
PrivateFS: A Parallel Oblivious File System

Peter Williams, Radu Sion, and Alin Tomescu
Network Security and Applied Cryptography Lab
Stony Brook University, Stony Brook, NY, USA
{petertw,sion,alin}@cs.stonybrook.edu

ABSTRACT
Privatefs is an oblivious file system that enables access to re-
mote storage, while keeping both the file contents and client
access patterns secret. Privatefs is based on a new par-
allel Oblivious RAM mechanism (PD-ORAM)—instead of
waiting for the completion of all ongoing client-server trans-
actions, client threads can now engage a server in parallel
without loss of privacy.

This critical piece is missing from existing Oblivious RAMs
(ORAM), which can not allow multiple clients threads to
operate simultaneously without revealing intra- and inter-
query correlations and thus incurring privacy leaks. And
since ORAMs often require many communication rounds,
this significantly and unnecessarily constrains throughput.

The mechanisms introduced here eliminate this constraint,
allowing overall throughput to be bound by server band-
width only, and thus to increase by an order of magni-
tude. Further, new de-amortization techniques bring the
worst case query cost in line with the average cost. Both of
these results are shown to be fundamental to any ORAM.
Extensions providing fork consistency against an actively
malicious adversary are then presented.

A high performance, fully functional PD-ORAM imple-
mentation was designed, built and analyzed. It performs
multiple queries per second on a 1TB+ database across
50ms latency links, with unamortized, bound query laten-
cies. Based on PD-ORAM, privatefs was built and deployed
on Linux as a userspace file system.

Categories and Subject Descriptors
D.0 [Software]: General; E.3 [Data Encryption]

Keywords
Access Privacy, Cloud Computing, Oblivious RAM

1. INTRODUCTION
Access pattern privacy addresses a critical side channel

leak present in many outsourced storage scenarios. Even on

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’12, October 16–18, 2012, Raleigh, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1651-4/12/10 ...$15.00.

encrypted data, the sequence of locations read and written to
storage reveals information about the user and the data. As
a motivating example, consider a database management sys-
tem running on top of an untrusted, encrypted file system.
The file system, in satisfying requests for the transaction
processor, learns semantic information about the transac-
tions through the sequence of disk blocks accessed. If, for
example, an alphabetical, encrypted keyword index is up-
dated as an encrypted record is inserted, it can learn what
keywords are present in the new record, based only on the
locations updated within the encrypted index.

An oblivious file system enables a client to read and write
without revealing the access pattern (which files are accessed,
and any correlation between accesses). Without access pat-
tern privacy, the act of accessing remote data leaks subtle
information about the data itself, making it impossible to
achieve full data confidentiality outside a narrow definition.

The oblivious file system presented here is built on the
more general mechanism of Oblivious RAM (ORAM), which
allows a client to read and write records into a database /
memory hosted by an untrusted party, again hiding both
the data and the access pattern from this untrusted host.
Since the introduction of the first ORAM [2], approaches
to increase query throughput have been sought and discov-
ered. Nevertheless, practical constructions (and thus prac-
tical oblivious file systems) have remained elusive.

This paper introduces PD-ORAM (“Parallel De-amortized
ORAM”), a collection of new techniques, applicable to a
large class of existing ORAMs, to improve their performance
and practical relevance by eliminating critical bottlenecks
and drawbacks. PD-ORAM is then used as the block-level
building block for privatefs, a parallel, oblivious file system.

First, the need for supporting parallel queries in ORAM is
identified and satisfied. Existing ORAMs are characterized
by a significant number of round-trips, typically O(log(n)),
per query (with some notable exceptions; see the related
work discussion below). On wide-area networks, with mid
to high latency, this imposes strict limits on the query re-
sponse times as well as throughput. By supporting querying
in parallel from multiple clients, PD-ORAM eliminates the
effect of query response time on throughput, while present-
ing an opportunity for new multi-client scenarios.

A new de-amortization construction (converting an algo-
rithm with an amortized bound into one with a worst-case
bound) is then introduced to process queries simultaneously
with database re-shuffling. Re-shuffling is an essential and
extremely costly task which, in amortized solutions, com-
pletely blocks the server for extended time periods after a

certain number of queries. In PD-ORAM and other de-
amortized solutions, instead of suspending queries to re-
order data periodically, the server continuously re-shuffles
the database in the background, in loose synchronization
with querying, to guarantee minimal client latencies for both
the average and worst case.

At an overview level, the parallelization technique con-
sists of a round-trip-optimal and wait-optimal protocol to
transform a single-client“period-based”ORAM into a multi-
client parallel ORAM. A “period-based” ORAM is defined
in Section 5.1 as an ORAM that operates on small batches
of queries, with its data structure not sensitive to the order
of reads or modifications within a particular batch.

A fully functional PD-ORAM implementation is devel-
oped and benchmarked at multiple queries per second on
a terabyte database, the highest throughput to date on a
medium-latency link. While the mechanisms described here
can be directly applied to a large number of different ORAM
techniques, PD-ORAM is based on the ORAM described in
[19], but with de-amortized level construction, support for
parallel queries, and a new, simpler, Bloom filter (BF) con-
struction. PD-ORAM is then deployed and benchmarked in
Linux to build privatefs, the first oblivious file system.

2. RELATED WORK
Oblivious RAM, introduced by Goldreich and Ostrovsky

[2] is a primitive that provides access pattern privacy to a
single client (or software process) accessing a remote database
(or RAM). The construction provided by Goldreich and Os-
trovsky (referred to as GO-ORAM) requires only logarith-
mic storage at the client; the amortized communication and
computational complexities of this construction are O(log3n).
A discussion of GO-ORAM and recent extensions follows.

2.1 ORAM Overview
In an ORAM, the database is considered to be a set of

n semantically-secure encrypted blocks (with an ORAM key
held by the client) and supported operations are read(id),
and write(id, newvalue). In GO-ORAM the data is orga-
nized into log2(n) levels, as a pyramid. Level i consists of
up to 2i blocks; each block is assigned to one of the 2i buck-
ets (originally log4(n) levels sized 4i; levels sized 2i are used
here for simplicity) at this level as determined by a hash
function. Due to hash collisions each bucket may contain
from 0 to k lnn blocks.
ORAM Reads. To obtain the value of block id, a client
must perform a read query in a manner that maintains two
invariants: (i) it never reveals which level the desired block
is at, and (ii) it never looks twice in the same spot for the
same block. To maintain (i), the client always scans a single
bucket in every level, starting at the top and working down.
The hash function informs the client of the candidate bucket
at each level, which the client then scans. Once the client
has found the desired block, the client still proceeds to each
lower level, scanning random buckets instead of those indi-
cated by their hash function. For (ii), once all levels have
been queried, the client re-encrypts the query result (so it
looks different to the server) and places it in the top level.
This ensures that when it repeats a search for this block, it
will locate the block immediately (in a different location),
and the rest of the search pattern is randomized. The top
level quickly fills up; how to dump the top level into the one
below is described later.

ORAM Writes. Writes are performed identically to reads
in terms of the data traversal pattern, with the exception
that the new value is inserted into the top level at the end.
Level Overflow. Once a level is full, it is emptied into the
level below. This second level is then re-encrypted and re-
ordered, according to a new hash function. Thus, accesses
to this new generation of the second level will henceforth be
completely independent of any previous accesses. Each level
overflows once the level above it has been emptied twice.
Any re-ordering must be performed obliviously: once com-
plete, the adversary must be unable to make any correlation
between the old block locations and the new locations. A
sorting network is used to re-order the blocks.

To enforce invariant (i), note also that all buckets must
contain the same number of blocks. For example, if the
bucket scanned at a particular level has no blocks in it, then
the adversary would be able to determine that the desired
block was not at that level. Therefore, each re-order pro-
cess fills all partially empty buckets to the top with fake
blocks. Recall that since every block is encrypted with a se-
mantically secure encryption function, the adversary cannot
distinguish between fake and real blocks.

