
A Gentle Introduction to Yao’s Garbled Circuits

Sophia Yakoubov

Boston Univeristy

Abstract. This is a short, gentle introduction to the Yao’s Garbled
Circuits construction and recent optimizations, as well as the garbled
circuit definitions.

Keywords: Yao’s Garbled Circuits

Table of Contents

Recap of Yao’s Garbled Circuits . 1
Sophia Yakoubov

1 Yao’s Garbled Circuits: Background . 3
1.1 Classical Yao’s Garbled Circuits . 3

Garbled Gate Generation . 3
Garbled Gate Evaluation . 3
From Gates to Circuits . 4

1.2 Optimizations to Yao’s Garbled Circuits . 4
Point and Permute . 4
Free XOR [KS08] . 5
Garbled Row Reduction (GRR3) [NPS99] . 6
Garbled Row Reduction (GRR2) [PSSW09] 6
FleXOR [KMR14] . 7
Half Gates [ZRE15] . 7
Garbled Gadgets [BMR16] . 7

2 Yao’s Garbled Circuit Definitions . 9
2.1 Functionality . 9
2.2 Correctness . 9
2.3 Security . 9

1 Yao’s Garbled Circuits: Background

1.1 Classical Yao’s Garbled Circuits

Let’s say two parties, Ginny and Evan, want to figure out whether they should
collaborate on a project. This is a very sensitive subject for them, so neither
one wants the other to learn how they feel unless the other is in favor of the
collaboration. We will represent Ginny and Evan’s preferences using bits: Ginny’s
bit g is 1 if she wants to work with Evan and 0 otherwise, and similarly Evan’s
bit e is 1 if he wants to work with Ginny and 0 otherwise. What they want to
figure out is then simply the conjunction (AND, denoted ∧) of their two bits
g ∧ e, without revealing anything else to one another.

This can be realized using Yao’s Garbled Circuits. Ginny, playing the role
of a garbled circuit generator, or garbler, can generate a garbled AND gate and
send it to Evan. Evan, playing the role of an evaluator, can then evaluate this
garbled gate.

Garbled Gate Generation Garbling is a process by means of which the
boolean gate truth table is obfuscated. Ginny picks four random strings, or labels:
W 0

G , W
1
G , W

0
E and W 1

E . W
0
G corresponds to the event that g = 0, and W 1

G corre-
sponds to the event that g = 1. Similarly,W 0

E corresponds to the event that e = 0,
andW 1

E corresponds to the event that e = 1. Ginny then uses every pair of labels
corresponding to a possible scenario ((g = 0, e = 0), (g = 0, e = 1), (g = 1, e = 0)
and (g = 1, e = 1)) to encrypt the output corresponding to that scenario, as
shown in Figure 1. The two relevant labels are put through a key derivation
function H to derive a symmetric encryption key, and that key is used to en-
crypt g ∧ e. The garbled gate consists of the four resulting ciphertexts, in a
random order. The garbling of an AND gate is illustrated in Figure 1.

g e output g ∧ e

0 0 0
0 1 0
1 0 0
1 1 1

⇒

garbled output
Enc(H(W 0

G ,W
0
E), 0)

Enc(H(W 0
G ,W

1
E), 0)

Enc(H(W 1
G ,W

0
E), 0)

Enc(H(W 1
G ,W

1
E), 1)

⇒

permuted garbled output
Enc(H(W 0

G ,W
1
E), 0)

Enc(H(W 1
G ,W

1
E), 1)

Enc(H(W 0
G ,W

0
E), 0)

Enc(H(W 1
G ,W

0
E), 0)

Fig. 1. The garbling of an AND gate

Garbled Gate Evaluation Once Evan receives the garbled gate, he needs to
decrypt exactly one ciphertext: the one corresponding to the real values g and e,
encrypted with H(W g

G ,W
e
E). In order to do this, he needs to receive the values

W g
G and W e

E from Ginny. Since Ginny knows g, she can send Evan W g
G . The

labels are all random, independent and identically distributed, so Evan won’t
learn anything about g from W g

G . However, getting W
e
E to Evan is harder. Ginny

3

can’t send both W 0
E and W 1

E to Evan, because that will allow Evan to decrypt
two ciphertexts in the garbled gate. Similarly, Evan can’t simply ask for the one
he wants, because he doesn’t want Ginny to learn e. So, Ginny and Evan use
oblivious transfer (OT [EGL82]), which allows Evan to learn only W e

E without
revealing e to Ginny.

