Federated Learning

Min Du

Postdoc, UC Berkeley
Outline

- Preliminary: deep learning and SGD
- Federated learning: FedSGD and FedAvg
- Related research in federated learning
- Open problems
Outline

- Preliminary: deep learning and SGD
- Federated learning: FedSGD and FedAvg
- Related research in federated learning
- Open problems
The goal of deep learning

• Find a function, which produces a desired output given a particular input.

<table>
<thead>
<tr>
<th>Example task</th>
<th>Given input</th>
<th>Desired output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image classification</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Next-word-prediction</td>
<td>Looking forward to your ?</td>
<td>reply</td>
</tr>
<tr>
<td>Playing GO</td>
<td></td>
<td>Next move</td>
</tr>
</tbody>
</table>

w is the set of parameters contained by the function
Finding the function: model training

- Given one input sample pair \((x_0, y_0)\), the goal of deep learning model training is to find a set of parameters \(w\), to maximize the probability of outputting \(y_0\) given \(x_0\).

Given input: \(x_0\)
Maximize: \(p(5|x_0, w)\)
Finding the function: model training

- Given a training dataset containing n input-output pairs $(x_i, y_i), i \in [1, n]$, the goal of deep learning model training is to find a set of parameters w, such that the average of $p(y_i)$ is maximized given x_i.

Given input:

<table>
<thead>
<tr>
<th>Label</th>
<th>Label</th>
<th>Label</th>
<th>Label</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>3</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>8</td>
<td>6</td>
<td>9</td>
</tr>
</tbody>
</table>

Output:

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Finding the function: model training

• Given a training dataset containing n input-output pairs $(x_i, y_i), i \in [1, n]$, the goal of deep learning model training is to find a set of parameters w, such that the average of $p(y_i)$ is maximized given x_i.

• That is,

$$\text{maximize} \quad 1 \sum_{i=1}^{n} \frac{1}{n} p(y_i | x_i, w)$$

Which is equivalent to

$$\text{minimize} \quad 1 \sum_{i=1}^{n} -\log(p(y_i | x_i, w))$$

A basic component for loss function $l(x_i, y_i, w)$ given sample (x_i, y_i):

Let $f_i(w) = l(x_i, y_i, w)$ denote the loss function.
Deep learning model training

For a training dataset containing \(n \) samples \((x_i, y_i), 1 \leq i \leq n\), the training objective is:

\[
\min_{w \in \mathbb{R}^d} f(w) \quad \text{where} \quad f(w) \overset{\text{def}}{=} \frac{1}{n} \sum_{i=1}^{n} f_i(w)
\]

\(f_i(w) = l(x_i, y_i, w) \) is the loss of the prediction on example \((x_i, y_i)\)

No closed-form solution: in a typical deep learning model, \(w \) may contain millions of parameters.

Non-convex: multiple local minima exist.
Solution: Gradient Descent

Randomly initialized weight w

Compute gradient $\nabla f(w)$

At the local minimum, $\nabla f(w)$ is close to 0.

Learning rate η controls the step size

$w_{t+1} = w_t - \eta \nabla f(w)$ (Gradient Descent)

How to stop? – when the update is small enough – converge.

$$\| w_{t+1} - w_t \| \leq \epsilon$$

or

$$\| \nabla f(w_t) \| \leq \epsilon$$

Problem: Usually the number of training samples n is large – slow convergence
Solution: Stochastic Gradient Descent (SGD)

- At each step of gradient descent, instead of compute for all training samples, randomly pick a small subset (mini-batch) of training samples (x_k, y_k).

$$w_{t+1} \leftarrow w_t - \eta \nabla f (w_t; x_k, y_k)$$

- Compared to gradient descent, SGD takes more steps to converge, but each step is much faster.
Outline

- Preliminary: deep learning and SGD
- Federated learning: FedSGD and FedAvg
- Related research in federated learning
- Open problems
The importance of data for ML

“...The biggest obstacle to using advanced data analysis isn’t skill base or technology; it’s plain old access to the data.”

-Edd Wilder-James, Harvard Business Review
“Data is the New Oil”
Private data: all the photos a user takes and everything they type on their mobile keyboard, including **passwords, URLs, messages, etc.**
Instead of uploading the raw data, **train a model locally and upload the model.**

Addressing privacy: Model parameters will never contain more information than the raw training data.

