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Abstrat

We desribe a faility for improving optimization of Haskell

programs using rewrite rules. Library authors an use rules

to express domain-spei� optimizations that the ompiler

annot disover for itself. The ompiler an also generate

rules internally to propagate information obtained from au-

tomated analyses. The rewrite mehanism is fully imple-

mented in the released Glasgow Haskell Compiler.

Our system is very simple, but an be e�etive in optimiz-

ing real programs. We desribe two pratial appliations

involving short-ut deforestation, for lists and for rose trees,

and doument substantial performane improvements on a

range of programs.

This paper has been submitted to ICFP 2001.

1 Introdution

Optimising ompilers perform program transformations that

improve the eÆieny of the program. However, a om-

piler an only use relatively shallow reasoning to guaran-

tee the orretness of its optimisations. In ontrast, the

programmer has muh deeper information about the pro-

gram and its intended behaviour. For example, a program-

mer may know that integerToInt (intToInteger x) = x,

(where Integer is the type of in�nite-preision integers, and

Int is 32-bit integers), but the ompiler has little hane of

working this out for itself. While programmers are unlikely

to write suh expressions themselves, they an easily ap-

pear when aggressive inlining brings together ode that was

written separately.

In this paper we explore a very simple idea: enourage the

programmer to speify properties of the program, and allow

the ompiler to use these properties to improve performane,

by treating eah property as a rewrite rule. In e�et, we give

the programmer the ability to extend the ompiler with

domain-spei� optimisations, giving it speialised knowl-

edge about the partiular voabulary of funtions that are

used heavily in a partiular program. Our setting is that of

the purely funtional language Haskell, beause the lak of

side e�ets makes it possible to state many properties sim-

ply, without omplex side onditions, and to exploit them

using only loal information.

We make the following ontributions:

� We desribe a onrete design, whih is fully imple-

mented in the released Glasgow Haskell Compiler, an

optimising ompiler for Haskell (Setion 2; Setion 6).

� We desribe two pratial appliations of the tehnique,

one to perform list fusion in the Haskell standard Pre-

lude (Setion 3) and other to perform tree fusion in an

appliation-spei� library (Setion 7).

� We show that rewrite rules an also be generated au-

tomatially as a result of ompiler analyses, and then

onstitute a useful way to exploit speialised versions

of funtions (Setion 5).

The idea of allowing the programmer to speify domain-

spei� ompiler extensions is not new (Setion 8), but it

has not yet been widely suessful. Our prinipal selling

point is simpliity. Rewrite rules are expressed delaratively

using the syntax of Haskell itself, and not in a separate meta-

language. They use very simple pattern mathing, have no

side onditions, and are applied using a trivial strategy. Yet

they are e�etive in real programs, assuming some oopera-

tion from library writers.

Traditionally, programs onvey the minimum information

about algorithms and data representations that is required

to ompile and exeute the program. But programmers

have always been enouraged (often ine�etively) to anno-

tate their programs with additional doumentation spei-

fying the intended purpose and properties of the program,

independently of the implementation.

Suh program properties, expressed as equations, have been

used to explore eÆient algorithms and as a design method-

ology that redues the inidene of programming error (Bird

and Moor, 1996). Another advantage may be reaped in test-

ing and debugging of programs, where they an play the role

of a test orale (Claessen and Hughes, 2000). Perhaps the

additional inentive of eÆieny gains in ompilation will re-

ally persuade programmers at last to write more informative

and more aurate doumentation?

2 The basi idea

Consider the familiar map funtion, that applies a funtion

to eah element of a list. Written in Haskell, map looks like

this:

map f [℄ = [℄

map f (x:xs) = f x : map f xs



Now suppose that the ompiler enounters the following all

of map:

map f (map g xs)

We know that this expression is equivalent to

map (f . g) xs

(where \." is funtion omposition), and we know that the

latter expression is more eÆient than the former beause

there is no intermediate list. But the ompiler has no suh

knowledge.

One possible rejoinder is that the ompiler should be smarter

| but the programmer will always know things that the

ompiler annot �gure out. Another suggestion is this: allow

the programmer to ommuniate suh knowledge diretly to

the ompiler. That is the diretion we explore here.

The Glasgow Haskell Compiler (GHC) allows the program-

mer to add a rule to the program thus:

{-# RULES

"map/map" forall f g xs.

map f (map g xs) = map (f . g) xs

#-}

The \f-# ... #-g" brakets enlose a pragma, whih is

ignored by a non-optimising ompiler. The RULES key-

word identi�es the pragma as de�ning a rewrite rule. The

"map/map" part is an arbitrary string that names the rule;

this name is used when reporting whih rules �red during a

ompilation run in diagnosti mode. The body of the rule

expresses the identity that

map f (map g xs) = map (f . g) xs

while the forall part identi�es whih of the variables in

the rule body are universally quanti�ed (f, g, and xs in this

ase), and whih are onstants bound elsewhere (map in this

ase).

One an regard the rules for a funtion as extra (redundant)

equations de�ning the funtion, thus:

map f [℄ = [℄

map f (x:xs) = f x : map f xs

map f (map g xs) = map (f . g) xs

Unlike ordinary de�ning equations, of ourse, rules are not

restrited to having onstrutors in the patterns on the left

hand side.

Rewrite rules express identities that the programmer knows

to be true, but GHC also assumes that they are oriented, so

that the right hand side is preferable to the left. Throughout

ompilation, GHC tries to spot instanes of the left hand

side of a rule, and rewrite that all to the right hand side.

A RULES pragma an our only at the top level of the pro-

gram, and all the free variables of the rule, on both sides

of the equation, must be in sope. However, a rule is not

required to be in the same module as the funtion whose

de�nition it extends. For example the "map/map" rule does

not have to be given in the module that de�ned map. So

rules an inrementally extend a funtion's de�nition. This

is important, beause a rule may desribe the interation

of an imported funtion with one de�ned loally. Rules an

also be given for a lass member funtion, in whih ase they

work on the orresponding funtion in eah lass instane.