Note that in order for this to work, Evan needs to know when decryption
succeeds, and when it doesn’t. Otherwise, there’s no way for him to know which
ciphertext yields the correct answer. So, simply XOR-ing the key with the en-
crypted value will not work here.

From Gates to Circuits Determining whether to collaborate is a toy appli-
cation of secure two-party computation. In reality, Ginny and Evan might each
have multiple input bits, and they might want to compute a much more compli-
cated function. For instance, they might want to evaluate the hamming distance
of their input strings or the intersection size of their sets. In that case, instead
of garbling a single gate, Ginny will garble the entire function circuit. For gates
whose output serves as input to other gates, instead of encrypting the output
bit, she will encrypt a label corresponding to the output bit: W 0

w or W 1
w. That

label will then be used to derive a key for the decryption of ciphertexts in other
gates, etc.

1.2 Optimizations to Yao’s Garbled Circuits

technique size per gate calls to H per gate
generator evaluator

XOR AND XOR AND XOR AND
classical [Yao86] 4 4 4 4 4 4

point-and-permute [BMR90] 4 4 4 4 1 1
free XOR [KS08] 0 4 0 4 0 1

GRR3 [NPS99] + free XOR 0 3 0 4 0 1
GRR2 [PSSW09] 2 2 4 4 1 1
fleXOR [KMR14] {0, 1, 2} 2 {0, 2, 4} 4 {0, 1, 2} 1
half gates [ZRE15] 0 2 0 4 0 2

garbled gadgets [BMR16] 2 2 3 3 1 1

Fig. 2. Optimizations to Yao’s Garbled Circuits: Efficiency for Two-Input Gates (ta-
ble partially taken from Zahur et al. [ZRE15]). All techniques listed after point-and-
permute are assumed to incorporate the point-and-permute technique.

We now summarize a few of the relevant garbled circuit optimizations.

Point and Permute The point-and-permute technique [BMR90] saves Evan
from having to try decrypting all four ciphertexts. It associates each wire w with

4

technique size per gate calls to H per gate
generator evaluator

XOR AND XOR AND XOR AND
half gates [ZRE15] 0 2(n− 1) 0 4(n− 1) 0 2(n− 1)

garbled gadgets [BMR16] n n n+ 1 n+ 1 1 1

Fig. 3. Optimizations to Yao’s Garbled Circuits: Efficiency for n-Input Gates. Since
the half-gates techinique is strictly better than previous optimizations in most ways,
we omit the previous optimizations from this table. We use half-gates to construct an
n-input gate by combining n− 1 two-input gates.

two select bits p0 and p1 in addition to labels W 0 and W 1. For v ∈ {0, 1}, the
select bit pv is equal to v ⊕ r, where r ∈ {0, 1} is a randomly chosen bit. So, the
select bit pv is different for the two possible underlying values v, but does not
reveal anything about v. The select bit p of each wire is retrieved (via oblivious
transfer if the wire is an input wire, or decryption otherwise) along with the wire
label. When evaluating a gate, Evan uses the two select bits corresponding to the
two input wires (say, pi and pj corresponding to wires wi and wj) to determine
which ciphertext in gate k to decrypt. Using the point-and-permute optimization,
Ginny always places Enc(H(W vi

i ,W
vj
j),W

gk(vi,vj)
k ||pgk(vi,vj)k) in the (2pvii +p

vj
j)th

spot in the table.
This enables the use of simpler, more efficient encryption schemes such as

the one-time pad. Because the select bit tells Evan exactly which ciphertext to
decrypt, decryption with the correct key no longer needs to be distinguishable
from decryption with an incorrect key, as it was before.

For the rest of this discussion, we ignore the select bits in the interest of
notational simplicity.

Free XOR [KS08] The free-XOR technique [KS08] enables the computation
of XOR gates for free, as the name suggests. It does so by fixing the relationship
between labels W 0 and W 1. When garbling the circuit, Ginny picks a single
random string R ← {0, 1}L. Ginny then picks each label W 0 at random, and
sets W 1 = W 0 ⊕ R. If gate gk is an XOR gate and takes wires wi and wj as
input, the new label for wire wk can be computed simply by taking the XOR of
labels Wi and Wj . The label W 0

k is then W 0
i ⊕W 0

j , and W 1
k = W 0

k ⊕ R. This
works because

W 0
i ⊕W 0

j =W 0
k ,

W 0
i ⊕W 1

j =W 0
i ⊕ (W 0

j ⊕R) = (W 0
i ⊕W 0

j)⊕R =W 0
k ⊕R =W 1

k ,

W 1
i ⊕W 0

j = (W 0
i ⊕R)⊕W 0

j = (W 0
i ⊕W 0

j)⊕R =W 0
k ⊕R =W 1

k ,

and
W 1
i ⊕W 1

j = (W 0
i ⊕R)⊕ (W 0

j ⊕R) =W 0
i ⊕W 0

j =W 0
k .

