Advanced Computer Graphics To Do

(Fall 2009)

CS 294-13, Rendering Lecture 1: Introduction and
Basic Ray Tracing

Start working on raytracer assignment (if necessary)

Start thinking about path tracer, final project

Ravi Ramamoorthi

http://inst.eecs.berkeley.edu/~cs294-13/fa09

Some slides courtesy Thomas Funkhouser and Pat Hanrahan

First Assignment Ray Tracing History

In groups of two (find partners) Ray Tracing in Computer Graphics

Monte Carlo Path Tracer Appel 1068 - Ray casting

If no previous ray tracing experience, ray tracer first. 1. Generate an image by sending one ray per pixel
N . 2. Check for shadows by sending a ray to the light
See how far you go. Many extra credit items

possible, fast multi-dim. rendering, imp. sampling...

This lecture focuses on basic ray tracing

Likely to be a review for most of you, go over fast

Pt Haneahan, Speing 2000

Ray Tracing History

Ray Tracing in Computer Graphics

“An improved
lllumination model
for shaded display,”
T. Whitted,

CACM 1980

Resolution:
512 x 512
Time:
VAX 11/780 (1979)
74 min.
PC (2008)
6 sec.
Spheres and Checkerboard, T. Whitted, 1979

CHILER Locture 2 Pat Haneshan, Spring 2008 -
pring Image courtesy Paul Heckbert 1983

Outline

Camera Ray Casting (choosing ray directions)
Ray-object intersections

Ray-tracing transformed objects

Lighting calculations

Recursive ray tracing

Ray Casting

Virtual Viewpoint

Virtual Screen Objects

Rhyl tiplessstaibobjmotss Hxtetisstatedloldiaiies 0gtenials)

Similar to gluLookAt derivation

gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx,
upy, upz)

Camera at eye, looking at center, with up direction being up

Up vector

Outline in Code

Image Raytrace (Camera cam, Scene scene, int width, int height)
{
Image image = new Image (width, height) ;
for (inti=0 ;i <height ; i++)
for (intj =0 ; j <width ; j++) {
Ray ray = RayThruPixel (cam, i, j) ;
Intersection hit = Intersect (ray, scene) ;
image[i][j] = FindColor (hit) ;
}.

return image ;

Finding Ray Direction

Goal is to find ray direction for given pixel i and j

Many ways to approach problem
Objects in world coord, find dirn of each ray (we do this)
Camera in canonical frame, transform objects (OpenGL)

Basic idea
Ray has or (camera center) and direction
Find direction given camera params and i and j

Camera params as in gluLookAt
Lookfrom[3], LookAt[3], up[3], fov

Constructing a coordinate frame?

We want to associate W with &, and v with b
But a and b are neither orthogonal nor unit norm
And we also need to find u

W=-—

Camera coordinate frame Canonical viewing geometry

a bxw
W=—
[l

u=— V=wxu
[b>w|

We want to position camera at origin, looking down —Z dirn

Hence, vector a is given by eye — center

The vector b is simply the up vector / Up vector

[’ fovx) (j—(width/2))
a = tan X| ———
2 J width/2 l

p= tan[

Outline Outline in Code

. . . . Image Raytrace (Camera cam, Scene scene, int width, int height)
Camera Ray Casting (choosing ray directions)

!
it

Ray-object intersections Image image = new Image (width, height) ;
Ray-tracing transformed objects for (inti= 0 ; i < height ; i++)
e ; P PU ;

Lighting calculations for (intj =0 e

. . Ray ray = RayThruPixel (cam, i, j) ;

Recursive ray tracing . .
Intersection hit = Intersect (ray, scene) ;

image[i][j] = FindColor (hit) ;

1

!

return image ;

Ray-Sphere Intersection Ray-Sphere Intersection

ray = P=PF+
Substitute
ray = P=P, +Pt

sphere= (P, + Pt —C)«(P, + Pt—C)—r> =
Simplify

t>(P+P)+2t Po(P,—~C)+(P,—-C)+(P,—-C)-r’* =0

Ray-Sphere Intersection
t'(R-R)+2t R-(R -C)+ (R, -C)-(R
Solve quadratic equations for t
2 real positive roots: pick smaller root
Both roots same: tangent to sphere

One positive, one negative root: ray
origin inside sphere (pick + root)

Complex roots: no intersection (check
discriminant of equation first)

Ray-Triangle Intersection

One approach: Ray-Plane intersection, then check if

inside triangle 1
A L _(C-Ax(B-A)