2.2 Recent Developments
Starting with [18] researchers have sought to improve the

overhead from the polylogarithmic performance of the orig-
inal ORAM. Williams et al. in [19] introduced a faster
ORAM variant which also features correctness guarantees,
with computational complexity costs and storage overheads
of only O(log n log log n) (amortized per-query), under the
assumption of O(

√
n) temporary client memory. In their

work, the assumed client storage is used to speed up the
reshuffle process by taking advantage of the predictable na-
ture of a merge sort on uniform random data.

Recently, a new approach to speed up ORAMwas revealed
by Pinkas et al. [13], showing the applicability of the Cuckoo
hash construction from [12]. Unfortunately, this was shown
to leak access privacy information [3]. A similar, but secure,
approach, allowing efficient item lookup while hiding success
was then developed [3]. This approach has found continued
utility in other solutions [4, 8].

Researchers have long recognized the utility of construc-
tions with efficient worst cases; the first de-amortized con-
struction followed shortly after the introduction of Oblivi-
ous RAM [11]. More recent solutions have also featured de-
amortized constructions [1, 4, 8, 14]. These de-amortized so-
lutions are mostly based on the same core idea as we describe
here: constructing future levels in the background, while still
querying copies of current levels. One exceptional ORAM
[14] is naturally un-amortized (rather than de-amortized),
performing a well-defined ORAM update on every query.
These previous solutions do not apply directly to a Bloom
filter-based ORAM; this de-amortization requires maintain-
ing a delete log to delay level updates until after the corre-
sponding shuffle.

A promising recursive construction technique is introduced
in [16] under the assumption of O(n log n) reliable client
storage. Using this storage, it promises to reduce the level
construction cost while requiring only a constant number
of online round trips. The clear drawback here is the as-
sumed O(n log n) client storage—enough to keep track of
the positions of all items, instead of querying recursively for
them as in the previously described ORAMs. The authors

present the O(n log n) client storage assumption as not nec-
essarily unreasonable, since a large block size means that
the client only needs a fraction of the outsourced storage.
Their alternative construction, requiring only O(

√
n) stor-

age, recursively uses a log n-round-trip ORAM to store this
position map, but now incurs log n round trips per query.

Another notable alternative to the constructions of log(n)
round trips is found in [17]; Ding et al. build an Oblivi-
ous RAM requiring only a constant number of online round
trips. The main idea is to extend Goldreich’s

√
n-solution [2]

to store the recent query cache in client memory. The draw-
back is the significantly higher shuffle cost, since the entire
database must be scanned once the cache is filled (e.g. after
a period of

√
n queries). Moreover, the amortized shuffle

costs in Oblivious RAMs easily dominate the online costs
both in theory and in practice [13]. Boneh et al. examine a
similar construction [1], and formalize the security model.

Another constant-round-trip solution, based on the same
core caching idea as [17] and [1], is introduced in [6], but the
single-level format prevents de-amortization. The constant-
round-trip claim depends on the assumption of M = n1/u

client memory for a constant u. Nevertheless, important
notions regarding optimal use of local memory in performing
efficient oblivious external-memory sorts are introduced.

In addition to providing de-amortization for the construc-
tion in [19], PD-ORAM introduces a general approach to
de-amortization, based on rearranging levels to safely allow
querying during level re-construction. Different constraints
of this base ORAM require new techniques, but the core
idea remains similar to related de-amortization work. This
de-amortization approach applies to any ORAM with a log-
arithmic number of levels. This includes a Bloom filter-
based ORAM [19], the original Goldreich-Ostrovsky loga-
rithmic ORAM [2], and recent cuckoo-hash based solutions
[3], though we remind the reader that prior work [4, 11] has
already de-amortized the latter two solutions.

A multi-client ORAM is introduced in [7]. Because the
client state (aside from the secret key) is stored on the server,
and scanned on every access, clients can take turns perform-
ing accesses. PD-ORAM takes this notion one step further:
not only are the clients “stateless,” but accesses are actually
performed in parallel. That is, clients begin future accesses
while other clients are still processing previous ones.

In this paper, we choose to instantiate our Bloom-filter
based ORAM from [19]. Regarding the choice to use Bloom
filter as an underlying ORAM, we are aware of two solu-
tions with better than the Bloom filter ORAM’s O(log2 n)
complexity: one provided by Stefanov et al [16] and one
provided by Goodrich and Mitzenmacher [3]. Neither solu-
tion, however, can provide detection of misbehavior by an
actively malicious adversary, which we deem to be an impor-
tant property. Moreover, the techniques we introduce still
apply to many existing ORAMs.

2.3 When Reality Hits
PD-ORAM is unique in providing a tangible de-amortized

implementation. De-amortized constructions do not always
lead readily to an actual implementation. Instructions such
as “perform a chunk of work sized x”, or “run the shuffle
in the background while querying”, are fine for establishing
existence proofs, but can be devastatingly inappropriate in
achieving an actual prototype due to large hidden constants.

New techniques that address these hidden complications of
de-amortization are presented in Section 5.3.

A randomized shell sorting network identified by Goodrich
et al. [5] was subsequently employed to construct an Obliv-
ious RAM [3, 13]. This sort procedure was used in the
first design of PD-ORAM, but was found to result in too
many disk seeks to make it usable on a even a medium-sized
database. The randomized nature of the shell short guaran-
tees that the order of item access appears non sequential and
random, making efficient use of rotational hard disks diffi-
cult. The amortized cost of constructing the bottom level
in a terabyte database is in the range of hundreds of disk
seeks per query, already putting the implementation outside
of the targeted performance goals.

To understand this in more detail, consider the construc-
tion of the largest level of a 1 TB database. This level con-
tains at least 0.5 TB of data. For 10 KB blocks, this trans-
lates into 50 million blocks. The randomized shell sort makes
6k log2 n random passes across the database, incurring a to-
tal of 6kn log2 n seeks every n queries, where k influences
the sort failure probability. For n = 5 × 107, log2 n = 23,
translating to 138 × k disk seeks per query for the largest
level alone.

For k = 4 as suggested in the original paper [5], this amor-
tizes to 550+ disk seeks per query. Even for high-speed,
low-latency disks with 6ms seek times, this becomes at least
3.3 seconds/query (in addition to any/all other significant
network and CPU overheads)!
Multiple Disks. Of course this can be mitigated by using
multiple disks at additional cost, in which case, the num-
ber of seeks for each disk is reduced (linearly in the added
cost) as they may occur in parallel. However, increasing
performance linearly in the added cost is not surprising nor
desirable, and an efficient base-case construction should be
found instead.

Unfortunately, ORAM imposes a unique sorting require-
ment that is difficult to satisfy using the randomized shell
sort. This requirement derives from the fact that, to main-
tain privacy, the sort must succeed with overwhelming prob-
ability. Moreover, all sorts must be indistinguishable, elimi-
nating the possibility of retrying in the case of failure. This
is because observation of a sort failure translates into an
advantage at distinguishing the permutation from random,
which translates into a privacy leak.

While in other applications it may suffice to repeat the
sort until it succeeds, when applied to ORAM, the sort pa-
rameter k must be chosen to guarantee success with over-
whelming probability. In [5] the failure rate is determined
experimentally; it is not obvious from the proofs what k is
necessary to obtain a given acceptable error rate on database
sized n. While the paper does prove that the probability of
failure is negligible in k, which is sufficient for a construction
existence proof, it is unclear what parameters can be chosen
for a practical implementation.

It has been observed elsewhere that this sort is signifi-
cantly less efficient than non-oblivious sorts. In particular,
[13] opts to use a standard sort on the client for those lev-
els that fit in memory. PD-ORAM uses the asymptotically
equivalent merge sort, described in [20], that runs faster (re-
quiring log2 n sequential passes instead of 6k log2 n random

passes), but requires k
√
n lnn blocks of local client memory.