5

Garbled Row Reduction (GRR3) [NPS99] Garbled row reduction allows
the elimination of one ciphertext. This is accomplished by picking one label in
such a way that the corresponding ciphertext is 0. (The eliminated ciphertext
will always be the top one, as determined by the select bits.)

Garbled Row Reduction (GRR2) [PSSW09] This second form of garbled
row reduction allows the elimination of two ciphertexts instead of one. However,
while the first form of garbled row reduction is compatible with the free-XOR
technique, this form (GRR2) is not. In GRR2, instead of recovering the output
label by decrypting a one time pad encryption, the evaluator uses polynomial
interpolation over a quadratic curve. The output label is encoded as the y-
intercept. One point on the polynomial is revealed in the usual way — as y =
H(W vi

i ,W
vj
j), with the select bits determining x ∈ {1, 2, 3, 4}. Two more (the

ones at x = 5 and x = 6) are included in the garbled gate. So, the evaluator will
have three points to use, which is enough to perform interpolation.

Since there are two possible output labels, there are two different quadratic
polynomials to consider. They are designed to intersect exactly in the two points
included in the garbled gate. In the case of an AND gate,H(W 0

i ,W
0
j), H(W 0

i ,W
1
j)

and H(W 1
i ,W

0
j) will uniquely determine the quadratic polynomial correspond-

ing to the 0 output. So, that polynomial determines the points at x = 5 and
x = 6, which together with H(W 1

i ,W
1
j) determine the polynomial corresponding

to the 1 output. Figure 4 shows a graphical depiction of the values included, and
of their relationship to the output labels.

0 2 4 6

0

10

20

30

W 0
k

W 1
k garbled value 1

garbled value 2

H(W 1
i ,W

1
j)

H(W 0
i ,W

1
j)

H(W 1
i ,W

0
j)

H(W 0
i ,W

0
j)

x

y

Fig. 4. GRR2 Garbled Gate Values for an AND Gate. Note that while the graph is
shown over real numbers, GRR2 actually uses a finite field.

6

FleXOR [KMR14] Kolesnikov et al. enable the combination of the free-XOR
technique with AND gate optimizations by translating wire labels to have a
constant distance R on the fly. Depending on whether this translation is needed
(that is, whether the inputs to the XOR gate in question are the outputs of AND
gates or not), XOR garbled gates contain between 0 and 2 ciphertexts.

Half Gates [ZRE15] Zahur et al. introduce the first technique which only
requires two ciphertexts per garbled AND gate and is compatible with the free-
XOR optimization. They use the fact that vi ∧ vj = (vi ∧ (vj ⊕ b))⊕ (vi ∧ b) for
any b ∈ {0, 1}. In the half gates technique, b is determined to be the random
value rj ∈ {0, 1} used to compute the select bit pj = vj ⊕ rj . b = rj is chosen by
the garbler, and vj ⊕ b = pj is revealed to the evaluator. Using her knowledge of
b, the garbler can efficiently garble the “garbler half gate” vi ∧ b using a single
ciphertext. Using the fact that the evaluator knows vj ⊕ b, and can thus behave
differently based on that value, the garbler can similarly efficiently garble the
“evaluator half gate” vi ∧ (vj ⊕ b) using a single ciphertext. Taking the XOR of
these two AND operations is free, so only two ciphertexts are required.

Garbled Gadgets [BMR16] Bal et al. extend the free XOR optimization from
addition mod 2 to mod m. Let ⊕m represent the digit-wise addition operator
modulo m. (⊕ would then be equivalent to ⊕2.) Let 	m be the inverse of ⊕m.
Because we have a higher modulus, we have m instead of 2 labels for every
wire. Like Kolesnikov et al. [KS08], Bal et al. leverage a constant distance R
between labels for every wire wi. (This R will be a vector of values mod m
instead of bits.) So, we will have W 1 = W 0 ⊕m R, W 2 = W 0 ⊕m 2R, . . . ,
Wm−1 =W 0 ⊕m (m− 1)R.