2.1 Assumptions

The ability to add rewrite rules to a program is a pretty

powerful weapon, and raises a host of issues. In partiular:

� GHC makes no attempt to verify that the rule is in-

deed an identity, apart from ensuring that that the left

and right hand sides of the rule have the same type.

The whole point is that the rule asserts something that

GHC is not smart enough to work out for itself!

Indeed, the rule might not even be \true" in a onrete

sense! For example, onsider an abstrat data type

for sets. It is sound to give a rule expressing the fat

that union on sets is ommutative. But suppose our

implementation represents a set by an unordered list.

Then the onrete representation of a `union` b may

di�er from b `union` a, even though they represent

the same sets.

Having the rules expliitly odi�ed does, however, raise

the possibility of feeding the same program into a the-

orem prover, and having it prove the veraity of the

rules, perhaps with some human assistane. We have

not explored this avenue so far.

� GHC makes no attempt to ensure that the right hand

side is more \eÆient" than the left hand side. Again,

this is a hard problem in general and, what is worse, it

is one that is to some extent ompiler-dependent. For

the present, we rely on the (fallible) programmer.

� GHC makes no attempt to ensure that the set of rules

is onuent, or even terminating. For example, the

following rule will send GHC into an in�nite loop if it

enounters a all to foo.

{-# RULES

"ommute" forall x y. foo x y = foo y x

#-}

There is a onsiderable literature on proving the on-

uene or termination of sets of rewrite rules; in par-

tiular, ommutativity and assoiativity have reeived

speial study (Baader and Nipkow, 1999). However,

for us matters are seriously ompliated by the other

automati rewrites that the ompiler performs (beta re-

dution, inlining, ase swithing, let-oating, et. (Pey-

ton Jones and Santos, 1998)), so we are not able to take

diret advantage of this work.

For an optimising ompiler, onuene seems too

strong, sine that would implausibly suggest a anoni-

al optimised form for a program. Termination is er-

tainly important, but has not proved to be a problem

in pratie.

2.2 Restritions

GHC also plaes a restrition on the form of a rule. The

left hand side of a rule must take the form of a funtion

appliation, thus:

f e

1

: : : e

n

where f is not quanti�ed in the rule (i.e. f is not one of the

forall'd variables), and the e

i

are arbitrary expressions.

Here, for example, is a plausible rule that we annot write:
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{-# RULES

"let/let" forall f g xs. -- ILLEGAL!

let { x = let { y = e1 } in e2 } in e3

= let { y = e1 } in let { x = e2 } in e3

#-}

The rule is illegal beause the left hand side is not a funtion

appliation. This restrition has two advantages. First, it

underpins the idea introdued above, that a rewrite rule

is simply an extra (redundant) equation de�ning a funtion.

Seond, it makes rule mathing muh more eÆient, beause

the rules an be indexed by the funtion on the left hand

side. At eah all of f, GHC need only hek mathes for

rules for f. If the left hand side of a rule ould instead be

an arbitrary expression, mathing is likely to be muh less

eÆient.

The funtion-appliation restrition does mean that rules

annot be used to replae many of GHC's built-in transfor-

mations. Inlining, let-oating, beta redution, ase swap-

ping, ase elimination, and so on are all too omplex to ex-

plain using our restrited language of rules. There are, how-

ever, some ompiler transformations { suh as speialisation

{ for whih rules do prove diretly useful, as we disuss in

Setion 5.

2.3 Library writers and library lients

Reading these assumptions and restritions, one might rea-

sonably ask: are rewrite rules going to be of pratial use?

It is ertainly easy to shoot oneself in the foot.

For this reason, we regard a set of rewrite rules as some-

thing muh more like a domain-spei� ompiler extension

than a general programming paradigm. We expet rewrite

rules to be written mainly by the author of a library. Suh

authors often go to great lengths to raft eÆient data stru-

tures and algorithms. Rewrite rules give them the ability to

explain deep truths about their ode to the ompiler, and

thereby extend its ability to optimise lient programs. We

assume also a willingness to ooperate in the optimisation,

to the extent of adapting library ode to take advantage of

the optimisation rules, as well as the other way round. In

return, we hope to preserve a level of simpliity, in whih

the orretness of the optimisation rules (but not their ef-

fetiveness, unfortunately) is as easy to establish as that of

all the other lauses in a delarative program.

In GHC the rewrite rules de�ned in a module are embed-

ded in the ompiler-readable meta-data (its \.hi �le") that

aompanies the module's objet ode. The lient of the

library never sees the rules, but GHC an nevertheless use

them to optimise ompositions of alls to funtions supplied

by the library. Rules are not expliitly exported or imported.

Instead, when ompiling module M, GHC an \see" all the

rules given in any module imported by M, or in any module

imported by these imports, and so on transitively. (Haskell's

instane delarations have exatly the same property.)

Rewrite rules make perfet sense even if the library is writ-

ten in another language, in whih ase the rules express fats

about the foreign library. For example, in Reid's graphis

library for Haskell he provides a whole setion of the user

manual devoted to algebrai optimisation laws that are sat-

is�ed by the library interfae (Reid, 2000).

3 Rules in pratie

In the rest of the paper we report on our experiene of ap-

plying rewrite rules in pratie. We have found two main

lasses of appliations:

� Programmer-written rules in library ode. This was

our initial motivation, and we have used it to ahieve

list fusion (this setion) and more ambitious tree fusion

(Setion 7).

� Automatially-generated rules, derived from some kind

of program analysis, invisibly to the programmer (Se-

tion 5). This was an unexpeted, but very persuasive,

pratial bene�t of implementing the rewrite-rule teh-

nology.