Plane equation: T c-Ax((B-A)

plane = Pefi— Asfi = 0

Ray inside Triangle
Once intersect with plane, still need to find if in triangle

Many possibilities for triangles, general polygons (point
in polygon tests)

We find parametrically [barycentric coordinates]. Also
useful for other applications (texture mapping)
B P=aA+ pB+yC
20,420,720
a+pf+y=1

Ray-Sphere Intersection

Intersection point: ray = P= ﬁo 4 lf’lt

Normal (for sphere, this is same as coordinates in

sphere frame of reference, useful other tasks)
p—C

normal = ——
P—C|

Ray-Triangle Intersection

One approach: Ray-Plane intersection, then check if

inside triangle C
_(C-Mx(B-A)

Plane equation: = [C-A)x(B-A)
plane = Pefi— Aefi = 0

Combine with ray equation:
ray = P=P +Pt
(P, + Pt)efi = AR

Ray inside Triangle

P—A=pB(B-A)+y(C-A)
0<p<l,0<y<I1
L+y<1

Other primitives
Much early work in ray tracing focused on ray-
primitive intersection tests
Cones, cylinders, ellipsoides
Boxes (especially useful for bounding boxes)
General planar polygons
Many more

Many references. For example, chapter in Glassner
introduction to ray tracing (see me if interested)

Outline

Camera Ray Casting (choosing ray directions)
Ray-object intersections

Ray-tracing transformed objects

Lighting calculations

Recursive ray tracing

Transformed Objects

Consider a general 4x4 transform M
Will need to implement matrix stacks like in OpenGL

Apply inverse transform M-! to ray
Locat ored and transform in homogeneous coordinates
Vectors (ections) have homogeneous coordinate set to
0 [so there is no action because of translations]

Do standard ray-surface intersection as modified

Transform intersection back to actual coordinates
Intersection point p transforms as Mp
Distance to intersection if used may need recalculation
Normals n transform as M-n. Do all this before lighting

Ray Scene Intersection

Intersection FindIntersection(Ray ray, Scene scene)

min_t = infinity

oo '“_I
min_primitive = NULL \ .\?/.- .
For each primitive in scene | /
t = Intersect(ray, primitive); / DY _1(/ F/
if (=0 && 1< min_t) then h oL
min_primitive = primitive
min_t =t

retum Intersection(min_t. min_primitive)

Transformed Objects

E.g. transform sphere into ellipsoid

Could develop routine to trace ellipsoid (compute
parameters after transformation)

May be useful for triangles, since triangle after
transformation is still a triangle in any case

But can also use original optimized routines

Outline

Camera Ray Casting (choosing ray directions)
Ray-object intersections

Ray-tracing transformed objects

Lighting calculations

Recursive ray tracing

Outline in Code

Image Raytrace (Camera cam, Scene scene, int width, int height)
{
Image image = new Image (width, height) ;
for (inti=0 ;i <height ; i++)
for (intj =0 ; j < width ; j++) {
Ray ray = RayThruPixel (cam, 1, j) ;
Intersection hit = Intersect (ray, scene) ;
image[i][j] = FindColor (hit) ;
}

return image ;

Shadows: Numerical Issues
* Numerical inaccuracy may cause intersection to be
below surface (effect exaggerated in figure)
+ Causing surface to incorrectly shadow itself
* Move a little towards light before shooting shadow ray

X

Material Model

Diffuse reflectance (r g b)
Specular reflectance (r g b)
Shininess s

Emission (r g b)

All as in OpenGL

Shadows Light Source

Virtual Viewpoint

Virtual Screen Objects

Shadow ray to light is bhhdke#tedbpduent vhsithbov

Lighting Model

Similar to OpenGL

Lighting model parameters (global)
Ambient r g b (no per-light ambient as in OpenGL)
Attenuation const linear quadratic (like in OpenGL)

L

~ const + lin*d +quad *d?