Addressing network overhead: The size of the model is generally smaller than the size of the raw training data.
Federated optimization

- Characteristics (Major challenges)
 - Non-IID
 - The data generated by each user are quite different
 - Unbalanced
 - Some users produce significantly more data than others
 - Massively distributed
 - \# mobile device owners >> avg \# training samples on each device
 - Limited communication
 - Unstable mobile network connections
A new paradigm – Federated Learning

a synchronous update scheme that proceeds in rounds of communication

Federated learning – overview

Deployed by Google, Apple, etc.
Federated learning – overview

In round number $i...$
Federated learning – overview

Round number $i+1$ and continue...
For efficiency, at the beginning of each round, a random fraction C of clients is selected, and the server sends the current model parameters to each of these clients.
Federated learning – detail

- Recall in traditional deep learning model training
 - For a training dataset containing \(n \) samples \((x_i, y_i)\), \(1 \leq i \leq n \), the training objective is:

\[
\min_{w \in \mathbb{R}^d} f(w) \quad \text{where} \quad f(w) \overset{\text{def}}{=} \frac{1}{n} \sum_{i=1}^{n} f_i(w)
\]

\(f_i(w) = l(x_i, y_i, w) \) is the loss of the prediction on example \((x_i, y_i)\)

- Deep learning optimization relies on SGD and its variants, through **mini-batches**

\[
w_{t+1} \leftarrow w_t - \eta \nabla f(w_t; x_k, y_k)
\]
Federated learning – detail

- In federated learning
 - Suppose n training samples are distributed to K clients, where P_k is the set of indices of data points on client k, and $n_k = |P_k|$.
 - For training objective: $\min_{w \in \mathbb{R}^d} f(w)$

\[
 f(w) = \sum_{k=1}^{K} \frac{n_k}{n} F_k(w) \quad \text{where} \quad F_k(w) \overset{\text{def}}{=} \frac{1}{n_k} \sum_{i \in P_k} f_i(w)
\]
A baseline – **FederatedSGD (FedSGD)**

- A randomly selected client that has \(n_k \) training data samples in federated learning \(\approx \) *A randomly selected sample in traditional deep learning*

- Federated SGD (FedSGD): a single step of gradient descent is done per round

- Recall in federated learning, a \(C \)-fraction of clients are selected at each round.
 - \(C=1 \): full-batch (non-stochastic) gradient descent
 - \(C<1 \): stochastic gradient descent (SGD)
A baseline – *FederatedSGD (FedSGD)*

Learning rate: η; total #samples: n; total #clients: K; #samples on a client k: n_k; clients fraction $C = 1$

- In a round t:
 - The central server broadcasts current model w_t to each client; each client k computes gradient: $g_k = \nabla F_k(w_t)$, on its local data.
 - Approach 1: Each client k submits g_k; the central server aggregates the gradients to generate a new model:
 - $w_{t+1} \leftarrow w_t - \eta \nabla f(w_t) = w_t - \eta \sum_{k=1}^{K} \frac{n_k}{n} g_k$.
 - Recall $f(w) = \sum_{k=1}^{K} \frac{n_k}{n} F_k(w)$
 - Approach 2: Each client k computes: $w_{t+1}^{k} \leftarrow w_t - \eta g_k$; the central server performs aggregation:
 - $w_{t+1} \leftarrow \sum_{k=1}^{K} \frac{n_k}{n} w_{t+1}^{k}$

For multiple times \Rightarrow FederatedAveraging (FedAvg)
Federated learning – deal with limited communication

- Increase computation
 - Select more clients for training between each communication round
 - Increase computation on each client
Federated learning – *FederatedAveraging* (FedAvg)

- **Learning rate**: η; **total #samples**: n; **total #clients**: K; **#samples on a client k**: n_k; **clients fraction C**

- In a round t:
 - The central server broadcasts current model w_t to each client; each client k computes gradient: $g_k = \nabla F_k(w_t)$, on its local data.
 - **Approach 2**:
 - Each client k computes for E epochs: $w_{t+1}^k \leftarrow w_t - \eta g_k$
 - The central server performs aggregation: $w_{t+1} \leftarrow \sum_{k=1}^{K} \frac{n_k}{n} w_{t+1}^k$
 - Suppose B is the local mini-batch size, #updates on client k in each round: $u_k = E \frac{n_k}{B}$.