3.1 Short-ut Deforestation

Our initial motivating example for adding rewrite rules was

the ase of list fusion. In earlier work we desribed so-alled

short-ut deforestation, a tehnique for eliminating interme-

diate lists from programs (Gill et al., 1993). At the entre

of the method is the single rewrite rule "foldr/build":

foldr :: (a->b->b) -> b -> [a℄ -> b

foldr k z [℄ = z

foldr k z (x:xs) = k x (foldr k z xs)

build :: (forall b. (a->b->b) -> b -> b) -> [a℄

build g = g (:) [℄

{-# RULES

"foldr/build"

forall k z (g::forall b.(a->b->b) -> b -> b) .

foldr k z (build g) = g k z

#-}

The de�nition of foldr is onventional. The funtion build

takes a \list" g, funtionally abstrated over its ons and nil

onstrutors, and applies g to the ordinary list onstrutors

(:) and [℄ to return an ordinary list. (g's type is a rank-2

polymorphi type, as disussed in (Gill et al., 1993).) The

rule states that when foldr onsumes the result of a all to

build, one an eliminate the intermediate list by applying

g diretly to k and z.

To give an example of applying this rule we must write list-

onsuming and produing funtions using foldr and build

respetively. For example:

-- (sum [5,4,3,2,1℄) = 15

sum :: [Int℄ -> Int

sum xs = foldr (+) 0 xs

-- (down 5) = [5,4,3,2,1℄

down :: Int -> [Int℄

down v = build (\ n -> down' v  n)

down' 0 ons nil = nil

down' v ons nil = ons v (down' (v-1) ons nil)

Again, the de�nition of sum in terms of foldr is onven-

tional. The funtion down returns a list of integers, from

its argument down to 1. We express it as a all to build,

using an auxiliary funtion down' whih is abstrated over

3



the funtions it uses to onstrut its result. (We have alled

these funtions ons and nil for old times' sake, but they

are simply the formal parameters to down' and their names

are insigni�ant.) It is somewhat inonvenient to write sum

and down in this way, but that is the task of the author of

the List library.

Now we an try fusion on the all (sum (down 5)):

sum (down 5)

= {inline sum and down}

foldr (+) 0 (build (down' 5))

= {apply the foldr/build rule}

down' 5 (+) 0

The intermediate list has been eliminated; instead down'

does the arithmeti diretly.

3.2 A real (albeit small) example

List fusion works well when the programmer does \bulk"

operations over lists, and then it an be stunningly e�e-

tive. Here is an example taken verbatim from the paraffins

ode (Partain, 1992), a small program that omputes a list

of all the hydroarbon paraÆns of a given size:

three_partitions :: Int -> [(Int,Int,Int)℄

three_partitions m

= [ (i,j,k) | i <- [0..(m `div` 3)℄,

j <- [i..(m-i `div` 2)℄,

let k = m - (i+j)

℄

-- A test harness

main = print (length (three_partitions 4000))

The form [0..n℄ is Haskell's notation for the list of inte-

gers between 0 and n. The list omprehension builds the

list of all triples (i,j,k) where i is drawn from the list

[0..(m `div` 3)℄, and j is drawn from a similar list, and

k is omputed diretly from i and j. Finally, the test har-

ness prints the length applying three_partitions to 4000.

GHC translates range notation, [0..n℄, into an appliation

of build, muh as we did for down above. It translates a

list omprehension into a build, using foldr to onsume

the sub-lists. Finally, the Prelude library funtion length is

implemented using a foldr.

So in this program, all the intermediate lists are removed,

leading to a dramati drop in alloation. When fusion is

enabled, this program alloates 16 Mbytes; when fusion is

swithed o� it alloates 188 Mbytes. (Most of the allo-

ation for the fused version is used for the stak, beause

the length omputation is not properly tail-reursive, so the

stak grows 1.3M ativation reords.)

3.3 Benhmark Results

Over a broader range of programs from the nofib benh-

mark set (Partain, 1992) the e�et of enabling list fusion is

very pathy, as Figure 1 shows. Fusion has no measurable ef-

fet on most programs but it gives a useful 5-25% redution

in alloation for a few. Only a very few programs are made

worse, and the worst of these by less than 4%. One pro-

gram, a parser alled parstof, shows a 96% improvement;

this turns to be beause fusion transforms the (arti�ial)
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Figure 1: Distribution of fusion e�ets on programs in \real"

and \spetral" divisions of nofib benhmark suite, under

gh4.08.2.

outer loop of the benhmark, ausing the sample text input

to be parsed one instead of 40 times!

The geometri mean improvement, about 5% if we omit

parstof, seems disappointingly low, but we are undismayed.

Compiler optimisations are like therapeuti drugs. Some,

like antibiotis, are e�etive on many programs; suh opti-

misations tend to be built into a ompiler. Others are are

targeted at partiular \diseases", on whih they are devas-

tatingly e�etive, but have no e�et at all on most other

programs. The rules mehanism allows library authors to

add targeted, domain-spei� optimizations without modi-

fying the internals of the ompiler.

We also hope that programmers may adopt a more modular

programming style if they expet fusion to take plae. For

example, it is learer to write

onat (map f xs)

than it is to write

foldr ((++) . f) [℄ xs

Yet programmers will sometimes write the latter form be-

ause it does not build an intermediate list. Setion 7 gives

an extended example of the way in whih fusion an make

modular programming pratially eÆient.

Finally, note that our measurements relate to un-modi�ed

benhmark programs. None of the funtions in these pro-

grams use build, so fusion only ours for ompositions of

funtions from the Standard Prelude, whose funtions we re-

implemented using foldr and build. If the ompiler were to

transform user-written funtions to use foldr and build we

might see greater bene�ts | but that is beyond the sope of

this paper, and in any ase ertainly would require ompiler

modi�ation (Launhbury and Sheard, 1995).

4 The stiky details

So far we have implied that one simply needs to add one

rewrite rule, and re-implement some key funtions using
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foldr and build. In pratie, though, we enountered a

number of obstales that we disuss in this setion.