Per light model parameters
Directional light (direction, RGB parameters)
Point light (location, RGB parameters)

Shading Model

=K, +K,+Y L(K,ymax (I;+n,0)+ K (max(h+n,0))*)

i1
Global ambient term, emission from material
For each light, diffuse specular terms

Note visibility/shadowing for each light (not in
OpenGL)

Evaluated per pixel per light (not per vertex)

Outline Mirror Reflections/Refractions

Camera Ray Casting (choosing ray directions)
Ray-object intersections

Ray-tracing transformed objects

Lighting calculations

Recursive ray tracing

Virtual Screen Objects
Generate reflected ray in mirror direction,
Get reflections and refractions of objects

Basic idea

For each pixel
Trace Primary Eye Ray, find intersection

Trace Secondary Shadow Ray(s) to all light(s)
Color = Visible ? Illumination Model : 0 ;

Trace Reflected Ray

Color += reflectivity * Color of reflected ray

Turner Whitted 1980

Recursive Shading Model Problems with Recursion

Reflection rays may be traced forever

n
| = Ka+KE+Z L, (K, max (l;+n,0) + K, (max(h +n,0))*)+ K_I , + K, |

i=1

Highlighted terms are recursive specularities [mirror Generally, set maximum recursion depth
reflections] and transmission

Trace secondary rays for mirror reflections and refractions,
include contribution in lighting model Same for transmitted rays (take refraction into account)

calls RayTrace recursively (the I values in equation
above of secondary rays are obtained by recursive calls)

Effects needed for Realism

(Soft) Shadows

Reflections (Mirrors and Glossy)
Transparency (Water, Glass)
Interreflections (Color Bleeding)

Complex Illumination (Natural, Area Light)
Realistic Materials (Velvet, Paints, Glass)

Di d in this lecture so far
Not discussed but possible with distribution ray tracing
Hard (but not impossible) with ray tracing; radiosity methods

Acceleration

Testing each object for each ray is slow
Fewer Rays
Adaptive sampling, depth control
Generalized Rays
Beam tracing, cone tracing, pencil tracing etc.
Faster Intersections
Optimized Ray-Object Intersections
Fewer Intersections

Bounding Volume Hierarchies 1

+ Build hierarchy of bounding volumes
= Bounding volume of interior node contains all children

Some basic add ons

Area light sources and soft shadows: break into grid

of n x n point lights
Use jittering: Randomize direction of shadow ray within
small box for given light source direction
Jittering also useful for antialiasing shadows when shooting
primary rays

More complex reflectance models
Simply update shading model
But at present, we can handle only mirror global
illumination calculations

Acceleration Structures

Bounding boxes (possibly hierarchical)
If no intersection bounding box, needn’t check objects

Bounding Box

Spatial Hierarchies (Oct-trees, kd trees, BSP trees)

Bounding Volume Hierarchies 2

* Use hierarchy to accelerate ray intersections
+ Intersect node contents only if hit bounding volume

Bounding Volume Hierarchies 3 Acceleration Structures: Grids

= Sort hits & detect early termination
FindIntersection{ Ray ray. Node node)
Find intersections with child node bounding volumes
Sort intersections front to back
Process intersections (checking for early termination)
min_t = infinity;
for each intersected child i |
if (min_t=< bv_tfi]) break;
shape_t = Findlntersection(ray, child);

if (shape_t < min_t) { min_t = shape_t;}

refurm min_t

Uniform Grid: Problems Octree
« Potential problem: + Construct adaptive grid over scene

How choose suitable grid resolution? o Recursively subdivide box-shaped cells into 8 octants
= Index primitives by overlaps with cells

| Too little benefit | Lbad LA | Fa
| if grid is too coarse i B/ LoH .
=2 e W Generally fewer cells
| Too much cost 1
if grid is too fine

Octree traversal Other Accelerations

+ Trace rays through neighbor cells Screen space coherence
. Fewer cells > Check last hit first

= More complex neighbor finding - Beam tracing =1~ /——E(_D
o | # | ® ofl e
= Pencil tracing mEnEEl B
A = Cone tracing e (oo s ofle s
Trade-off fewer cells for LY - « Memory coherence AR .
more expensive traversal "

> Large scenes

« Parallelism
- Ray casting is “embarassingly parallelizable”

« efc.

Glass Ball - Stencil Routing

Interactive Raytracing

Ray tracing historically slow

Now viable alternative for complex scenes
Key is sublinear complexity with acceleration; need not
process all triangles in scene

Allows many effects hard in hardware

OpenRT project real-time ray tracing
(http://www.openrt.de)

— Ring - Stencil Routing —— Cornell Box - Bitonic Sort

Cornell Box - Increased Search Radius

__J
‘o‘

Raytracing on Graphics Hardware

Modern Programmable Hardware general
streaming architecture

Can map various elements of ray tracing
Kernels like eye rays, intersect etc.
In vertex or fragment programs

Convergence between hardware, ray tracing
NVIDIA now has CUDA-based raytracing API !

[Purcell et al. 2002, 2003]

http://graphics.stanford.edu/papers/photongfx

10