This allows us to get addition modulo m for free, in exactly the same way
that free XOR allows us to get addition modulo 2 for free. Even if we are
only interested in binary computations, this optimization allows us exploit the
commutativity of modular addition to garble binary n-input gates using n + 1
ciphertexts instead of 2n ciphertexts. For any gate gi and any vector of bits
[vj for j ∈ inindicesi] (where inindicesi are the indices of the input wires to gi)
with hamming weight t,

M =
∑

j∈inindicesi

W
vj
j =

(∑
j∈inindicesi

W 0
j

)
+ tR.

By applying the key derivation function H to the modular sum M of the gate
input wire labels (instead of their concatenation), we can be oblivious to the
order of the gate inputs. Figure 5 illustrates the garbling of a 6-input AND gate.

Bal et al. support switching moduli with ease using projection gates, which
translate labels with digits modulo mi to labels with digits modulo mj using one
ciphertext for each label.

Leveraging the commutativity of modular addition to decrease the number
of ciphertexts necessary for an n-input garbled gate is the key idea behind the

7

t (hamming weight of the input) output
0 0
1 0
2 0
3 0
4 0
5 0
6 1

⇒

garbled output
Enc(H(

∑
j∈inindicesi

W 0
j), 0)

Enc(H((
∑
j∈inindicesi

W 0
j)⊕7 R), 0)

Enc(H((
∑
j∈inindicesi

W 0
j)⊕7 2R), 0)

Enc(H((
∑
j∈inindicesi

W 0
j)⊕7 3R), 0)

Enc(H((
∑
j∈inindicesi

W 0
j)⊕7 4R), 0)

Enc(H((
∑
j∈inindicesi

W 0
j)⊕7 5R), 0)

Enc(H((
∑
j∈inindicesi

W 0
j)⊕7 6R), 1)

⇒

permuted garbled output
Enc(H((

∑
j∈inindicesi

W 0
j)⊕7 4R), 0)

Enc(H((
∑
j∈inindicesi

W 0
j)⊕7 5R), 0)

Enc(H((
∑
j∈inindicesi

W 0
j)⊕7 6R), 1)

Enc(H(
∑
j∈inindicesi

W 0
j), 0)

Enc(H((
∑
j∈inindicesi

W 0
j)⊕7 R), 0)

Enc(H((
∑
j∈inindicesi

W 0
j)⊕7 2R), 0)

Enc(H((
∑
j∈inindicesi

W 0
j)⊕7 3R), 0)

Fig. 5. The garbling of an 6-input AND gate

t (hamming weight of the input) output
0 k′

1 k′

2 k′

3 k′

4 k′

5 k

6 k

⇒

garbled output
Enc(H(

∑
j∈inindicesi

W 0
j), k

′)

Enc(H((
∑
j∈inindicesi

W 0
j)⊕7 R), k′)

Enc(H((
∑
j∈inindicesi

W 0
j)⊕7 2R), k′)

Enc(H((
∑
j∈inindicesi

W 0
j)⊕7 3R), k′)

Enc(H((
∑
j∈inindicesi

W 0
j)⊕7 4R), k′)

Enc(H((
∑
j∈inindicesi

W 0
j)⊕7 5R), k)

Enc(H((
∑
j∈inindicesi

W 0
j)⊕7 6R), k)

⇒

permuted garbled output
Enc(H((

∑
j∈inindicesi

W 0
j)⊕7 4R), k′)

Enc(H((
∑
j∈inindicesi

W 0
j)⊕7 5R), k)

Enc(H((
∑
j∈inindicesi

W 0
j)⊕7 6R), k)

Enc(H(
∑
j∈inindicesi

W 0
j), k

′)

Enc(H((
∑
j∈inindicesi

W 0
j)⊕7 R), k′)

Enc(H((
∑
j∈inindicesi

W 0
j)⊕7 2R), k′)

Enc(H((
∑
j∈inindicesi

W 0
j)⊕7 3R), k′)

Fig. 6. The garbling of an 6-input THRESHOLD gate, which returns k if the sum of
the inputs is high enough, and k′ otherwise.

8

garbled gadgets. They are also compatible with point and permute [BMR90] and
with garbled row reduction [NPS99].