4.1 Phases

First, there is a subtle interation between funtion inlin-

ing | a transformation that GHC does aggressively (Pey-

ton Jones and Marlow, 1999) | and rule appliation. Re-

turning to our sum/down example, we an see:

� sum and down must both be inlined before the rule an

�re.

� On the other hand foldr and build must not be in-

lined. For example, inlining build before �ring the rule

would give

foldr (+) 0 (down' 5 (:) [℄)

and we have lost the fusion opportunity.

On the other hand, one we have run out of opportunities

to use the foldr/build rule, there is no further point in

not inlining build. Indeed, reall that its de�nition is both

small and higher-order:

build g = g (:) [℄

Inlining a funtion like this is very bene�ial. So we are led

inevitably to a phase ordering: �rst apply rules, and then

inline build.

Alas, two phases are not neessarily enough. In general, a

program uses many layers of abstrat data types, eah im-

plemented using the layer below. First we want to apply

rewrite rules for the top-level ADT; then we want to expose

its implementation (only to the ompiler, of ourse) by in-

lining, and apply rewrite rules for the next layer; then we

want to inline that layer and apply rewrite rules for the layer

below; and so on.

Organising rules into phases is a form of rewriting strategy,

a subjet that has reeived onsiderable attention (Visser,

1999; Clavel et al., 1996; Visser et al., 1998) However, one of

the merits of rewrite rules is their simple, delarative nature:

\here is a true fat: please use it whenever possible". We

resist polluting this story with elaborate rewrite strategies.

Nevertheless, it seems that some very simple strategy, suh

as a phase organisation is neessary. To gain experiene, we

have implemented a simple sheme, whereby the program-

mer an speify in whih phase a funtion should be inlined.

Thus we might say:

{-# INLINE 2 build #-}

build g = g (:) [℄

to mean \inline build in phase 2". Of ourse, this means

the programmer must know something about GHC's phases,

whih is undesirable. Though various more elaborate

shemes have ourred to us | using the module hierar-

hy, for example | we have not yet found one we regard as

satisfatory.

4.2 Baking out

Suppose fusion does not take plae. That is, suppose we

have an isolated all (down 34). It would be bad to atu-

ally implement down using build and down', beause do-

ing so involves muh more run-time funtion-passing than a

straightforward implementation of down. It is unaeptable

for programs to run slower in the (ommon) plaes when

fusion fails than using the original library.

One solution is to rewrite down' to be non-reursive, and

inline vigorously:

down :: Int -> [Int℄

down v = build (\ n -> down' v  n)

down' v ons nil = go v

where

go 0 = nil

go v = ons v (go (v-1))

Now suppose we have inlined down at a all (down 34), but

alas it has not fused with a foldr. We an now inline as

follows:

build (\ n -> down' 34  n) -- Did not fuse

= { Inline build }

down' 34 (:) [℄

= { Inline down' }

(go 34) where

go 0 = [℄

go v = v : go (v-1)

This ode is as good as the original, straightforward imple-

mentation of down | beause is is the original, straightfor-

ward implementation of down! The trouble is that we have

e�etively made a omplete opy of the straightforward ode

at every all site. While this is aeptable for a funtion as

small as down, it would be quite undesirable for larger fun-

tions.

An alternative solution, and the one we generally adopt, is

to add a new de�nition and rewrite rule:

downList :: Int -> [Int℄

downList 0 = [℄

downList v = v : downList (v-1)

{-# RULES "downList"

forall v. down' v (:) [℄ = downList v #-}

An isolated all to (down 34) would now transform as fol-

lows:

down 34

= {Inline down}

build (down' 34)

= {Inline build}

down' 34 (:) [℄

= {Apply "downList" rule}

downList 34

The "downList" rule spots the speial ase in whih down'

is applied the standard list onstrutors, and transforms the

all to use the diretly-ode downList funtion.

4.3 One-shot lambdas

Here is the de�nition of map in terms of foldr and build:
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map f xs = build (\ n -> foldr ( . f) n xs)

Now, suppose we �nd an appliation (map f (build g)).

We want to transform the all like this:

map f (build g)

= {Inline map} DANGER!

build (\ n -> foldr ( . f) n (build g))

= {Apply foldr/build rule}

build (\ n -> g ( . f) n)

The diÆulty is in the step marked DANGER!. Here we sub-

stitute (build g) for xs in the body of map, but this our-

rene of xs is under a lambda abstration. In general, one

an make a program run arbitrarily more slowly by substi-

tuting a redex inside a lambda abstration, so GHC usually

does something more onservative:

map f (build g)

= {Inline map} SAFE!

let xs = build g

in build (\ n -> foldr ( . f) n xs)

Alas now the foldr/build rule annot �re!

The solution is to observe that the abstration

(\ n -> ...) is a one-shot lambda; that is, it is a

funtion that is only alled one. Why? Beause it is the

argument to build, and build simply alls its argument,

passing (:) and [℄. Substituting inside one-shot lambdas

is perfetly safe.

The Right Thing To Do is to analyse the program for one-

shot lambdas and at aordingly. A type-based analy-

sis that ahieves this (among other things) is desribed by

Wansbrough (Wansbrough and Peyton Jones, 1999), but it

is not yet fully implemented in GHC. Instead we have a tem-

porary hak that spots the speial ase of an appliation of

build.

4.4 Sharing

Consider this funtion

f x = sum (filter (> x) [1..10℄)

One might expet all intermediate lists to be eliminated from

this funtion, but GHC orretly spots that the expression

[1..10℄ an be oated out:

one_to_ten = [1..10℄

f x = sum (filter (> x) one_to_ten)

Alas, now the �lter onsumer annot fuse with the [1..10℄

produer. Floating out one_to_ten would be a good trans-

formation if the produer | in this ase [1..10℄ | were

more expensive. It would be worth losing the fusion, in or-

der to share the omputation of one_to_ten among all alls

to f. But in the ase of [1..10℄, it would be better to lose

sharing to gain fusion.

