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1 Introduction and Quadrature Methods

In rendering we have a problem to determine the intensity of eertain 3D point. This is

done by gathering lighting from all directions to that point, or mathematically speaking,
integrating the incoming lights in the range of a unit hemispere around that point,

which could be hard. Here we introduce a very simple but e este method called Monte
Carlo method, which utilizes the power of randomness to comfe the expected value
for the intensity of that point.

1.1 Integration in 1D with Quadrature Methods

Before diving into complex problem domain, we rst illustrae integration over certain
1D function f (x). The problem is de ned to nd the integrated value | of function f (x)

over some range 2 [a; b: 2
b

| =  f(x)dx

R
The easiest way is to nd its integral functionF(x) = 7 f (u)du, and plug in the range

| = F(b F(a). However, nding an analytic form for that integral function is the
biggest challenge, or even worse when the function is not tiooous and the there is no
such analytical form.

One way to go around this is to equally divide the range [a, bhio many small
intervals, says n intervals with widthh = (b a)=n, which we call step size. For each
interval, we evaluate the function value, and make the valueepresents that interval. The
other way to think about it is we are calculating the area cowed by the function f (x).
Now we can add up the contribution from each interval, and sathe summation should
approximate the real valuel . This is called theQuadrature Integration , and various
rules specify how to evaluate the area unddr(x) to represent that interval.

Rectangle rule uses one(or two) evaluated value(s) to calate the area, Trapezoidal
rule uses two, and Simpson's rule uses three, as illustratedFig. 1. Overall the method
has a general form looks like: y

=" wf(x) (1)

i=1
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Figure 1: Trapezoidal rule and Simpson's rule for quadrature method The trape-
zoidal method uses linear approximation, and Simpson's nietd assumes a parabolic arc
(polynomial of degree 2) to calculate the area.

Since various methods use di erent way to approximate arethere are still uncovered/over-
covered errors. In general the error decreases as we de@elas step size(by increasing).
Providing that f (x) has at least two continuous derivatives withind; i and jf °¢x)j M,
for the rectangle rule the error is given by:

(b a) ,
24 h

n
'R |

M

and by substituting the step size(width)h with (b a)=n, we have the error:

R G
R 24n2

M = O(n ?)

Trapezoidal rule has similar error bound since it also useséar function to approximate
the covered area, and its error is given by
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Simpson's rule uses a more sophisticated quadratic polyn@hfunction(assumingf (x)
has at least 4-th derivatives) to calculate the covered areand thus has better error
bound:

N\
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With 1D function the above methods can converge rapidly(orreor reduces rapidly

as n increases), but they do not have such a good behavior when ibrnes to higher
dimension.

| M =0(n %
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1.2 Integration in higher dimensions

As in 1D the de nition Eq. 1, we can extend the approximation ging tensor product
rule to s-dimensional function, which is rede ned:

XX X
= v WiWoiiw; T (X1 X2 000 X, ) (2)
i1=1i.=1 is=1

We again simply use quadrature rules to evaluate everythingith n samples in each
dimension, and requiringn® samples in total. In the case of 1D function, the error bound
is O(n ")(wherer =2 or 4). However with s-dimensional space usiny = n® samples,
the error bound isO(N ") = O(n "), which degrades rapidly because of the curse of
dimensionality. This means that even if we increase the numb of sampled region by
slicing the region more nely, the error doesn't go away as $h as we increase samples.
Furthermore, if the function f (x) presents discontinuities, the error bound is at best
O(n 1) for 1D case, then with higher dimensional space is at be§{(n ). There is an
important result which limits the convergence rate(as we he& already shown) for any
deterministic quadrature rule, calledBakhalov's theorem(which we are not going to talk
about it here).

Since the error bound(or convergence rate) is not so good agdrature method going
to higher dimension, we need something better, and it shoulalso deals with disconti-
nuities. Monte Carlo method has the properties that error band is always O(n )
regardless of dimensionality, and it is also immune to disobnuities.