Further, recently it was shown [13] that without a careful
choice of Bloom filter parameters, the construction of [19] is

Figure 1: Overview: ORAM Clients access data obliv-

iously through a simple ORAM Instance interface. The

stateless ORAM Instances use an (untrusted) ORAM

Server to store and retrieve the data obliviously.

susceptible to a leak via false positives in the Bloom filter
construction. Avoiding this leak requires a number of hash
functions proportional to the security parameter k. PD-
ORAM uses this construction, choosing k to bound the false
positive rate at 2−64 per lookup.

3. MODEL
An ORAM setup consists of three types of parties: ORAM

Clients, who issue read and write queries, the limited-storage
ORAM Instances, who satisfy these queries for their client
while maintaining privacy, and the ORAM Server, who has
plentiful storage and is willing to help the ORAM Instances,
but is deemed untrustworthy (Figure 1).

The semantics used here correspond to existing ORAMs
(read and write of fixed-size blocks is supported), with the
addition of concurrency and multiple “Instances”. Because
of the introduction of concurrency, it is also important to of-
fer an atomic record-level test-and-set instruction to ORAM
clients. Analogous to the CPU primitive, it updates a record
and returns its old value as a single atomic operation.

ORAM Client: a party who is authorized to issue reads
and writes to the ORAM Interface. Data is accessed in
“blocks”, a term used to denote a fix sized record. “Block” is
used instead of “word” to convey target applications broader
than memory access (including file system and database out-
sourcing). Block IDs are arbitrary bit sequences. There are
multiple clients. Each ORAM client has access to the follow-
ing interface provided by a corresponding ORAM Instance:
read(id): val; write(id, val); test-and-set(id, val): val.

Accesses are serialized in the order the ORAM server re-
ceives them, which guarantees each client sees a serialized
view of its own requests. Among multiple clients, however,
the ordering is not guaranteed to correspond with the time-
ordering of incoming client requests.

ORAM Instance: a trusted party providing an ORAM
interface to ORAM Clients. Instances are stateless but have
access to the ORAM key (a secret shared among instances,
enabling access to the ORAM) and address of the server.

The Instance-to-Server protocol details are implementation-
specific (and typically optimized to the instance to minimize
network traffic and the number of round trips).

ORAM Server: the untrusted party providing the stor-
age backend, filling requests from the instance. The ORAM
Instances communicate only with the server (not with each

other). This corresponds to the idea that it is unreasonable
to require clients to be aware and participate in every access
of each other. Moreover, this reflects the notion that the
adversary may have a complete view of the network.

The server is assumed throughout the bulk of this paper to
be honest but curious; however, Section 5.5 details inexpen-
sive adjustments that ensure “fork consistency” against even
an actively malicious adversary. Defined in [9], fork con-
sistency acknowledges that a malicious server can present
different versions of the database to different clients, e.g.,
by not including updates from some of the other clients, but
guarantees that each “fork” view is self-consistent. More-
over, clients will detect this behavior if they ever communi-
cate with each other, or if the server ever attempts to rejoin
the views. The server is allowed to know which client issues
queries and when queries are issued. Implementations are
assumed to be free of timing vulnerabilities.

Communication between the ORAM Client and ORAM
Instance is assumed secured, e.g., with access controls on
IPC if they are on the same machine, or with SSL otherwise.
Communication between the ORAM Instance and Server is
also secured, e.g., with SSL.
Notation. c = number of parallel clients, i = a level within
a pyramid-based ORAM (for the smallest, “top”level, i = 0),
k = security parameter, n = database size, in blocks, ∼=c is
equivalence modulo c.

4. PARALLEL QUERIES: A FIRST PASS
We now examine how to query existing ORAMs in par-

allel. The idea is to start with an ORAM on which it is
safe to run non-repeating unique queries (targeting different
records in the underlying database) simultaneously, and to
build from this an ORAM which can also safely run colliding
queries (targeting the same underlying data record).

Consider the ORAM in [2]. We can augment it to handle
parallelism for sets of unique queries as follows.

• First, consider that as a client query searches across
the database for a particular item, its accesses are by
design indistinguishable from random.

• Second, by ORAM construction, different unique queries
touch independent sets of database locations (because
their coin-flips are independent).

• Now consider a set of multiple queries. Any of its re-
orderings results in accessing the same locations (pro-
vided each query gets the same coin flips), albeit in a
different order.

• Thus, intuitively, it is safe for clients to submit unique
queries simultaneously: the server sees an identical
transcript independent of the queries.

The above privacy intuition only holds for non-repeating
unique sets of queries, of course. Clients simultaneously
querying the same item reveal this to the server, as their
accessed locations are substantially similar. This raises the
interesting question of how to guarantee query uniqueness
over arbitrary incoming client query patterns, without re-
vealing any inter-query collisions to the server.

Since the model requires the ORAM Instances to commu-
nicate only via the ORAM Server (capturing an adversary
with a complete view of the network), one idea is to have
Instances synchronize with each other via a server-hosted

data structure, in a way that prevents overlapping equiv-
alent queries while still guaranteeing indistinguishability of
all query patterns.
Strawman. The simplest approach to ensuring uniqueness
is for each new client to examine ongoing queries. Finding
an intersection, the client can then wait for ongoing queries
to complete before trying again. This is fundamentally inse-
cure, however, since the server learns when a query is being
repeated by a later client, since the later client waits for
the previous client. Further, correcting this by making all
clients wait for all previous queries to complete before initi-
ating their own query defeats the goal of parallelism.
Alphaman. To fix these issues, the server will help clients
maintain an encrypted query log. Scanning this query log
allows an Instance to identify simultaneously ongoing re-
quests. In the case of overlap, a random unique query is
executed instead. Once its query (real or random) is com-
pleted, the Instance reports its result back to the shared
cache/result log. It then searches in the log for the result of
the simultaneously ongoing overlapping query it had identi-
fied (if any). This guarantees that in either case the Instance
gets to learn the result it seeks. We detail this below.

5. ABSTRACTIONS AND SOLUTIONS
We now outline the properties required of the underlying

ORAMs to allow parallelism and de-amortization, and then
provide constructions.

5.1 Parallelism Abstraction: “Period-based”
The main idea is to run queries simultaneously between

reshuffles. We are limited by the size of the top level: this
is the number of appends that can be performed before a
shuffle is required. Thus, we designate the maximum paral-
lelism and the size of the top level as c. Subsequent levels
will be sized c2i for this reason.

Definition 1. A period-based stateless ORAM In-

stance is an ORAM that performs a series of c queries be-
tween each shuffle. The transcripts of unique queries within
a period are independent of their order. Previously executed
queries are scanned from a server-stored cache sized c, trig-
gering a fake lookup instead.

Insight. The goal of this abstraction is to capture the
fact that the underlying ORAM already supports up to c
simultaneous unique queries. Specifically, the ORAM runs
in periods of queries over which the transcripts of unique
queries are independent (e.g., the original ORAM [2] satis-
fies this). For a given period between reshuffling (which lasts
several queries, until the top level overflows), and choos-
ing the random number generator coin flips for two unique
queries ahead of time, the transcript for each query is the
same regardless of the order they are run. The transcripts
of two identical queries, however, are inter-dependent, since
the first-to-execute query necessarily searches farther down
in the database than the second query, as the item is moved
up to the top level once the first query completes. The
second-to-execute query finds the item immediately at the
top, and thus the remainder of the search is random.