This problem turned out to be entral when Elliott et al.

tried to use rewrite rules to optimise Pan programs (Elliott

et al., 2000). In Pan, it is ruial to inline absolutely every-

thing, aring nothing for sharing, apply rewrite rules, and

then do aggressive ommon sub-expression and ode-motion

transformations to make up for the loss.

This is a problem that is unlikely to have a ut-and-dried

solution, but we are exploring the idea of using virtual data

types. The programmer delares some data types as virtual,

meaning that all data strutures of virtual type should be

eliminated. In partiular, the ompiler an ignore loss of

sharing when onsidering inlining a value of virtual type. It

remains to be seen how usable suh a feature would be.

5 Dynamially-generated Rules

Thus far we have onentrated on rewrite rules that are

written by the programmer, but we have found that it is

often useful for the ompiler itself to generate rewrite rules

dynamially. We give three examples in this setion.

5.1 Speialisation

Haskell's type lasses give rise to overloaded funtions with

types like this:

invert :: Num elt => Matrix elt -> Matrix elt

Suh overloaded funtions are somewhat ineÆient: invert

takes a tuple (or \ditionary") of funtions as an extra ar-

gument, whih give the arithmeti operations over values of

type elt. Optimising ompilers for Haskell allow the pro-

grammer to write a SPECIALISE pragma, thus:

{-# SPECIALISE

invert :: Matrix Int -> Matrix Int

#-}

This pragma enourages the ompiler to build a speialised

version of invert, in whih the matrix elements are known

to be of type Int, giving muh more eÆient ode. (GHC

will also infer suh pragmas from the types at whih invert

is alled, but only within a single module.)

Suppose, then, that the ompiler has onstruted the spe-

ialised funtion, and alled it (say) invert_Int. The next

task is to make sure that suitable alls to invert are re-

plaed by alls to invert_Int. This is where rules ome in.

The ompiler dynamially generates a rewrite rule like this:

{-# RULES

"invert/Int" forall d::Num Int.

invert � Int d = invert_Int

#-}

Unlike our earlier, programmer-spei�ed rules, this rule is

written in GHC's expliitly-typed intermediate language,

alled \Core". In Core, every binder has an expliit type,

and polymorphism is expressed using expliit type abstra-

tion and appliation. The rules written by the user in the

(impliitly-typed) Haskell soure ode are translated into the

Core language by the typeheker (whih adds type infor-

mation) followed by the desugarer (whih onverts Haskell's

rih syntax into Core's muh more limited forms).

In this ase invert is polymorphi, and so takes a type ar-

gument, indiated by the \� Int" on the left hand side of

the rule. It also takes an argument orresponding to the

Num elt onstraint, namely the tuple of arithmeti opera-

tions referred to earlier. So the rule simply says that a all

to invert applied to type Int and tuple d an be rewritten

to invert_Int.
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5.2 Evaluated arguments

In array-intensive ode, one often enounters a loop like this:

f :: Int -> Int -> Int

f x y = if x == 0 then 0

else y + f (x-1) (y+1)

GHC represents values of type Int using the following data

type:

data Int = I# Int#

where Int# is the type of unboxed, 32-bit integers. GHC

will ompile f thus:

f :: Int -> Int -> Int

f x y = ase x of { I# xv -> fw xv y }

fw :: Int# -> Int -> Int

fw xv y

= if (xv ==# 0#) then I# 0#

else

ase y of { I# yv ->

ase fw (xv -# 1#) (I# (yv +# 1#)) of { I# rv ->

I# (yv +# rv) }}

f has turned into a mere \wrapper" that evaluates x be-

fore alling the \worker", fw (Peyton Jones and Launhbury,

1991). It an do this beause f is sure to evaluate x. How-

ever, f is not ertain to evaluate y, so the evaluation of y

must be in the else branh of the onditional in the worker,

fw. That means that the worker must re-box y before all-

ing itself (\I# (yv +# 1#)"), and in the ommon ase, y

will immediately be un-boxed again. This is bad.

What an be done? Again, it is a matter of speialisation.

Reognising that there is a reursive all to fw in whih

the seond argument is a onstrutor appliation, GHC an

make a speialised version of fw, and generate an appropri-

ate rule, thus:

fw1 :: Int# -> Int# -> Int

fw1 xv yv = let

y = I# yv

in ...original RHS of fw....

{-# RULES "fwV" forall xv yv.

fw xv (I# yv) = fw1 xv yv

#-}

After simplifying the right hand side of fw1, using the rule,

we get just what we want:

fw1 :: Int# -> Int# -> Int

fw1 xv yv

= if (xv ==# 0#) then I# 0#

else

ase fw1 (xv -# 1#) (yv +# 1#) of { I# rv ->

I# (yv +# rv) }

fw remains as an \impedane mather" embodying the �rst

iteration of the loop, before alling fw1. However the rule

remains to transform any all of f with an already-evaluated

seond argument into a all to fw1.

All of this is done invisibly by the ompiler | the program-

mer is not involved at all. The transformation is fully imple-

mented in GHC, enabled by \-O2". The analysis, generation

of speialised ode, and generation of the rewrite rule, takes

only 225 lines of Haskell. The rewrite-rule infrastruture

automatially takes are of applying the rule when it is rel-

evant, and propagating the rule aross separate ompilation

boundaries.

5.3 Usage types

We are exploring another example of the same pattern.

Wansbrough's work on usage types suggests that onsider-

able eÆieny gains an be made by speialising funtions

based on their usage patterns. For example, onsider map

again:

map f [℄ = [℄

map f (x:xs) = f x : map f xs

If map is alled in a ontext in whih the result list is on-

sumed at most one, then the thunks for f x and map f xs

do not need to be self-updating; instead the updates an be

omitted. To express this, GHC adds extra usage-type ar-

guments to map, both at its de�nition and at its all sites.

One this is done, a speialised version of map an be om-

piled for the ase when the usage-type argument is \one",

and a rule generated to math suh alls, in exatly the same

way as for speialising overloading.