2 Monte Carlo Method

Monte Carlo method in plain words is simply randomness. Notthere is another class
of random algorithm called Las Vegas, which always leads torcect result, for example
quicksort picks random pivot. Monte Carlo method does not provide 100%orrectness,
but in general the expected results will be correct. Beforealking how to use Monte
Carlo method to integrate function, we rst review some prohbility concepts that are
useful as building block.

2.1 Probability Reviews
2.1.1 CDF and PDF

Cumulative Distribution Function (CDF) P (x) for random variable X describes the prob-
ability that random variable X is less than or equal to some value. Let's take the dice
as an example with possible outcomg = f1;2; 3;4;5;6g. The CDF P(2) for rolling the
dice is E3, since the possibility of the outcomes smaller or equal todut of 6 possible
faces are £3; similarly P(3)=1=2 andP(4) = 2=3.
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Probability Density Function (PDF) p(x) is the possibility of each outcome for random
variable X, de ned asdP(x)=dx. In the dice example, the PDFp(x) for the occurrence
of each face is 46.

The possibility of cumulated outcome over some range2 [a; [ is de ned as

Zy
P(x2[aB)= p(x)dx=P(b) P(a)
a

2.1.2 Expected Value and Variance

Given the de nitions for CDF and PDF, we want to ask: what is the averaged outcome
in general or in the long run? The expected value is to answer such question and de ned
by: 7

Ep(f(x)) = f(X)p(x)dx 3

The expected valueE () for some functionf (x) is computed via drawing random sample
X with some probability distribution p(x). For discrete cases, the expected value is given
by
X
Ep(X) = Pi Xi
i=1
For the dice example, the expected value is:

X1 1
Ep(X) = —Xj= =(1+2+3+4+5+6)=3 5
i=1 6 6
In addition, we also want to know the expected deviation, cldd variance, of the
function from its expected value. Variance is an important@ncept to quantify error, as

we will see in the next section. The variance of a function iseched by:

VIf ()] = E[(f (x)  E[f (x)])?] 4)
Expected value and variance have some nice properties to piify Eq. 4:
- E[af (x)A = aE[f (X)]
X X
E " f(X) = " Ef(X)] (5)
Vlaf (x)] = a*V[f (x)]

So directly from Eq. 4 and rewriteE[f (x)] as Es , We have:
VIl = E :(f x) E)? i
= E f(x)? 2f (X)E; + E? _
- E[f(0% E[@(XE]+E E?
= E[f ()’ 2E[f(0)]Es + Ef
= E[f(0)’ Ef (6)
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So back to the dice example, starting from the de nition Eq. 4he variance is given by:

VIf(x)]

E[(f(xX) E[f ()7 ( from Eq: 4)

h i
= é (1 3572+(2 352%+(3 35°2+(@4 352+( 35)2+(6 35)°
= Eli [6:25 + 2:25 + 0:25 + 0:25 + 2:25 + 6:25]

2:9167
E[f (x)4] E? ( from EqQ: 6)

h i
é 12+22+3%+42+5%2+62 35
15:1667 1225
2:9167 (same result)

Finally, given multiple independent random variableX {; X5; :::; X,,, the variance of
their sum is equal to the sum of their variance:

X # X
Vo) = VIFX)] Y

i=1 i=1

which is useful when we later derive the error bound for Mont€arlo estimator.

2.2 Monte Carlo Estimator

So far we have seen how to use quadrature rules to determimgally evaluate an integral,
and they su er from bad error bound when dimensionality incgase. In this section we
introduce how to use the concept of drawing random samplestivsome distribution p(x)
to estimate the integral, and then derive its error bound.

2.2.1 Basic Monte Carlo Estimator

Remember that we want to nd the integral | = R;’f (x)dx as de ned initially. The
simplest Monte Carlo estimator is very similar to the rectagular quadrature rule setting.
We uniformly draw random samples from the domairg] ij of interest; rather than adding
them up(since we don't actually sample the full domain), weathe averaging and scaling
to properly represent the contribution of the ranged;ld. This in fact give us another
random variableF,, which is the averaged evaluated random variabl€;. The subscript

n is used to denote that the random variabld-,, also depends on how many samples we
draw.