2 Yao’s Garbled Circuit Definitions

In this section, we summarize the garbling scheme formalization of Bellare et
al. [BHR12].

2.1 Functionality

A garbling scheme G consists of four polynomial-time algorithms (Gb,En,Ev,De).

1. Gb(1λ, f)→ (F, e, d)
The garbling algorithm Gb takes in the security parameter and a circuit
f , and returns a garbled circuit F , encoding information e, and decoding
information d.

2. En(e, x)→ X
The encoding algorithm En takes in the encoding information e and an input
x, and returns a garbled input X.

3. Ev(F,X)→ Y
The evaluation algorithm Ev takes in the garbled circuit F and the garbled
input X, and returns a garbled output Y .

4. De(d, Y)→ y
The decoding algorithm De takes in the decoding information d and the
garbled output Y , and returns the plaintext output y.

A garbling scheme G = (Gb,En,Ev,De) is projective if e consists of a 2n
wire labels, where n is the number of input bits. We denote those wire labels as
(X0

i , X
1
i)i∈inindices. En(e, x = (vi)i∈inindices) then returns X = (Xvi

i)i∈inindices.
Similarly, we call a garbling scheme output-projective if d consists of 2 labels

for each output bit, one corresponding to each possible value of that bit. All of the
garbling schemes discussed in this paper are projective and output-projective.

2.2 Correctness

Definition 1. A garbling scheme (Gb,En,Ev,De) is correct if for all sufficiently
large security parameters λ, for all functions f and inputs x,

Pr[(F, e, d)← Gb(1λ, f) : De(d,Ev(F,En(e, x))) = f(x)] = 1.

2.3 Security

Bellare et. al [BHR12] describe three security notions for garbling schemes: oblivi-
ousness, privacy and authenticity. Informally, a garbling scheme G = (Gb,En,Ev,De)
is oblivious if a garbled function F and a garbled input X do not reveal anything

9

about the input x. It is private if additionally knowing the decoding information
d reveals the output y, but does not reveal anything more about the input x.
It is authentic if an adversary, given F and X, cannot find a garbled output
Y ′ 6= Ev(F,X) which decodes without error.

Definitions 2 and 3 are the simulation-based definitions of obliviousness and
privacy provided by Bellare et al. (Though they also give indistinguishability-
based definitions, we do not restate those here.) We assume that the function f
is public.

Challenger Adversary A

f, x←−−−−−−−−−−−−−−−−−−
b

$← {0, 1}
If b = 0:

(F, e, d)← Gb(1λ, f)
X ← En(e, x)

If b = 1:

(F,X)← S(1λ, f)

y = f(x)

(F,X, d)← S(1λ, f, y)
F,X, d−−−−−−−−−−−−−−−−−−→

b′←−−−−−−−−−−−−−−−−−−
A wins (i.e. the game returns 1) if b′ = b

Fig. 7. The OblivSimA
G,S(1

λ) and PrivSimA
G,S(1

λ) Games. Steps that are present in
OblivSimA

G,S(1
λ) but not in PrivSimA

G,S(1
λ) are in boxes, and steps that are present

in PrivSimA
G,S(1

λ) but not in OblivSimA
G,S(1

λ) are highlighted.

Challenger Adversary A

f, x←−−−−−−−−−−−−−−−−−−
(F, e, d)← Gb(1λ, f)

X ← En(e, x)
F,X−−−−−−−−−−−−−−−−−−→
Y ′

←−−−−−−−−−−−−−−−−−−
A wins (i.e. the game returns 1)

if Y ′ 6= Ev(F,X) and De(d, Y ′) 6= ⊥.

Fig. 8. The AutAG (1λ) Game.

10

Consider the obliviousness game OblivSimAG,S(1λ) and the privacy game PrivSimAG,S(1λ)
described in Figure 7, each of which is parametrized by a security parameter λ,
a garbling scheme G, an adversary A and a simulator S. The two games have
many steps in common. Steps that are present in the obliviousness game but
not in the privacy game are in boxes , and steps that are present in the privacy
game but not in the obliviousness game are highlighted . OblivSimAG,S(1λ) = 1

(similarly, PrivSimAG,S(1
λ) = 1) if the adversary wins (that is, b = b′), and

OblivSimAG,S(1
λ) = 0 (similarly, PrivSimAG,S(1λ) = 0) otherwise.