5.4 Summary

In eah example, we an disern the same pattern:

� Based on pragmas or program analysis, perform a loal

transformation (e.g., generating the speialised version

of invert).

� Generate a rule that explains how that transformation

an be useful to the rest of the program. In some ases

the rule looks at the type arguments, in others at value

arguments.

� Apply the rule throughout the rest of the program.

This may not sound like muh, but it is extremely helpful to

have a single, onsistent way to propagate the bene�ts of a

transformation to the rest of the program. For example, it

is not enough for the speialiser to generate speialised ver-

sions of a funtion and �nd all appropriate all sites for the

speialised funtion. There may not be any alls to invert

at type Int when the speialiser runs. Suh alls may only

show up after some other inlinings have exposed them. Or

they may be in other modules altogether, so the rule must

be propagated aross module boundaries (whih is relatively

easily done).

Programmer-de�ned RULES pragmas are only allowed at top

level, but this is a purely syntati restrition. Rewrite rules

make perfet sense for nested funtions bound by a loal let

or letre, and GHC will indeed generate dynami rules us-

ing the ideas of this setion for loal funtions. This is im-

portant in pratie, beause inlining generates many nested

funtion de�nitions.

6 Implementation

The implementation of the rule rewriting mehanism within

GHC is straightforward. The front-end was extended to
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handle rule parsing, type heking, and translation into the

Core intermediate language. The GHC optimiser is stru-

tured as a number of separate passes over Core expres-

sions (Peyton Jones and Santos, 1998; Peyton Jones and

Marlow, 1999). The most fundamental pass { iterated many

times { is the simpli�er, whih performs inlining, ase sim-

pli�ation, and eta-expansion in the ourse of a single top-

to-bottom traversal of the program. To support rewriting,

we just modi�ed the simpli�er to hek eah funtion ap-

pliation it enounters against a list of ative rules; if the

appliation mathes the rule LHS pattern, it is replaed by

a suitably instantiated version of the RHS. We need to take

a little are to make sure that the rule remains attahed to

the right funtion if alpha-renaming takes plae.

Inluding rules adds a modest overhead to GHC ompilation

time. For example, using the list fusion rules desribed in

Setion 3 inreases ompilation times an average of 5% over

the nofib benhmark suite. Some of this inrease is prob-

ably due to performing onventional optimisations that are

enabled by rule-based rewrites. In any ase, we have made

no serious attempt to analyse or optimise this aspet of om-

piler performane, so it an probably be sped up should this

prove important.

7 Appliation: Constraint Satisfation Problems

Next we give an example user appliation, solving onstraint

satisfation problems (CSPs), in whih rewrite rules help

support high-level, modular programming style. The added

rules, whih desribe short-ut deforestation on rose trees,

are on�ned to a library, and they make a representative ker-

nel of the appliation run three times faster, by eliminating

essentially all the overhead due to the modular style.

7.1 Modular searh

Many interesting algorithms for solving CSPs are onep-

tually based on trees, whose nodes represent states in the

searh spae; solutions to the searh problem are found by

loating omplete, onsistent nodes. In a onventional im-

perative reursive implementation, these searh trees are

merely notional; they orrespond to the tree of proedure

ativation histories. In Haskell, one an make the state tree

into an expliit (lazy) data struture instead (Hughes, 1989;

Bird and Wadler, 1988). This approah permits searh al-

gorithms to be modularized into separate funtions (really

oroutines) that ommuniate via a lazily-onstruted tree

labeled with onsisteny information. The omponent fun-

tions perform generation of all possible states, onsisteny

labeling, pruning of inonsistent states, and olletion of so-

lutions. A large variety of useful algorithms | whih look

quite di�erent from one another when written imperatively

{ an be obtained in the lazy framework just by varying the

labeling and pruning funtions (Nordin and Tolmah, 2000).

The underlying algorithm is a simple omposition of fun-

tions, where all the intermediate results are trees or lists.

solver :: Labeler a -> Pruner a -> CSP -> [State℄

solver labeler pruner sp =

(filter (omplete sp) . map fst . leaves .

prune pruner . (labeler sp) .

mkSearhTree) sp

Here CSP is a type desribing instanes of onstraint satis-

fation problems; for example, we might have a funtion

queens :: Int -> CSP

to generate instanes of the familiar n-queens problem.

State is the type of partial solutions. Funtion

mkSearhTree :: CSP -> Tree State

onstruts a tree of all possible partial solutions to a given

CSP. Here Tree is the type of ordinary \rose trees," in whih

eah node has a value and an arbitrary number of hildren.

The labeler argument to solver has this type:

type Labeler a =

CSP -> Tree State -> Tree (State, a)

It spei�es how to attah onsisteny annotations to eah

node in the tree. The pruner argument, of type

type Pruner a = (State,a) -> Bool

says how to inspet the annotations to determine whether

the node is onsistent; prune removes subtrees rooted at in-

onsistent nodes. leaves returns the leaves of the tree as

a list in left-to-right order. The subsequent list operations

throw away the annotations and weed out nodes represent-

ing inomplete solutions.

To obtain simple bak-traking searh, we an provide a

Labeler that heks the onsisteny of eah node individu-

ally, and annotates the node with the boolean result of the

hek.

labelInonsistenies ::

CSP -> Tree State -> Tree (State,Bool)

labelInonsistenies sp = mapTree f

where f s = (s,not (onsistent sp s))

btsolver :: CSP -> [State℄

btsolver = solver labelInonsistenies snd

More sophistiated algorithms use labelers that may look

at more than one node at a time or store more information

in the annotations. For example, a well-known algorithm

alled forward heking an be implemented by a labeler

that stores a (lazily onstruted) ahe table of onsisteny

information at eah node.

labelCSCahe ::

CSP -> Tree State ->

Tree (State,Cahe ConflitSet)

extratConflit ::

(State,Cahe ConflitSet) -> Bool

fsolver :: CSP -> [State℄

fsolver = solver labelCSCahe extratConflit

Interesting new ombinations of algorithms an be obtained

by appropriate omposition of labeling funtions, giving us a

\mix and math" approah to algorithm onstrution. The

modular algorithms that result are muh simpler to read,

write, and modify than their imperative ounterparts, and

have the same asymptoti behavior (in both spae and time).