Fn:

(b &)X
n

i=1

f(Xi) (8)
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SinceF, is a random variable(of the integral), we want to nd its expeted value, and
hopefully it could approximate the real valuel we want:

E[F,] = E (bna)_xj f(Xi)
= (bna).W E[f (X))]; (from Eq: 5)
(b a);1 21 _ 1 :
= . f(xz)p(x)dx (p(x) = b 2 for U [a; H)
b X <b
_ na)(bla) f ()dx
i=1 @
1% 2o X 2o |
= = f (x)dx f (x)dx = nl
Niz1 a i=1 @

(9)

The result is exactly what we want. In fact we are not restricéd to use uniform
sampling, but arbitrary distribution p(x) on interval [a;d. From Eg. 8 we have:

o_ (b @)X _IXR(XG) O 1X (X))
n~— — 4 f(Xi) - 1 - PYV2VAEY
i=1 Nics g Miza PXD)

The new random variableF ? basically says if we draw more samples somewhere in the
domain, then their weights should be scaled down. Convergélwe draw very few samples
in other larger places, then their weights should be scaleg@@hough counter-intuitively,
this is to properly account for the area they actually repreant.) This mechanism also
give us the ability to do importance sampling later. So for nw, what is the expected
value for the new random variable=2?

F

(10)

" #
12X £ (Xi)
SRR,
_1X f(Xi)
- nizlf p(X)
o1 %1 f(x)
= Hi:1 mp(x)dx
o Zy
= ﬁi:l af(x)dx

| (11)

2.2.2 Convergence of Monte Carlo Estimator

The most important feature that we want to use Monte Carlo esinator is that: its error
bound is independent of the dimensionality. Remember in EQO we scale the evaluated
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random variablef (X;) by its probability of occurrencep(X;). Here we replace them with

a new random variable notationY; = % and re-write:
11X (X 11X
Fo= = M == Y, (12)
ni_; PXi) Nz
Also remember that the expected value foF? is E[F?] = |. The variance forF? is given
by:
" - 4
VIFR = V. =Y
M=t
1. X
= FV | Yi (from EQ: 5)
i=1
1
= Fi:l V[Yil (from EQ: 7)
1
= an [Y]
1
= VY] (13)

Now given the expected value and variance for random variaoF?, to bound the error,
we can useChebychev's Inequality , basically saying that for random variableX no
more than 1=k? of the values are more thark standard deviations away from the mean:

. . 1

Prfj X j kg 2
' =

PrifX E[X]] viX] g (14)

Now we have a nice inequality to calculate the bound. By plugeg the F? for X into
Chebychev's inequality, we have:

|
1=2 ©1=2
PrifF2 1j % Vvl g

We can see here for any x, the error decrease as we increase the number of samples,
. 1
in the rate O(n 2).

2.2.3 Example of Monte Carlo Estimator: Solid Angle Samplin g and Area
Sampling

After introducing some basic idea of basic Monte Carlo estitor, we will show some real
cases with rendering. From Fig. 2 Left, we want to know what ithe exact estimatorY;
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for Eq. 10. Now let's consider what is going on when integraig all lighting directions
I coming to a pointx. The expected value ok is given by:
z
f (X)p(x)dx
z
L(x;! )cosd!

E(X)

and thus f (x)p(x) = L(x;!)cos . In addition, we also sample the unit hemisphere
uniformly, by setting p(! ) = ¢, so we want to nd what c is. Since the integral of
probability distribution over the hemisphere should equato 1, then we have:
z
p(! )d!
z
c d =1

1

Since we know d =2 ,p(')=c= Zi then we know the estimatorY; = f (x) =
L(x;!)cos 2 .

Figure 2: Compute the estimator.  Create an appropriate Monte Carlo estimators for
sampling over hemisphere or over some other object.