5.2 Parallelism Construction
The motivation behind this construction is to minimize

waiting, while guaranteeing serializability. The basic as-

Return ID and ID Log

Return Results Log

through ID-1

ORAM

Instance:

Query procedure

ID-2 x1 read

ID-1 x2 write

ID j read

x1 contents

Remote ID Log

(later)

Remote

Results Log

(later)

ID-2 x1 read

ID-1 x2 write

ID j read

x1 contents

j contents

Remote ID Log Remote

Results Log

Append j contents

Append j, read

If j is already in

the ID Log prior

to ID, run a fake

query instead.

Scan for

result of j, in

case it was

obtained by an

earlier client.
encrypted values

Values we write

queryORAM():

obtain result

from ORAM

ORAM Server

ORAM Client

contents of block j

ORAM Client

^�����j_

Wait for results

of queries

through ID-1.

1

3

4

2

5

6

7

8

Figure 2: Parallel query protocol

sumption about the underlying ORAM is that its data struc-
ture supports simultaneous querying for unique blocks. Then,
the ultimate purpose of this protocol is to make sure all the
simultaneous queries request different items. The challenge
is to juggle this uniqueness requirement (in the presence of
colliding queries from different clients) with the requirement
that the server not learn any inter-query correlation.

One solution is to obliviously guarantee uniqueness of
queries using an append log in combination with a results
log. Clients will still need to wait for previous queries to
complete before outputting a result, but now there is no
requirement of blocking on other clients during query exe-
cution. This increases throughput significantly (Figure 2):

1. The Client issues a query to its ORAM Instance.

2. The ORAM Instance generates the request, consisting
of the block ID, and a bit indicating whether this is
a read or a write/insert. Test-and-set operations are
identified as writes.

3. The request is encrypted and sent to the server.

4. The server appends this to the encrypted query log
(analogous to the top level), and returns a sequential
query ID, together with the query log, containing all
queries since the top level was last emptied.

5. The ORAM Instance interactively queries the under-
lying ORAM. If the query was already in the query log
(i.e., from another running client), the instance runs a
dummy query instead.

6. The ORAM Instance sends its result, encrypted, back
to the server, which appends it to the query result log.

7. The ORAM Instance reads the results log up to its
own entry (only interested in previous clients’ results),
in case the current query is accessing a block that was
previously read or written. This is the only step that
requires waiting for the earlier queries to complete.

8. The ORAM Instance returns to the ORAM Client the
result (obtained from the database, or the result log).

ORAM Instances wait for the entire result log prior to that
query’s registered location to complete before returning to
the Client. However, in many cases the result will already be
obtained. If it is assumed that the adversary cannot observe
at what point the ORAM Instance returns to the client, then
it is safe for the ORAM Instance to return its value sooner.

Server network traffic over a period of c parallel client
queries is quadratic in c, since each Instance needs to be
aware of what each simultaneous Client is doing1. The num-
ber of parallel clients that optimizes total throughput is thus
a function of network bandwidth, latency, and database size.

On the one hand, for c clients, and a database of n blocks,
the sequence of log2(n) + 3 round trips per query imposes a
network-latency based maximum query throughput of

c

((log2 n) + 3) × latency

On the other hand, the cost of supporting multiple clients
(quadratic in c over c queries; linear in c per query), and the
online data transfer cost of log2 n blocks, impose a server
bandwidth based maximum throughput:

bandwidth

((c− 1)/2 + log2 n) × blocksize

 0

 10

 20

 30

 40

 50

 60

 10 20 30 40 50 60

Q
ue

rie
s/

se
c

number of parallel clients

online throughput limits vs latency and # clients; 100GB database; 100Mbps bandwidth

0ms
10ms
25ms
50ms
75ms

Figure 3: Upper bound on online query rate of a 100GB

database (blocksize = 104 and n = 107) and assuming a

100Mbit (12.5 MB/sec) network link. The plot is shown

for various network round trip times, from 0 ms through

75 ms. Single clients, incurring log2 n round trips per

query, are tightly bound by the round trip time. Adding

more parallel clients increases this throughput linearly,

up to the point where bandwidth limits from the query

log traffic take over.

To find the optimal number of clients c for a given config-
uration the lower of these upper bounds needs to be maxi-
mized. This relationship is plotted in Figure 3 for a repre-
sentative setting.

1To disseminate this information in a more network-efficient
manner, e.g., by only requesting the log entry the client
is interested in (instead of the entire log) a PIR protocol
may be deployed. This results in a tradeoff between server
bandwidth and server CPU time. This tradeoff is mostly
unfavorable [15], yet recent results [10] indicate that it may
become feasible in the near future.

After c queries execute, the query log is converted into the
ORAM top level. Queries are thus applied to the database,
in the ORAM-sense (Figure 4). This is where the require-
ment of a “period-based” Instance is necessary.

q x1 read x1 Contents

q+1 x2 write x2 Contents

q+2 x3 read x3 Contents

q+c x4 read x4 Contents

Remote ID Log Remote Results Log

Shuffler

For each block, take

the last write or first read

Top Level

unique blocks and fakes

Figure 4: Reconciliation of the query log into the new

top level. After a period of c queries, the query log is

shuffled and becomes the top level. Regarding the query

log hosted set of ids, consider that a block can only be

read once from the ORAM during this period. Thus, the

correct value for a given block is either the last write of

this period, if there is one, or otherwise the first read.

In the process, the shuffler consolidates the query log.
A single block may be accessed multiple times by differ-
ent queries, but is placed only once back into the database.
The value chosen for a given block is the last write, if there
is one, or otherwise the first read. Recall that subsequent
reads are associated with fake results.
Properties. It is time to informally define two properties:
optimality and query privacy.

Theorem 1. In any model in which the server can as-
sociate all visible read/write data accesses corresponding to
a given query, hiding access patterns in a “non-simultaneous
ORAM”requires waiting for the results of all previous queries
(“wait-optimality”).

Proof. Take any“non-simultaneous”ORAM that requires
serial execution of queries for the same underlying block. In
such an ORAM, repeating the query before the previous
query has completed would result in overlap between visi-
ble data accesses, and would allow an adversary to correlate
these queries.

Thus, instead of attempting to repeat a previous query,
clients must obtain the result from it once that query has
finished executing.

To make all query sequences indistinguishable to the server,
even in a parallel ORAM, clients still need to wait for the
prior queries, as if their query depended on each of the pre-
vious queries (lest they reveal which query they are waiting
for, if any).

Theorem 2 shows that running parallel queries in this
model is safe. The intuition is as follows. In the parallel
case, client behavior from the perspective of the server is
identical for each new query instance regardless of whether
and how often the same equivalent query appears earlier in
the log. For every query, the server only sees a semantically
secure encrypted append operation to the query log, a query
to the underlying ORAM, and a scan of the results log up
to that point.

The only difference now is that transcripts of the different
queries are interleaved, but otherwise contain the same ac-
cesses as when executed in a traditional ORAM. This is so
because in the parallel case, if a client queries for a block that
is already queried for by a simultaneously ongoing query, the
client’s ORAM Instance will instead issue a fake query—
which is what it would have done anyway in the traditional
ORAM had it found the query result at the top level. Thus,
from the server’s point of view, the transcripts contain the
same (random looking) accesses.

Further, query transcripts are independent of their query
and, without knowledge of the secret ORAM key, indistin-
guishable from random, as required by Definition 18 of tra-
ditional ORAM [2]. Then, an advantage at distinguishing
the new transcripts translates into an equivalent advantage
at distinguishing the underlying ORAMs if parallelism were
not enabled.

Theorem 2. Existence of an adversary with non-negligible
advantage at violating query privacy (as in Definition 18 [2])
in a parallel ORAM implies existence of an adversary with
non-negligible advantage at violating the privacy of the un-
derlying single-client ORAM (“query privacy inheritance”).

Proof. Take an adversary A with advantage ǫ at corre-
lating queries in a parallel ORAM based on an underlying
ORAM O. We now construct an adversary B with equiva-
lent advantage at correlating queries in O.