However, the modular Haskell ode is muh slower than

equivalent C ode, if only by a onstant fator. We mea-

sured performane of a representative kernel of ode that

implements standard baktraking searh on the n-queens

problem and ounts the number of solutions found. The

modular version of this funtion is written
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qsolns :: Int -> Int

qsolns n = length (btsolver (queens n))

On the 11-queens problem, qsolns runs about 30 times

slower than a onventional reursive C algorithm that

doesn't use trees at all. More strikingly, perhaps, it is almost

four times slower than a non-modular Haskell transliteration

of the C algorithm. This di�erene suggests that we try to

fuse the tree traversals to avoid building the nodes of the

several intermediate trees.

In the remainder of this setion, we desribe short-ut defor-

estation for rose trees, and disuss our experiene in using

rules with this appliation. Full ode for the kernel modular

ode and the orresponding monolithi funtion are given in

the Appendix.

7.2 Fusion on rose trees

We treat rose trees as an abstrat data type, with publi

funtions initTree, mapTree, prune, and leaves. The in-

ternal representation data type and foldTree operation are

standard:

data Tree a = T a [Tree a℄

foldTree :: (a -> [b℄ -> b) -> Tree a -> b

foldTree f t = go t

where go (T a ts) = f a (map go ts)

We introdue a buildTree analogous to build on lists, and

the orresponding fusion rule:

buildTree ::

forall a.

(forall b. (a -> [b℄ -> b) -> b) -> Tree a

buildTree g = g T

{-# RULES

"foldTree/buildTree"

forall k (g::forall b.(a->[b℄->b) -> b) .

foldTree k (buildTree g) = g k

#-}

Now we must take are that all tree-produing funtions use

buildTree, and all tree-onsuming funtions use foldTree.

Sine Tree is as an ADT, we don't need to worry about

lient ode using the Tree onstrutor diretly.

Funtion initTree generates a tree from a funtion that

omputes the hildren of a node (Hughes, 1989); mapTree is

the analogue of the familiar funtions on lists.

initTree :: (a -> [a℄) -> a -> Tree a

initTree f a = buildTree g

where g n = go a

where go a = n a (map go (f a))

mapTree :: (a -> b) -> Tree a -> Tree b

mapTree f t = buildTree g

where g n = foldTree h t

where h a ts = n (f a) ts

prune p t removes every subtree of t whose root value

mathes p. Sine we annot represent empty trees, we re-

quire that p always return False on the root node of the

entire tree, whih is always appropriate in our appliations.

prune :: (a -> Bool) -> Tree a -> Tree a

prune p t = buildTree g

where

g n = head (foldTree f t)

where f a ts | p a = [℄

| otherwise = [n a (onat ts)℄

Finally, leaves extrats the values at the leaves of a tree

into a list in left-to-right order.

leaves :: Tree a -> [a℄

leaves = foldTree f

where f leaf [℄ = [leaf℄

f _ ts = onat ts

Ideally, we would like leaves to be written as a list build,

so that it an fuse with list onsumers further down the

pipeline. Unfortunately, this seems to require doing a

higher-order tree fold, whih produes an intermediate list

of funtion losures; GHC doesn't handle suh lists very ef-

fetively, and it proves more eÆient to stik with the simple

de�nition shown here.

We mark all the funtions to be inlined if possible.

7.3 Short-ut deforestation pays again

Given these de�nitions, GHC is able to ompletely fuse away

all the rose trees in qsolns; i.e., no T onstrutors are ap-

plied at all! Indeed, modifying the implementation of our

rose tree ADT to perform heap deforestation improves per-

formane of (qsolns 11) by a fator of more than three,

bringing it to within 15% of the running time of a hand-

fused, non-modular Haskell implementation. Moreover, this

improvement omes without requiring any hanges to the

searh appliation ode itself.

All is not quite so straightforward as it may seem, however.

All the problems we examined in the ontext of list fusion

appear again for trees:

� E�etive appliation of the fusion law requires that

GHC inline more enthusiastially than it normally

would. For example, our pipeline of tree operations

generates many fusion opportunities that require in-

lining underneath the lambda of a buildTree argu-

ment. This is, in fat, a safe thing to do, sine the

lambda is \one shot," but GHC doesn't know this {

and sine we are thinking of trees as a user-de�ned li-

brary, it would be obviously inappropriate to hak this

fat about buildTree into the ompiler, the way we did

for list build. As it happens, for the partiular kernel

of ode we show here, GHC an disover for itself { af-

ter repeated iteration of inlining { that these lambdas

are one shot. But in general, we need linearity analysis.

� If fusion fails, the tree library should make sure that the

resulting ode is not worse than it would have been had

fusion never been attempted. As with lists, we must ei-

ther ensure that inlining foldTree produes good ode,

or provide a \bak-out" mehanism, with appropriate

attention to phasing of inlining (.f. Setion 4.2).

� For full e�etiveness, we need to make sure that inlining

of list funtions (e.g., on the lists of hildren in nodes)

ours only after inlining of tree funtions (.f. Se-

tion 4.1). A simple phasing strategy based on module

dependenies would handle this requirement.
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� Most seriously, we might easily write programs for

whih fusion fails for legitimate reasons, e.g. beause

there are several onsumers for a given produer, or

simply beause we've made a mistake when writing a

rule. But we'll get no feedbak from the ompiler about

suh failures. This is learly a ruial area for further

work.

8 Related Work

The basi onepts of our rules system are far from new.

There have been a great many attempts to build frameworks

for user-direted or appliation-spei� optimization, often

by adding additional semanti spei�ations to funtions.

