanonical viewing geometry

-w αu

βv

(/ 2) (/ 2)
tan tan

2 / 2 2 / 2

fovx j width fovy height i

width height
 

                
       

u v w
ray eye

u v w

 
 

 
 

 

OutlineOutline

 Camera Ray Casting (choosing ray directions)

 Ray-object intersections

 Ray-tracing transformed objects

 Lighting calculations

 Recursive ray tracing

Outline in CodeOutline in Code
Image Raytrace (Camera cam, Scene scene, int width, int height)

{

Image image = new Image (width, height) ;

for (int i = 0 ; i < height ; i++)

for (int j = 0 ; j < width ; j++) {

Ray ray = RayThruPixel (cam, i, j) ;

Intersection hit = Intersect (ray, scene) ;

image[i][j] = FindColor (hit) ;

}

return image ;

}

RayRay--Sphere IntersectionSphere Intersection

0 1

2() () 0

ray P P Pt

sphere P C P C r

  

    

  

  


C

P0

RayRay--Sphere IntersectionSphere Intersection

0 1

2() () 0

ray P P Pt

sphere P C P C r

  

    

  

  


Substitute

0 1

2
0 1 0 1() () 0

ray P P Pt

sphere P Pt C P Pt C r

  

      

  

    


Simplify

2 2
1 1 1 0 0 0() 2 () () () 0t P P t P P C P C P C r      

       
  

4

RayRay--Sphere IntersectionSphere Intersection
2 2

1 1 1 0 0 0() 2 () () () 0t P P t P P C P C P C r      
       

  
Solve quadratic equations for t

 2 real positive roots: pick smaller root

 Both roots same: tangent to sphere

 One positive, one negative root: ray
origin inside sphere (pick + root)

 Complex roots: no intersection (check
discriminant of equation first)

RayRay--Sphere IntersectionSphere Intersection

 Intersection point:

 Normal (for sphere, this is same as coordinates in
sphere frame of reference, useful other tasks)

0 1ray P P Pt  
  

P C
normal

P C









RayRay--Triangle IntersectionTriangle Intersection

 One approach: Ray-Plane intersection, then check if
inside triangle

 Plane equation:
A

B

C

() ()

() ()

C A B A
n

C A B A

  


  

0plane P n A n  
   

RayRay--Triangle IntersectionTriangle Intersection

 One approach: Ray-Plane intersection, then check if
inside triangle

 Plane equation:

 Combine with ray equation:

A
B

C

() ()

() ()

C A B A
n

C A B A

  


  

0plane P n A n  
   

0 1

0 1()

ray P P Pt

P Pt n A n

  

 

  

    
0

1

A n P n
t

P n



    

Ray inside TriangleRay inside Triangle

 Once intersect with plane, still need to find if in triangle

 Many possibilities for triangles, general polygons (point
in polygon tests)

 We find parametrically [barycentric coordinates]. Also
useful for other applications (texture mapping)

A
B

C

P
α β

γ

0, 0, 0

1

P A B C  
  
  

  
  
  

Ray inside TriangleRay inside Triangle

A
B

C

P

α β

γ

0, 0, 0

1

P A B C  
  
  

  
  
  

() ()P A B A C A     

0 1 , 0 1

1

 
 
   
 

5

Other primitivesOther primitives

 Much early work in ray tracing focused on ray-
primitive intersection tests

 Cones, cylinders, ellipsoides

 Boxes (especially useful for bounding boxes)

 General planar polygons

 Many more

 Many references. For example, chapter in Glassner
introduction to ray tracing (see me if interested)

Ray Scene IntersectionRay Scene Intersection

OutlineOutline

 Camera Ray Casting (choosing ray directions)

 Ray-object intersections

 Ray-tracing transformed objects

 Lighting calculations

 Recursive ray tracing

Transformed ObjectsTransformed Objects

 E.g. transform sphere into ellipsoid

 Could develop routine to trace ellipsoid (compute
parameters after transformation)

 May be useful for triangles, since triangle after
transformation is still a triangle in any case

 But can also use original optimized routines

Transformed ObjectsTransformed Objects

 Consider a general 4x4 transform M
 Will need to implement matrix stacks like in OpenGL

 Apply inverse transform M-1 to ray
 Locations stored and transform in homogeneous coordinates
 Vectors (ray directions) have homogeneous coordinate set to

0 [so there is no action because of translations]

 Do standard ray-surface intersection as modified

 Transform intersection back to actual coordinates
 Intersection point p transforms as Mp
 Distance to intersection if used may need recalculation
 Normals n transform as M-tn. Do all this before lighting

OutlineOutline

 Camera Ray Casting (choosing ray directions)

 Ray-object intersections

 Ray-tracing transformed objects

 Lighting calculations

 Recursive ray tracing

6

Outline in CodeOutline in Code
Image Raytrace (Camera cam, Scene scene, int width, int height)

{

Image image = new Image (width, height) ;

for (int i = 0 ; i < height ; i++)

for (int j = 0 ; j < width ; j++) {

Ray ray = RayThruPixel (cam, i, j) ;