B simulates adversary A on every query. Since the in-
terleaving information is publicly known, it includes this in-
formation in the transcripts it uses to simulate A. It ap-
pends random information to the query log contents for A.
These query log contents give A no additional non-negligible
advantage; otherwise a distinguisher could be built distin-
guishing the semantically secure encryption function output
from random.

B then outputs the guesses and requests provided by A,
and obtains the same advantage as A.

5.3 De-amortization abstraction / construction

Definition 2. A level-based amortized ORAM In-

stance is an ORAM that searches levels recursively, append-
ing the result back to the first level. Privacy results from the
property than an item is sought at a particular level no more
than once between two consecutive shuffles of that level.

De-amortization techniques need to deal efficiently with
the level constructions resulting from overflow of the top
levels. Their goal is to arrange the levels such that they can
be queried while the items are simultaneously being inserted
and re-shuffled into new levels. That is, instead of suspend-
ing querying to wait for shuffling to proceed, a new level
must be available as soon as it is needed.

The main idea is to provide pre-emptive shuffling. Rather
than waiting for querying to complete before shuffling a
level, its transformation into a new level begins as soon as a
level is constructed, and right as its querying begins.

To allow this, we duplicate a level into two copies: a read-
only variant that is used in the querying process, and a
writable variant which is dynamically updated into the new
generation of this level. The read-only copy is discarded at
the end of the period.

Level De-amortization. Consider the de-amortization
of a single level. In a traditional ORAM, a level is recon-
structed by combining into it the above level that has filled
up and now overflows (Section 2.1). This necessarily stops
the query process for its duration.

To de-amortize this, when beginning its construction, in-
stead of pausing queries and waiting for the construction
to finish, querying can continue via the read-only level copy
while a new generation is produced into the writable variant.
Critically, during this process, existing levels can overflow
into a fresh, empty, replacement for this level. (Figure 5).

New copy of

bottom level,

undergoing shuffle

Resulting

database

Read-only

New empty level

Delete log

Original

database

Intermediate

database

Figure 5: Background construction of a single level. The

top section represents the initial database state; the mid-

dle section shows the database state during the process

of constructing the new bottom level; the bottom sec-

tion shows the resulting database state. In this scenario,

the third level is full, so it needs to be combined with

the fourth level. Read-only copies of those two levels

are made, and can be queried while the combination is

occurring. Simultaneously, overflows from the top level

are placed into the a replacement third level. All five

levels are accessed during queries at this time. Once the

construction of the bottom level is complete, querying

resumes with this new bottom level replacing the two

read-only levels (which contain the same items).

Delete Log. The second change is to delay level updates
until the end of the shuffle. Some ORAMs avoid the com-
plexity of reconciling multiple versions of an item (and in the
process, reduce storage overheads) by deleting blocks from
the levels where they are found. In the de-amortized con-
struction, this is not possible, since the queried level copies
are now read-only. Instead, these changes are appended
to an update log. Items marked for deletion in this log
are now deleted by the server before the next shuffle of the
level. Not all ORAMs modify the pyramid structure during
queries; some [2] do not need such modification. This de-
amortization protocol requires that those changes that are
made can be applied after the level has been reconstructed.
Details. A level at height i, containing m = c2i items, is
queried m times. At the end of the mth query, the shuffle

will have completed, and the remaining items from this level
are now in a new level.

Each level is a data set, completely specified by its height
i, the sequentially increasing “generation” j at that height,
and a one-bit marker for the odd generations. The two levels
at an even generation j, denoted by i.j and i.j.∗, are com-
bined to produce a level at the next height i+1, generation
j/2. Those levels at a height i with an odd generation j are
reshuffled to produce level i.j + 1.∗.

The levels currently reshuffled are the ones queried – at
any one time there are either one or two active levels (queried
and being shuffled) at each given height, for i ≤ log2 n.

The above construction allows de-amortization of the con-
struction of all the levels except the top level. De-amortization
of the top level appears to be possible using a rotating query
log, but is left as future work (since its impact is minimal as
the top level is very small).

If based on an underlying stateless period-based amortized
ORAM, the result is a stateless period-based de-amortized
ORAM, suitable for parallelization.

Theorem 3. A polynomially bounded adversary has no
non-negligible advantage at guessing the access pattern based
on observing the transcripts of a de-amortized ORAM.

Proof. For simplicity, the proof is given for BF ORAMs
(Section 5.4) but property should hold for any secure under-
lying level-based ORAM. The output of the underlying BF
ORAM level construction process is shown in previous work
to be a randomly ordered set of stores (ID,value pairs). Both
the ID and value are opaque; that is, the server cannot dis-
tinguish them from random. The only other time the server
sees this opaque ID is when the ID is retrieved later on. The
same opaque ID is never retrieved twice. BF locations are
also accessed in a manner uncorrelable to the access pattern,
as the locations corresponding to any ID are chosen with a
pseudo-random number generator.

Theorem 4. If the underlying level-based ORAM destroys
inter-item correlations on shuffle, then existence of an ad-
versary with non-negligible advantage at violating query pri-
vacy in a de-amortized ORAM implies existence of an adver-
sary with non-negligible advantage at violating the privacy of
this underlying level-based ORAM (“privacy inheritance”).

Proof. A de-amortized ORAM operates equivalently to
the underlying ORAM, with two differences. First, the level
access structure is different—there are up to twice as many
levels—but the privacy-preserving property that no item is
requested twice under the same (opaque) identifier is the
same. Second, items are not deleted until after the shuffle
(instead of before), but this provides no additional informa-
tion as long as the level construction process is also opaque.

This is the only new information given to the adversary.
Privacy is shown by reducing to a property of ideal permuta-
tions: uncovering a portion of a permutation does not reveal
anything about the remaining portion. Since the underlying
level-based ORAM selects the level permutation according
to an ideal secret permutation, this follows trivially: all ar-
rangements of the elements in the “still secret” portion are
equally likely. It constitutes a secret permutation in itself.

This results in an ordering and labeling indistinguishable
from random.

Storage overhead. Since the client storage required to
shuffle level i is less than or equal to the space required to

shuffle the next larger level, i + 1, de-amortization requires
an extra factor of client storage upper-bound by log2 n (since
all log2 n levels are being shuffled at once).

Communication overhead. This construction requires
querying up to twice as many levels simultaneously. How-
ever, since it is known in advance that the item won’t show
up in both levels, this querying can be done in the same
number of round trips.

Shuffling overhead. The amount of work performed
per query is roughly similar. Additional overhead may stem
from shuffling being done before level items are removed.
But since only half of the items would be removed anyway,
for ORAMs where the level i construction cost is sm log2 m
for constant s and m = 2i, this keeps the new overhead for

shuffling within a factor of s(2m log
2
2m)

s(m log
2
m)

= 2 + 1
log

2
m

< 3.

5.4 BF ORAM with logarithmic memory
We now detail the final piece of the construction: the un-

derlying base ORAM mechanism. For illustration we take
our ORAM [19] that separated each ORAM pyramid level
into two data structures: a hash table of items, indexed by
unique random IDs, and an encrypted BF to check whether
an item is stored at a given level. Querying this ORAM pro-
ceeds analogously to the standard pyramidal ORAMmodel—
starting at the top, searching downward until the item is
found, querying randomly from then forward. However, in-
stead of scanning a bucket sized O(log n) at each level, the
encrypted BF is checked, requiring only a single item re-
trieval from each level.

At reshuffle time, in [19], BFs for each level were built
securely by the client using a somewhat complex procedure
based on an oblivious scramble of a list representation of
positions to set, followed by bucket sort. This allowed costs
under O(log2 n), requiring k

√
n lnn client storage.