Now if the directions are coming from some other object withraa A°, as in Fig. 2
Right, then the expression for the expected value of is given by (assuming the lighting
direction ! %is de ned by x and x° on the other object):

z

Li(x;! )cosd!

z

E(X)
04 cos cos °
o(X IV (x; x C)JX MR dA° (15)
R
Again smce aoP(uU; V)dA = 1(assuming the area is parameterlzed by and v), then
p(u;v) = AO’ and the estimatory; = Lo(x%! 9V (x; x9S cos °p0

x x42
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3 Generating Sampling Patterns

After seeing some examples that draw samples uniformly, wam to do something more
e ciently. Remember in Eg. 10 we substitute arbitrary random distribution for the orig-
inal uniform distribution. This gives us a lot of freedom to eciently sample somewhere
we are interested in. For example if we know some place hasHheg frequency informa-
tion, then we can actually send more samples toward that regi. In a environment map
lighting situation, we can shoot more photons from brightearea light region than those
darker region. In integrating light over surface hemispher we can trace more samples
from lights perpendicular to the surface than those light sm grazing angle.

3.1 Inversion Method

Assuming we have a uniform random number generator in handheén we want to nd
a special random distribution that samples certain region ore densely than other(also
assume that we de nitely know the distribution of importane p(x) on the entire domain).
The idea is to uniformly sample the CDF ofp(x), and invert the CDF back. Why is this
true? Imagine that if certain region has higher importanceits contribution is higher,
then it has larger nal CDF area. If we uniformly sample on CDF then we have bigger
chances to hit the region, and we will in fact get more samples the important region.
This is called the inversion method, as illustrated in Fig. 3

1 1

Probability
Cumulative
Probability

o

Q Q

Figure 3: Inversion Method Left: Importance function p(X) for some region . Right:
The CDF for p(X). By sampling uniformly at the CDF, we can get dense sampled a
important regions in the domain shown in right side of p(x).

3.1.1 Example 1: Power Distribution

For example, if we know the importance function has the formfgower distribution, i.e.
p(x) / x" (which is useful in sampling Blinn micro-facet model), thertihe PDF of this
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function is given by:
p(x) = cx"

for some constantc. The rst task is to gure out what c is, given that the integral
(CDF) should equal to 1.

Zl
cx" = 1
0
Xn+l .1
C—n+1]0 =1
C
n+1 1
c = (n+1)

So now we know the PDF ipp(x) = (n+1)x" and CDF isP(x) = xE)”_. Therefore, given
uniform random variable U, the inverted importance function is "™ U.

3.1.2 Example 2: Exponential Distribution

When rendering with participating media, it is useful to drav samples using exponential
distribution. The function has the form p(x) = ce ®, and as before we want to ndc
given the function integrated to 1.
VA 1
c . Cc
ce®= -“e®j=-=1
0 a a

thus we knowc = a, PDF is ae #, and CDF is:
Z X
P(x) = ae ¥du=1 e
0

Given uniform random variableU, we can nd the inverted importance function:

Uu=1 e*
1 U= e
In1 U) = ax
In(1
nl U) -y

a

Also note that sinceU is uniform random variable, so does 1 U, and we can further

simplify the inversion by
UO
— 1 —
X =P *(x)= =
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3.1.3 Example 3: Sampling A Unit Disk

A unit disk is given by two parameters, 0 r 1 and O 2 . It seems trivial
that we can simply sampler and uniformly, but we will get the wrong answer by that.
Imagine that if we x certain range of and see for every equally spaced region in
how will the areas di er, then we will immediately understar the area is proportional
to the squared distance ?, as shown in Fig. 4. The problem is since area is small around
the center, then if we draw uniformly fromr, then in fact we densely sample ground the
center, which is not what we want. The correct way is drawingasnplesr = = U, and
=2 U, from two uniform random variablesU; and Us.

Figure 4. Sampling a unit disk From left to right: Area V\gth uniform r, area with
uniform © r, sampling with uniform r, sampling with uniform = r.

3.1.4 Summary

Inversion method is a powerful tool to nd the correct imporance sampling distribution.
However it requires two things:

1. P(x), the integral of p(x)

2. The inversionP 1(x)

Both are in general dicult to meet, but we could still use les strong assumption to
approximate the function(better than nothing!). In face ofthese di culties, there is
another popular method called Rejection Method to circumwvé the problem.

3.2 Rejection Method

The rejection method is a technique for generating samplesarding to a function's
distribution without needing to do either integration nor inversion; it is essentially a
dart-throwing approach. The method is very simple just by dawing samples from a
rectangle, and then checking if each random sample is withithe desired region, as
shown in two example in Fig. 5. The e ciency depends on:

Area of function
Area of rectangle
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Figure 5: Rejection Method The method repeatedly draws random sample, and checks
either to accept or to reject such sample.