The amount of computation in each round is determined by:
Federated learning – *FederatedAveraging (FedAvg)*

Model initialization

- Two choices:
 - On the central server
 - On each client

Shared initialization works better in practice.

The loss on the full MNIST training set for models generated by $\theta w + (1 - \theta)w'$.
Federated learning – *FederatedAveraging* (FedAvg)

Model averaging

- As shown in the right figure:

In practice, naïve parameter averaging works surprisingly well.

The loss on the full MNIST training set for models generated by

\[\theta w + (1 - \theta)w' \]
Federated learning – *FederatedAveraging (FedAvg)*

Algorithm 1 FederatedAveraging. The K clients are indexed by k; B is the local minibatch size, E is the number of local epochs, and η is the learning rate.

Server executes:
- initialize w_0
- for each round $t = 1, 2, \ldots$ do
 - $m \leftarrow \max(C \cdot K, 1)$
 - $S_t \leftarrow$ (random set of m clients)
 - for each client $k \in S_t$ in parallel do
 - $w_{t+1}^k \leftarrow \text{ClientUpdate}(k, w_t)$
 - $w_{t+1} \leftarrow \sum_{k=1}^{K} \frac{n_k}{n} w_{t+1}^k$

ClientUpdate(k, w): // Run on client k
- $B \leftarrow$ (split P_k into batches of size B)
- for each local epoch i from 1 to E do
 - for batch $b \in B$ do
 - $w \leftarrow w - \eta \nabla \ell(w; b)$
 - return w to server

1. At first, a model is randomly initialized on the central server.
2. For each round t:
 - i. A random set of clients are chosen;
 - ii. Each client performs local gradient descent steps;
 - iii. The server aggregates model parameters submitted by the clients.
Federated learning – Evaluation

<table>
<thead>
<tr>
<th>C</th>
<th>2NN</th>
<th>IID</th>
<th>Non-IID</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>1455</td>
<td>316</td>
<td>4278</td>
</tr>
<tr>
<td>0.1</td>
<td>1474 (1.0×)</td>
<td>87 (3.6×)</td>
<td>1796 (2.4×)</td>
</tr>
<tr>
<td>0.2</td>
<td>1658 (0.9×)</td>
<td>77 (4.1×)</td>
<td>1528 (2.8×)</td>
</tr>
<tr>
<td>0.5</td>
<td>75 (4.2×)</td>
<td>16 (3.1×)</td>
<td>97 (9.9×)</td>
</tr>
<tr>
<td>1.0</td>
<td>70 (4.5×)</td>
<td>— (—)</td>
<td>380 (8.6×)</td>
</tr>
</tbody>
</table>

FedSGD | **FedAvg** | **FedSGD** | **FedAvg** |

Impact of varying C

In general, the higher C, the smaller #rounds to reach target accuracy.

Image classification

- **#clients**: 100
- **Dataset**: MNIST
 - IID: Random partition
 - Non-IID: each client only contains two digits
 - Balanced

![Images of digits](image-url)
Federated learning – Evaluation

- Dataset from: *The Complete Works of Shakespeare*
 - #clients: 1146, each corresponding to a speaking role
 - Unbalanced: different #lines for each role
 - Train-test split ratio: 80% - 20%
 - A balanced and IID dataset with 1146 clients is also constructed

- Task: next character prediction

- Model: character-level LSTM language model
Federated learning – *Evaluation*

In general, the more computation in each round, the faster the model trains. *FedAvg also converges to a higher test accuracy (B=10, E=20).*

- The effect of increasing computation in each round (decrease B / increase E)
- Fix C=0.1
Federated learning – *Evaluation*

- The effect of increasing computation in each round (decrease B / increase E)
- Fix $C=0.1$

In general, the more computation in each round, the faster the model trains. *FedAvg also converges to a higher test accuracy ($B=10$, $E=5$).*
Federated learning – *Evaluation*

- What if we maximize the computation on each client? $E \to \infty$

Best performance may achieve at earlier rounds; increasing #rounds do not improve.