We now introduce a technique resulting in an O(log2 n)
BF-based ORAM and requiring only logarithmic client stor-
age. Instead of using the “bucket sort” method that builds√
n-sized chunks of the encrypted BF, we construct, then

sort, a server-stored list of the BF segments and indexes:
First, in a single pass over the encrypted items of the

level undergoing construction:

• build an encrypted, server-stored, list of the positions
that need to be set in the encrypted BF

• divide the BF into segments of size O(log n)

• append one encrypted segment identifier for each pos-
sible segment to this list, padded so the server cannot
distinguish segment identifiers from BF positions.

Second, obliviously sort this entire list [5, 19], with seg-
ments distributed among the positions, directly following
the positions they belong in.

Third, in a single pass over this sorted list:

• output one BF segment for every list element: for each
segment identifier, output an encrypted segment, with
the appropriate positions set. Recall that these posi-
tions immediately preceded this segment identifier in
the sorted list.

• for each position encountered in this list, output a
dummy empty segment.

Fourth, obliviously sort the resulting list by segment iden-
tifier, with the dummy segments at the end.

Fifth, truncate off the dummy segments from this list.
The result is the encrypted BF.

The advantage of this approach over [19] is that using
a logarithmic-space O(m logm) oblivious sort [5] provides
a logarithmic-space construction still running in O(log2 n)
time. As discussed, employing this as a de-amortized ORAM
brings the client storage requirement to O(log2 n).

This construction process is secure, provided (a) the obliv-
ious sort is private, (b) the server cannot distinguish an en-
crypted dummy segment from an encrypted BF segment,
and (c) the server cannot distinguish an encrypted segment
identifier from an encrypted BF position. If these three con-
ditions are satisfied, then every run of this process over a set
of m items appears identical to the server, regardless of the
positions in the BF being set.

The PD-ORAM implementation assumes k
√
n lnn client

storage to employ the Oblivious Merge Sort instead of the
disk-seek intensive less efficient randomized shell sort. Nev-
ertheless, this simpler BF construction process is employed
instead of the k

√
n lnn variant.

5.5 Security against malicious adversaries
Ensuring security against a malicious adversary first re-

quires an underlying ORAM providing these guarantees.
Fortunately, the BF-based ORAM of [19] provides such a
mechanism. Second, maintaining security in a parallel set-
ting requires clients to test that they all see a consistent
view. This is achieved using a hash tree over the set of all
previous queries. Whenever a client performs the top level
shuffle, it is responsible for updating this hash tree and at-
taching the root value with a MAC to the new query log.
This entails hashing the current query log, appending it as a
new leaf node to the hash tree, and recomputing hash values
along the path from this new node to the top.

Second, whenever a client performs a query, it performs
one additional operation: it verifies that the last query it
performed is included in the hash tree, whose root corre-
sponds to the value attached to this query log. This is done
by verifying all nodes in the hash tree adjacent to the path
from the root to its last request.

These operations will not detect a forking / split universe
attack, unless out-of-band communication is available, or
clients perform periodic accesses to ensure they are still op-
erating in the same view as other clients. However, this
solution has the property that once the server forks the uni-
verse into multiple views, it cannot rejoin the views without
being detected by the clients (by hash value disagreement).

The PD-ORAM implementation analyzed in the following
sections, however, assumes an honest but curious adversary.

6. EXPERIMENTS AND ANALYSIS
Amortized Measurements. A significant challenge in
measuring the performance of any amortized system is en-
suring the trial captures the average performance, not just
peak performance. This is complicated by the requirement
of running trials for periods that are too short to encompass
the full period over which the amortization is performed. For
example, at even several queries per second, the reconstruc-
tion of the lowest level of a terabyte database is amortized
over a period on the order of weeks or longer.

De-amortizing the level construction provides the oppor-
tunity of improving measurement accuracy. The challenge
remains, however, of ensuring the de-amortized background

shuffle proceeds proportionally to the query rate: the de-
amortization is perfect when the new level construction is
completed at the instant it is needed by a query. Inaccu-
racies in this rate synchronization will affect the measured
results, since measured query throughput of a short period
might be higher or lower than the sustainable rate.

To avoid this effect, PD-ORAM maintains progress me-
ters for level construction, allowing queries to proceed when
every level is proportionally constructed. The level construc-
tions processes are also suspended when a level gets too far
ahead of the current query. This keeps querying and level
construction smooth, minimizing worst case latency.
Proper de-amortization: Theory vs. Reality. Per-
forming proper de-amortization proved a non-trivial systems
challenge. Research solutions, such as [4], and PD-ORAM
(Section 5.3) express de-amortization in terms such as “per-
form the proportional amount of work required”, or “per-
form the next O(f(x)) accesses.” While these terms suffice
for proving existence of a de-amortized construction, pro-
gramming models do not typically provide this type of ab-
stract control. PD-ORAM achieves this control by metering
progress over the construction of individual levels. Since the
level construction involves different types of computation
across the client and server, accurate progress metering re-
quired splitting level construction into tasks whose progress
can be reported over time. Moreover, this metering uses ex-
perimentally determined values to identify what portion of
the level construction corresponds to which subtasks.

As an aside, suspending the level construction when it out-
paces the queries proved critical on the larger database sizes.
The sheer number of requests being sent from the ORAM
Instance to the ORAM Server for construction tended to
starve the requests of actual queries (much fewer in num-
ber), causing the query rate to drop quickly as more levels
were introduced. This behavior was corrected by forcing
level construction to remain proportional to query progress:
this keeps the individual query rates much closer to average.

Since it is impractical to repeatedly running trials over the
entire (up to 1TB) measured epoch, the database for these
trials is first constructed non-obliviously on the server via a
specially designed module. The items are inserted randomly
so that the final result mirrors an oblivious construction (as
would occur from a sequence of write queries).

6.1 Setup
PD-ORAM is written in Java. Clients run on quad-core

3.16GHz Xeon X5460 machines. The server runs on a single
Quad-Core Intel i7-2600K Sandy Bridge 3.4GHz CPU, with
16GB DDR3 1600 SD-RAM and 7x2TB HITACHI Deskstar
7200RPM SATA 3.0Gb/s disks (RAID0 / LVM).

All the machines share a gigabit switch. Network latency
is shaped by forcing server threads to sleep for the desired
round trip duration upon receiving a request. This allows
simulation of link latency without capping link bandwidth.

The implementation uses a BF with 8 hash functions, and
2400 bits of space per item which allows an efficient con-
struction within the false positive rate of 2−64 per lookup.
The resulting BF constitutes roughly 25% of the total size
of the database records.

Optimization. Rather than optimizing the BF size re-
quired to obtain this error rate by using a larger number
of hashes, as suggested in [13], PD-ORAM uses larger BFs

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1e+08 1e+09 1e+10 1e+11 1e+12 1e+13

Q
ue

ry
 th

ro
ug

hp
ut

, a
ll

cl
ie

nt
s

(q
ue

rie
s/

se
c)

Database size (bytes).

Overall query throughput vs. database size
and num clients, 50ms network latency

10 clients
5 clients
2 clients
1 client

Figure 6: Query throughput vs.

data size for varying number of

clients x-axis is log scale. Each point

is sampled over 3000 queries.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 10 20 30 40 50 60 70 80

Q
ue

ry
 th

ro
ug

hp
ut

, a
ll

cl
ie

nt
s

(q
ue

rie
s/

se
c)

Round trip latency (ms)

Overall query throughput vs. net latency
and num clients, 1.3e+10-byte database

10 clients
5 clients
2 clients
1 client

Figure 7: Query throughput vs.

network latency for varying number

of clients. Each point is sampled

over approx. 3000 queries.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 200 400 600 800 1000

Q
ue

ry
 la

te
nc

y,
 m

s

Query number

Query latency vs. time on
1.3e+10-byte database, 50 ms latency

instantaneous
running average

Figure 8: Individual query la-

tencies + running averages of a

single client. With perfect de-

amortization, all queries would re-

quire the same amount of time.

with fewer hashes, to minimize item lookup disk seeks while
obtaining the same error rate.