Intersection hit = Intersect (ray, scene) ;

image[i][j] = FindColor (hit) ;

}

return image ;

}

Shadows

Virtual Viewpoint

Virtual Screen Objects

Light Source

Shadow ray to light is unblocked: object visibleShadow ray to light is blocked: object in shadow

Shadows: Numerical Issues
• Numerical inaccuracy may cause intersection to be

below surface (effect exaggerated in figure)

• Causing surface to incorrectly shadow itself
• Move a little towards light before shooting shadow ray

Lighting ModelLighting Model

 Similar to OpenGL

 Lighting model parameters (global)
 Ambient r g b (no per-light ambient as in OpenGL)
 Attenuation const linear quadratic (like in OpenGL)

 Per light model parameters
 Directional light (direction, RGB parameters)
 Point light (location, RGB parameters)

0
2* *

L
L

const lin d quad d


 

Material ModelMaterial Model

 Diffuse reflectance (r g b)

 Specular reflectance (r g b)

 Shininess s

 Emission (r g b)

 All as in OpenGL

Shading ModelShading Model

 Global ambient term, emission from material

 For each light, diffuse specular terms

 Note visibility/shadowing for each light (not in
OpenGL)

 Evaluated per pixel per light (not per vertex)

1

(max (,0) (max(,0)))
n

s
a e i d i s i

i
iI K K L K l n K h nV



     

7

OutlineOutline

 Camera Ray Casting (choosing ray directions)

 Ray-object intersections

 Ray-tracing transformed objects

 Lighting calculations

 Recursive ray tracing

Mirror Reflections/Refractions

Virtual Viewpoint

Virtual Screen Objects
Generate reflected ray in mirror direction,
Get reflections and refractions of objects

Turner Whitted 1980

Basic ideaBasic idea

For each pixel
 Trace Primary Eye Ray, find intersection

 Trace Secondary Shadow Ray(s) to all light(s)
 Color = Visible ? Illumination Model : 0 ;

 Trace Reflected Ray
 Color += reflectivity * Color of reflected ray

Recursive Shading ModelRecursive Shading Model

 Highlighted terms are recursive specularities [mirror
reflections] and transmission

 Trace secondary rays for mirror reflections and refractions,
include contribution in lighting model

 GetColor calls RayTrace recursively (the I values in equation
above of secondary rays are obtained by recursive calls)

1

(max (,0) (max(,0)))
n

s
a e i d i s si

i
R T TiI K K LV K I K IK l n K h n



       

Problems with RecursionProblems with Recursion

 Reflection rays may be traced forever

 Generally, set maximum recursion depth

 Same for transmitted rays (take refraction into account)

8

Effects needed for Realism

• (Soft) Shadows

• Reflections (Mirrors and Glossy)

• Transparency (Water, Glass)

• Interreflections (Color Bleeding)

• Complex Illumination (Natural, Area Light)

• Realistic Materials (Velvet, Paints, Glass)

Discussed in this lecture so far
Not discussed but possible with distribution ray tracing
Hard (but not impossible) with ray tracing; radiosity methods

Some basic add Some basic add onsons

 Area light sources and soft shadows: break into grid
of n x n point lights
 Use jittering: Randomize direction of shadow ray within

small box for given light source direction
 Jittering also useful for antialiasing shadows when shooting

primary rays

 More complex reflectance models
 Simply update shading model
 But at present, we can handle only mirror global

illumination calculations

AccelerationAcceleration

Testing each object for each ray is slow
 Fewer Rays

Adaptive sampling, depth control
 Generalized Rays

Beam tracing, cone tracing, pencil tracing etc.
 Faster Intersections

 Optimized Ray-Object Intersections
 Fewer Intersections

Acceleration StructuresAcceleration Structures

Bounding boxes (possibly hierarchical)
If no intersection bounding box, needn’t check objects

Bounding Box

Ray

Spatial Hierarchies (Oct-trees, kd trees, BSP trees)

Bounding Volume Hierarchies 1Bounding Volume Hierarchies 1 Bounding Volume Hierarchies 2Bounding Volume Hierarchies 2

9

Bounding Volume Hierarchies 3Bounding Volume Hierarchies 3 Acceleration Structures: GridsAcceleration Structures: Grids

Uniform Grid: ProblemsUniform Grid: Problems OctreeOctree

OctreeOctree traversaltraversal Other AccelerationsOther Accelerations

10

Interactive Interactive RaytracingRaytracing

 Ray tracing historically slow

 Now viable alternative for complex scenes
 Key is sublinear complexity with acceleration; need not

process all triangles in scene

 Allows many effects hard in hardware

 OpenRT project real-time ray tracing
(http://www.openrt.de)

RaytracingRaytracing on Graphics Hardwareon Graphics Hardware

 Modern Programmable Hardware general
streaming architecture

 Can map various elements of ray tracing

 Kernels like eye rays, intersect etc.

 In vertex or fragment programs

 Convergence between hardware, ray tracing
 NVIDIA now has CUDA-based raytracing API !

[Purcell et al. 2002, 2003]

http://graphics.stanford.edu/papers/photongfx