Best practice: decay the amount of local computation when the model is close to converge.
Federated learning – **Evaluation**

<table>
<thead>
<tr>
<th>Acc.</th>
<th>80%</th>
<th>82%</th>
<th>85%</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGD</td>
<td>18000 (——)</td>
<td>31000 (——)</td>
<td>99000 (——)</td>
</tr>
<tr>
<td>FedSGD</td>
<td>3750 (4.8×)</td>
<td>6600 (4.7×)</td>
<td>N/A (——)</td>
</tr>
<tr>
<td>FedAVG</td>
<td>280 (64.3×)</td>
<td>630 (49.2×)</td>
<td>2000 (49.5×)</td>
</tr>
</tbody>
</table>

Image classification

- **#clients:** 100
- **Dataset:** CIFAR-10
 - IID: Random partition
 - Non-IID: each client only contains two digits
 - Balanced
Federated learning – *Evaluation*

- Dataset from: *10 million public posts from a large social network*
 - #clients: 500,000, each corresponding to an author
- Task: next word prediction
- Model: word-level LSTM language model

200 clients per round; $B=8$, $E=1$
Outline

- Preliminary: deep learning and SGD
- Federated learning: FedSGD and FedAvg
- Related research in federated learning
- Open problems
Federated learning – related research

Google FL Workshop: https://sites.google.com/view/federated-learning-2019/home

Secure aggregation. Practical Secure Aggregation for Privacy-Preserving Machine Learning, CCS’17

Decentralize the central server via blockchain.
HiveMind: Decentralized Federated Learning

Local data

Local data

Local data

Local data

HiveMind Smart Contract

Differentially Private Global Model

aggregated noise

Oasis Blockchain Platform

Differential privacy

Secure aggregation

Model encryption
HiveMind: Decentralized Federated Learning

Local data

Model M(i)

Model M(i)

Model M(i)

Model M(i)

Global model M(i)

private global model

aggregated noise

Oasis Blockchain Platform

In round number i...
HiveMind: Decentralized Federated Learning

In round number i...

Differential privacy

Secure aggregation

Model encryption

Local data

Gradient updates for $M(i)$

$\text{Differential privacy}$

Local data

Gradient updates for $M(i)$

$\text{Secure aggregation}$

Model encryption

Local data

Gradient updates for $M(i)$

Oasis Blockchain Platform
HiveMind: Decentralized Federated Learning

- **Local data**
- **Gradient updates for M(i)**
- **Oasis Blockchain Platform**
- **HiveMind Smart Contract**
- **Local data**
- **Gradient updates for M(i)**

In round number i...

- **Secure aggregation**
- **Model encryption**
- **Differential privacy**

\[\text{Gradient updates for M(i)} + \text{DP noise} \]

\[\text{Gradient updates for M(i)} + \text{DP noise} \]

\[\text{Gradient updates for M(i)} + \text{DP noise} \]
HiveMind: Decentralized Federated Learning

In round number i...

- Differential privacy
- Secure aggregation
- Model encryption

Local data

Oasis Blockchain Platform

Gradient updates for $M(i)$

Secure Aggregation

DP noise

Local data
HiveMind: Decentralized Federated Learning

In round number i...

- **Differential privacy**
- **Secure aggregation**
- **Model encryption**

Local data

HiveMind Smart Contract

Global model $M(i+1)$

Gradient updates for $M(i)$

Oasis Blockchain Platform

Local data

Gradient updates for $M(i)$

Gradient updates for $M(i)$

Gradient updates for $M(i)$
HiveMind: Decentralized Federated Learning

- **Local data**
- **Local data**
- **Local data**
- **Local data**

HiveMind Smart Contract

- **Global model $M(i+1)$**
- **Differentially private**
- **Secure aggregation**
- **Model encryption**

Round number $i+1$ and continue...

Oasis Blockchain Platform
HiveMind: Decentralized Federated Learning

- **Local data**
- **Local data**
- **Local data**
- **Local data**

HiveMind Smart Contract

- Differentially Private Global Model
- Aggregated noise
- DP noise

Oasis Blockchain Platform

- Secure aggregation
- Model encryption
Outline

- Preliminary: deep learning and SGD
- Federated learning: FedSGD and FedAvg
- Related research in federated learning
- Open problems
Federated learning – open problems

- Detect data poisoning attacks, while secure aggregation is being used.
- Asynchronous model update in federated learning and its co-existence with secure aggregation.
- Further reduce communication overhead through quantization etc.
- The usage of differential privacy in each of the above settings.
-
Thank you!

Min Du
min.du@berkeley.edu