6.2 Experiments
One main goal of the experiments is to understand the

interaction between network performance parameters and
the parallel nature of PD-ORAM.

Size + clients vs. query throughput. Figure 6 plots
the effect of database size and client parallelization on overall
query throughput. Fresh databases were used for all trials to
prevent dependency of the measurements on the order of the
trials, except for the 1TB trials, where this proved imprac-
tical. Even though individual query latency increases with
higher resource contention, the benefit of parallelization are
obvious: significantly higher overall throughputs.

Clients + network latency vs. performance. Fig-
ure 7 plots the effect of parallel clients and network latency
on overall query throughput for a fixed database size. The
premise of this measurement is that parallelization becomes
more important as network latency increases.

De-amortization optimality. Figure 8 plots the ob-
served latency of individual queries vs. time on a growing
database. With perfect de-amortization, all queries would
require the same amount of time. Most queries take around
1200ms; a fixed lower limit is imposed by the network la-
tency. The bands at 2600ms and 3100ms reflect the con-
struction of the top level, which is not de-amortized.

Progress metering. To validate the accuracy of the
progress metering, Figure 9 shows the reported construction
progress of a single level as sampled every 5 seconds. Strict
de-amortization and querying is disabled to avoid cool-down
periods when construction has progressed farther than is
needed, and to ensure measurement of its progress only.

6.3 Impact of disk latency
The experiments were repeated (for database sizes up to

300GB) in a different setup, in which the server was run on
dual 3.16Ghz Xeon X5460 quad-core CPUs and six 0.4 TB
15K RPM SCSI (hardware RAID0) disks.

This configuration surprisingly outperformed the setup
above by a factor of 2x in most trials. The primary ad-
vantage is the superior seek time on the server disks, so the
markedly different results suggest that server disk seek costs
play an important role in overall performance. This was
somewhat surprising, since the level construction mecha-

nisms were designed specifically to minimize disk seeks (with
the hash table insertion being the only random-access op-
eration during level construction, requiring an average of 2
random writes per insert). The rest of the level construction
simply requires reading from one or two sequential buffers,
and writing out sequentially to one or two.

The culprit is most likely the de-amortization process,
which constructs different levels in parallel, and in effect
randomizes disk access patterns. While individual level con-
struction is mostly limited by sequential disk throughput,
running many of these processes in parallel across the same
file system results in disk seeks even in the sequential access
regions, resulting in a much lower overall disk throughput.
SSDs. Several software and hardware solutions present
themselves. Better data placement would split data in a
more efficient manner across the available disks (instead of
using a RAID configuration), to allow the sequential nature
of each level construction process to transfer to sequential
disk access. Obtaining optimal throughput in this manner
would require a relatively large number of disks. Further,
the use of more expensive (but quickly dropping in cost)
low-latency solid state disks (SSDs) would be a simple hard-
ware solution to eliminate this performance bottleneck. It
remains to be seen however, whether the sustained random
write performance degradation plaguing current SSDs does
not constitute a bigger bottleneck in itself, as preliminary
throughput experiments on several recent 128GB Samsung
SSDs with 2011 firmware updates seem to suggest.

7. AN OBLIVIOUS FILE SYSTEM
ORAM lends itself naturally to the creation of a block de-

vice. Due to existing results’ impractical performance over-
head this has not been previously possible. A Linux-based
deployment of PD-ORAM is used here to design and build
privatefs, a fully-functional oblivious network file system in
which files can be accessed on a remote server with compu-
tational access privacy and data confidentiality.

An initial implementation was built on top of the Linux
Network Block Device (NBD) driver, which is the simplest
and most natural approach, since PD-ORAM already pro-
vides a block interface. However, NBD supports only serial,
synchronous requests. To take advantage of the parallel na-
ture of PD-ORAM, privatefs is instead built on FUSE.

A second attempt used ext2fuse, a FUSE-based ext2 im-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450

S
hu

ffl
e

pr
og

re
ss

Time (sec)

shuffle progress metered vs. time

Reported
Enforced minimum

Actual

Figure 9: Level shuffle progress

over time: The linear nature of

the plot indicates the extrapola-

tion based on partial shuffling is

well done.

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60 70 80

T
hr

ou
gh

pu
t (

K
B

/s
)

Number of ORAM clients

privatefs throughput vs. parallelism

0 latency, read
0 latency, write

40 latency, read
40 latency, write
80 latency, read
80 latency, write

160 latency, read
160 latency, write

Figure 10: r/w performance vs. the

number of ORAM Clients, for vari-

ous network latencies. The zero la-

tency environment is mostly unaf-

fected by the degree of parallelism.

For higher latencies, throughput

grows with the number of parallel

clients that offset the latency.

 15

 20

 25

 30

 35

 40

 45

 50

 0 50 100 150 200 250 300

W
rit

e
sp

ee
d

(K
B

/s
)

Written data (MB)

Write performance vs. amount of FS written data

write speed, 0 latency, 10 clients

Figure 11: IOzone write perfor-

mance vs. increasing file system

written data. Write throughput is

slowly decreasing, as expected due

to the inherent slowdown in the (in-

creasingly larger) ORAM.

plementation , by rerouting block access through PD-ORAM.
However, thread safety difficulties prevented us from mod-
ifying it to support parallel writes or reads. Additionally,
because of its nature as a block device file system, ext2fuse
requires mechanisms for allocating blocks for files, such as
block groups, free block bitmaps and indirect file block point-
ers inside inodes. These mechanisms are not all thread-safe
and pose a challenge to synchronize. Moreover, locking the
code using synchronization primitives would not result in a
sufficient degree of parallelization.

Instead, we implemented our own privatefs using the C++
FUSE libraries. It fully leverages PD-ORAM parallelism
and also takes advantage of the non-contiguous block label-
ing in a way that block-device file systems cannot.

Following the Linux file system model, in privatefs files are
represented by inodes. Directories are inodes containing a
list of directory entries; each directory entry is the name of a
file or subdirectory along with its inode number. Inodes are
numbered using 256-bit values and are mapped directly to
ORAM blocks, such that inode x is stored in ORAM block
x. Inodes hold metadata such as type, size and permissions.
Both privatefs and (this instance of) PD-ORAM use 256-bit
block identifiers and 4096-byte blocks.

Because the ORAM provides random access to 256-bit
addressable blocks, a block can be allocated simply by gen-
erating a random 256-bit number. We take advantage of this
in two ways. First, to read or write the ith block of file with
inode number x, the pair (x, i) is hashed with the collision-
resistant SHA256 hash, yielding the 256-bit ORAM block
ID for that file block. Second, when a new file is created, a
256-bit inode number is randomly generated, as opposed to
maintaining and synchronizing access to an inode counter.

Our design eliminates the complexity of contiguous block
device file systems and minimizes the need for locking when
writing or reading files. As opposed to ext2fuse, privatefs
does not incur the overhead of maintaining free block or in-
ode bitmaps, grouping blocks into block groups, or travers-
ing indirect block pointers to read files. The potential draw-
back is that sequential blocks of a given file will not be stored
contiguously in the file system. However, this is harmless
when using an ORAM, since there is no notion of sequential
block numbers (which would compromise access privacy).

privatefs employs exclusive locks when reading and writ-
ing directories. In addition, an LRU cache is implemented to
quickly retrieve an inode’s data given its inode number and

also for file path to inode number translation, which helps
avoid long directory traversals (and associated locking). pri-
vatefs communicates with the ORAM server by means of a
proxy (written in Java), which receives block requests from
the file system and satisfies them using parallel connections
to the ORAM server. This design choice affords us a higher
degree of modularity, enabling us to connect privatefs to
other ORAM schemes in the future.