For the unit disk sampling, the e ciency is L{Tj = ;7 785%. Clearly rejection isn't
as e cient as inversion method, given that we know how to nd agood approximation to
the importance function. Nevertheless, since rejection ried is simple, it can be used
as a debugging tool to verify the correctness of other method

4 Variance Reduction Technique

Monte Carlo estimator is a powerful tool to compute the integl of certain function, and
its convergence is independent of dimensionality. Howeyeghe major problem is that it
Is slow. Variance decreases at the ra@(%) and error decreases aD(n %), which means
that increasing the number of samples removes noise slowly.this section, we introduce
two important techniques that directly control the e ectiveness of sampling.

4.1 Importance Sampling

Recall from Eq. 10 that we can substitute arbitrary distribuion p(x) for uniform distri-
bution, and rede ned in Eq. 12 thatY; = L% to improve our sampling strategy. So
the question is: what is the best probability dlstrlbutlon to do the important sampling?
The answer is: Sample according to the function itself! Why?The idea is that by
concentrating work wheref (x) has high value, then we can compute the estimate more
e ciently. Consider the case: p(x) / f (x) or p(x) = cf (x) for some constantc, then in

our de nition,
f (X 1
v = 1) 1
p(Xi) ¢
It directly follows that V ar[Y] = 0, a zero variance estimator! However in practice we
won't able to get a perfect probability distribution so the fllback strategy for importance

sampling is put more samples where(x) is bigger(or nd p(x) similar to f (x)), as shown
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in Fig. 6, and this strategy is still unbiased, as in Eq. 11. Omthing to note is that if
the probability distribution is chosen poorly, then it is passible to increase the variance.
In practice, importance sampling is one of the most frequdgtused variance reduction
techniques, since it is easy to apply and very e ective wherrgper sampling distribution
is used.

E, (f(x)) , . *le

X1 XN

Figure 6: Importance Sampling(Left) and Stratied Sampling Tech-
niques(Right: 1D and 2D cases) The two methods are used to reduce the variances
we got by either sampling according td (x) or dividing regions so that variances within
each region is small.

4.2 Strati ed Sampling

Another popular technique is subdividing the samplir@ doma into M non-overlapping

smaller sub-domains , which is calledstratum, and ',}" k = . The idea is that: The

function can have many discontinuities in the overall regim but if we zoom in and

investigate a smaller portion, then it would be smooth, desfg some regions having

sharp discontinuity. If the boundary is chosen carefully,iten we are able to get smaller

variance within each region using fewer samples, and ovénaducing the variance.
Suppose within a single stratum ¢ we drawn, samples, the Monte Carlo estimate is

_ 1R (Xyy)

) Mic =1 Pe(Xip)

where thngk;j is the j -th sample drawn from thek-th stratum. The overall estimate
is Fq = M, VkFx wherev is the volume of stratum . For each stratum we de ne
its mean and variance by  and 2(also note that the variance fromn, samples for the

basic Monte Carlo estimatorFy is V[Fy] = f), then we can nd the variance for the
overall estimator:
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V [vicF]
k=1

)M 2
= ViV [F]
k=1
Xovg g

k=1 Tk
Assuming that n, / v¢ or ng = wn, then the variance of the overall estimator is:

Mg @

V[Fst]

k=1 Mk

1M

2
n k

Vk
k=1

Given the variance of stratied Monte Carlo estimator V[Fg], we want to compare it
with the estimator without strati cation. From Veach's the sis(which discussed how to
derive conditional variance in Eq.2.11 and Eq.2.26, note & since we draw sampleX .
after choosing sub-domain , this is really a conditional probability), we have:

" "
1 M bd

VIF] = ~ Ve £+ Ww(k 1)?
k=1 k=1

What matters is the (  1)? term, which is always non-negative. This relationship
essentially tells us that if domain subdivision is taken cafully(meaning at least 6 1),
then strati ed sampling will always give better results.