Define the adversary A’s advantage in the the obliviousness game as

OblivAdvG,S(1
λ,A) =

∣∣∣Pr[OblivSimAG,S(1λ) = 1]− 1

2

∣∣∣.
Similarly, define the adversary A’s advantage in the the privacy game as

PrivAdvG,S(1
λ,A) =

∣∣∣Pr[PrivSimAG,S(1λ) = 1]− 1

2

∣∣∣.
Definition 2. A garbling scheme G = (Gb,En,Ev,De) is oblivious if for all
sufficiently large security parameters λ, there must exist a polynomial-time sim-
ulator S such that for any polynomial time adversary A,

OblivAdvG,S(1
λ,A) = negl .

Definition 3. A garbling scheme G = (Gb,En,Ev,De) is private if for all suffi-
ciently large security parameters λ, there must exist a polynomial-time simulator
S such that for any polynomial time adversary A,

PrivAdvG,S(1
λ,A) = negl .

Definition 4. A garbling scheme G = (Gb,En,Ev,De) is authentic if for all
sufficiently large security parameters λ, for any polynomial time adversary A,

Pr[A wins AutAG (1
λ)] = negl .

References

BHR12. Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of gar-
bled circuits. Cryptology ePrint Archive, Report 2012/265, 2012. http:
//eprint.iacr.org/2012/265. (Page 9.)

BMR90. Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of
secure protocols (extended abstract). In 22nd ACM STOC, pages 503–513.
ACM Press, May 1990. (Pages 4 and 9.)

BMR16. Marshall Ball, Tal Malkin, and Mike Rosulek. Garbling gadgets for boolean
and arithmetic circuits. In Edgar R. Weippl, Stefan Katzenbeisser, Christo-
pher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 16,
pages 565–577. ACM Press, October 2016. (Pages 2, 4, 5, and 7.)

11

http://eprint.iacr.org/2012/265
http://eprint.iacr.org/2012/265

EGL82. Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized proto-
col for signing contracts. In David Chaum, Ronald L. Rivest, and Alan T.
Sherman, editors, CRYPTO’82, pages 205–210. Plenum Press, New York,
USA, 1982. (Page 4.)

KMR14. Vladimir Kolesnikov, Payman Mohassel, and Mike Rosulek. FleXOR: Flex-
ible garbling for XOR gates that beats free-XOR. In Juan A. Garay and
Rosario Gennaro, editors, CRYPTO 2014, Part II, volume 8617 of LNCS,
pages 440–457. Springer, Heidelberg, August 2014. (Pages 2, 4, and 7.)

KS08. Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free
XOR gates and applications. In Luca Aceto, Ivan Damgård, Leslie Ann Gold-
berg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, ed-
itors, ICALP 2008, Part II, volume 5126 of LNCS, pages 486–498. Springer,
Heidelberg, July 2008. (Pages 2, 4, 5, and 7.)

NPS99. Moni Naor, Benny Pinkas, and Reuban Sumner. Privacy preserving auc-
tions and mechanism design. In Proceedings of the 1st ACM Conference on
Electronic Commerce, EC ’99, pages 129–139, New York, NY, USA, 1999.
ACM. (Pages 2, 4, 6, and 9.)

PSSW09. Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C. Williams.
Secure two-party computation is practical. In Mitsuru Matsui, editor, ASI-
ACRYPT 2009, volume 5912 of LNCS, pages 250–267. Springer, Heidelberg,
December 2009. (Pages 2, 4, and 6.)

Yao86. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended
abstract). In 27th FOCS, pages 162–167. IEEE Computer Society Press,
October 1986. (Page 4.)

ZRE15. Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole
- reducing data transfer in garbled circuits using half gates. In Elisabeth
Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume
9057 of LNCS, pages 220–250. Springer, Heidelberg, April 2015. (Pages 2,
4, 5, and 7.)

12

	Recap of Yao's Garbled Circuits
	Yao's Garbled Circuits: Background
	Classical Yao's Garbled Circuits
	Garbled Gate Generation
	Garbled Gate Evaluation
	From Gates to Circuits

	Optimizations to Yao's Garbled Circuits
	Point and Permute
	Free XOR ICALP:KolSch08
	Garbled Row Reduction (GRR3) GRR3
	Garbled Row Reduction (GRR2) AC:PSSW09
	FleXOR C:KolMohRos14
	Half Gates EC:ZahRosEva15
	Garbled Gadgets CCS:BalMalRos16

	Yao's Garbled Circuit Definitions
	Functionality
	Correctness
	Security