We benchmarked privatefs along with our previous file sys-
tem attempts, using a parallel workload writing ten, 512KB
files simultaneously to the file system, then checking their in-
tegrity (also done simultaneously) using the sha256sum util-
ity. For the single-client NBD implementation, throughputs
ranged between 10.45KB/s and 14.80KB/s. For ext2fuse,
throughputs ranged between 7.11KB/s and 9.62KB/s. In
contrast, the performance results for the full implementation
of privatefs discussed below indicate a major improvement
of an order of magnitude.

Our benchmarks (Figure 10) indicate that privatefs is ben-
efiting from the high degree of parallelism in high-latency
environments. We ran five trials for each point, varying the
number of ORAM clients used by the proxy to satisfy file
system block requests and performance increased propor-
tionally with the degree of parallelism. The average over
the five trials is plotted.

Reads are less expensive than writes in the 40ms and
160ms trials, because the individual writes are performed
synchronously, while the reads can be parallel, resulting in a
higher overall degree of parallelism. On the other hand, the
low latency in the 0ms trial prevents this parallelism from
having an impact. The reads are, in turn, more expensive,
due to inefficiencies in the de-amortization method resulting
in slightly slower queries at later points in the process.

We also analyzed the behavior of increasing file system size
(Figure 11) and used the widely used IOzone benchmark to
test the write throughput as we wrote more data. Starting
with an empty file-system we repeatedly ran a parallel write
throughput test using IOzone which writes ten 1MB files
and then rewrites them.

We compared privatefs to NFSv3 and ext4 using the IO-
zone workload. The privatefs tests wrote ten, 1MB files
concurrently, while the NFS and ext4 tests wrote ten 1GB
files concurrently. We decided to use larger file sizes when
performing the tests for NFS and ext4 in order to min-
imize the impact of caching. The expected significantly

higher throughputs hovered around 57MB/s for NFSv3 and
138MB/s for ext4.

Thus, in this simple setup, privatefs features a modest
throughput when compared to unsecured file systems. This
is the inherent cost of achieving privacy. However, a few
notes are in order to outline how performance can be scaled
with increasing resources thrown at the problem.
SSDs. Deploying (multiple, Sections 2.3, 6.3) zero-latency
media server-side would significantly impact performance.
This is straightforward and relatively uninteresting research-
wise. For example, deploying SSDs would shift bottlenecks
and immediately increase throughput by an order of magni-
tude or more.
Block Sizes. privatefs has been benchmarked with 4KB
blocks. One can straightforwardly increase their size by con-
sidering larger blocks and obtain an (artifically inflated)
“higher throughput” up to the maximum available band-
width. E.g., going from 4KB to 64KB blocks could in-
crease “throughput” by another order of magnitude or more
at the expense of wasted bandwidth. Similarly, we felt this
is not interesting research-wise and should be decided on an
application-specific basis.
Compute Power. Finally, to eliminate bottlenecks, large
amounts of server-side resources can be thrown at the prob-
lem to speed up things even further. We posit that this is
also not interesting – what ultimately counts is the usable
bang for the buck achieved, i.e., in this case the through-
put (at some fixed block-size) achieved per compute cycle
spent server-side. Otherwise, results become meaningless –
e.g., if instead of the test setup above we were to deploy a
large number of compute cores, performance would increase
almost linearly up to network saturation. With careful fine-
tuning throughputs of hundreds of Mbps can be achieved
without any changes in the base protocol. However, from a
security point of view or research-wise in general this is not
interesting but should be pursued in industrial R&D.

8. CONCLUSION
This paper includes mechanisms for secure parallel query-

ing of existing ORAMs to increase throughput, a general-
ization of ORAM de-amortization, and implementation of
an efficient ORAM based on these techniques, performing a
transaction per second on a terabyte database in an average-
latency network (a first). An implementation of privatefs,
the first oblivious networked file system, is provided.

9. ACKNOWLEDGMENTS
Supported in part by NSF under awards 1161541, 0937833,

0845192, 0803197, 0708025. We would also like to thank the
reviewers and our shepherd, Alina Oprea.

10. REFERENCES
[1] Boneh, D., Maziéres, D., and Popa, R. A. Remote

oblivious storage: Making Oblivious RAM practical.
Tech. rep., MIT, 2011. MIT-CSAIL-TR-2011-018
March 30, 2011.

[2] Goldreich, O., and Ostrovsky, R. Software
protection and simulation on Oblivious RAMs.
Journal of the ACM 45 (May 1996), 431–473.

[3] Goodrich, M., and Mitzenmacher, M.

MapReduce Parallel Cuckoo Hashing and Oblivious
RAM Simulations. In ICALP (2011).

[4] Goodrich, M., Mitzenmacher, M., Ohrimenko,

O., and Tamassia, R. Oblivious RAM Simulation
with Efficient Worst-Case Access Overhead. In ACM
Cloud Computing Security Workshop (CCSW) (2011).

[5] Goodrich, M. T. Randomized shellsort: A simple
oblivious sorting algorithm. In SODA (2010).

[6] Goodrich, M. T., Mitzenmacher, M.,

Ohrimenko, O., and Tamassia, R. Oblivious storage
with low I/O overhead. CoRR abs/1110.1851 (2011).

[7] Goodrich, M. T., Mitzenmacher, M.,

Ohrimenko, O., and Tamassia, R.

Privacy-preserving group data access via stateless
oblivious RAM simulation. In SODA (2012).

[8] Kushilevitz, E., Lu, S., and Ostrovsky, R. On
the (in)security of hash-based oblivious RAM and a
new balancing scheme. In SODA (2012), Y. Rabani,
Ed., SIAM, pp. 143–156.

[9] Li, J., Krohn, M., Mazières, D., and Shasha, D.

Secure untrusted data repository (SUNDR). In
OSDI’04: Proceedings of the 6th conference on
Symposium on Opearting Systems Design &
Implementation (Berkeley, CA, USA, 2004), USENIX
Association, pp. 9–9.

[10] Olumofin, F., and Goldberg, I. Revisiting the
computational practicality of private information
retrieval. In In Financial Cryptography and Data
Security ’11 (2011).

[11] Ostrovsky, R., and Shoup, V. Private information
storage (extend abstract). In IN PROCEEDINGS OF
STOC (1997), ACM Press, pp. 294–303.

[12] Pagh, R., and Rodler, F. F. Cuckoo hashing. J.
Algorithms 51 (May 2004), 122–144.

[13] Pinkas, B., and Reinman, T. Oblivious RAM
revisited. In CRYPTO (2010), pp. 502–519.

[14] Shi, E., Chan, T.-H. H., Stefanov, E., and Li, M.

Oblivious RAM with o((logn)3) worst-case cost. In
ASIACRYPT (2011), pp. 197–214.

[15] Sion, R., and Carbunar, B. On the computational
practicality of private information retrieval. In
Proceedings of the Network and Distributed Systems
Security (NDSS) Symposium (2007).

[16] Stefanov, E., Shi, E., and Song, D. Towards
Practical Oblivious RAM. In Proceedings of the
Network and Distributed System Security (NDSS)
Symposium (2012).

[17] Wang, S., Ding, X., Deng, R. H., and Bao, F.

Private information retrieval using trusted hardware.
In Proceedings of the European Symposium on
Research in Computer Security ESORICS (2006),
pp. 49–64.

[18] Williams, P., and Sion, R. Usable PIR. In
Proceedings of the 2008 Network and Distributed
System Security (NDSS) Symposium (2008).

[19] Williams, P., Sion, R., and Carbunar, B.

Building castles out of mud: practical access pattern
privacy and correctness on untrusted storage. In ACM
Conference on Computer and Communications
Security (2008), pp. 139–148.

[20] Williams, P., Sion, R., and Sotakova, M.

Practical oblivious outsourced storage. ACM Trans.
Inf. Syst. Secur. 14 (September 2011), 20:1–20:28.