These ideas have been of partiular interest in the high-

performane omputing ommunity. Sienti� odes often

use well-established, high-level libraries, suh as LINPACK

or PLAPACK. Beause these libraries need to work eÆ-

iently over a wide range of mahine arhitetures and data

sets, they typially have multiple implementations, eah

with its own omplex interfae. For portability and main-

tainability, lient ode should be written using portable,

high-level library alls, leaving the ompiler to determine the

appropriate low-level alls to use and optimizing the lient

ode aordingly. To ahieve this, library interfaes an be

annotated with additional spei�ation information. Sys-

tems and proposals along these lines inlude TAMPR (Boyle

et al., 1997), Broadway (Guyer and Lin, 1999; Guyer and

Lin, 2000), MetaSript (Kennedy et al., 2000), and Ative

Libraries (Veldhuizen and Gannon, 1998).

Another set of systems has developed from the algebrai

spei�ation ommunity. For example, the OPAL lan-

guage (Didrih et al., 1994) ombines funtional program-

ming and algebrai spei�ation in a uniform framework.

OPAL laws are used to justify or guard rewrites of fun-

tional ode; sine laws are �rst-order prediate formulas over

equality of funtional expressions, this makes the system

very powerful (and of ourse undeidable). It is unlear to

what extent the existing implementation of OPAL supports

automated optimization.

Compared to existing systems and proposals, ours is notable

primarily for what it leaves out. More preisely, we an

identify the following ontrasts between our systems and

others:

No meta language. Our rules are soure-to-soure, and

their right-hand sides are simple soure expression, so

they an be de�ned just using Haskell. With the exep-

tion of TAMPR (Boyle et al., 1997), most of the other

tools known to us operate on internal program rep-

resentations, suh as abstrat syntax tress or ontrol-

ow graphs, and they typially allow right-hand sides

to be de�ned using some kind of meta-programming

faility. The hoie of a meta-programming language

is deliate. A speialized language or notation suh

as metal (Engler et al., 2000) is onise, but must be

learned from srath by the library author and an

be unduly onstraining; using a general-purpose pro-

gramming language, suh as LISP (as in early work on

Aspet-Oriented Programming (Kizales et al., 1997;

Mendhekar et al., 1997)) is more exible, but requires

the author to take great are to maintain essential in-

variants.

Simple rewrite strategy We rely on a very simple, built-

in strategy, modi�ed by \phases", for determining

when and where rules should be applied. As rule

sets beome more elaborate, authors may need to ex-

erise expliit ontrol over strategy, e.g., as in Strat-

ego (Visser et al., 1998).

Simple pattern-mathing. We rely on the programmer

to use high-level operators, suh as foldr, that en-

apsulate ontrol ow. Thus we don't need to pro-

vide sophistiated ontextual pattern mathing to

identify loops or reursions, unlike systems like OP-

TRAN (Lipps et al., 1988), Dora/Tess (Farnum, 1990),

and KHEPERA (Faith et al., 1997). Nor do we have to

deal with the unpreditability and possible high ost of

higher-order mathing, as used in MAG (de Moor and

Sittampalam, 1999).

No side onditions. We work with a purely funtional

language, whih means that many useful optimizing

transformations are ontext independent and don't re-

quire elaborate side-onditions. By ontrast, most use-

ful transformations on imperative programs must be

justi�ed by non-syntati, and often non-trivial, analy-

sis, e.g., of ontrol ow, dependene, aliasing, et. Thus

many tools for imperative languages fous on speify-

ing analyses in addition to transformations; examples

inlude DFA&OPT-MetaFrame (Klein et al., 1996),

Sharlit (Tjiang and Hennessy, 1992), Genesis (Whit-

�eld and So�a, 1994), OPTIMIX (Assmann, 1996), In-

tentional Programming (Aitken et al., 1998), and re-

ent work of Laey and de Moor (Laey and de Moor,

2001).

No termination guarantees; no AC rewriting. Our

rules are all direted, and we annot easily express

ommutative laws without ausing endless rewriting.

In a modern algebrai transformation system like

Maude (Clavel et al., 1996), equations are entirely

symmetri in their left and right hand sides, whih an

be arbitrary terms; they an be used for transformation

in either diretion. Common algebrai properties of an

operator an be delared by built-in keywords suh as

[asso℄ and [omm℄; in exeuting the transformations

in a program, all pattern mathing is onduted

modulo these properties, whih makes for shorter and

more elegant programs.

In summary, we o�er simpliity in exhange for more limited

funtionality. Simpliity is important, both for implemen-

tors and library authors. From an implementation point of

view, our experiene is that simple ideas are seldom easy to

implement in a full-sale, optimising ompiler, while om-

plex ideas require heroism that is hard to sustain in the

long term.

From a programming point of view, too, simpliity is im-

portant. Most partiularly, the fat that the transforma-

tions are expressed entirely in Haskell itself, and not in some

(neessarily di�erent, and more indiret) meta-language is

a huge advantage. We know of no optimising ompiler in

widespread use that supports domain-spei� extensions; we

suspet that this is partly due to the omplexity of their
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meta-programming mehanisms. Of ourse, GHC's rules are

not in widespread use by programmers either | but they

are used behind the senes in every run of GHC, both for list

fusion (Setion 3) and speialisation (Setion 5). It is also

possible that our approah is just too simple: we do not yet

know how the tradeo� between simpliity and expressiveness

will play out.

9 Conlusions and further work

We have desribed a simple, but fully implemented and de-

ployed, way to write domain-spei� extensions to a om-

piler for Haskell, by means of rewrite rules. We have demon-

strated that, though simple, rewrite rules are useful in pra-

tie. Indeed, the list fusion rules have been deployed in the

Prelude of the released GHC ompiler for two years. In re-

ent work, Chakravarty and Keller are using GHC's rewrite

rules to perform array fusion in their work on nested data-

parallel programming (Chakravarty and Keller, 2001); their

appliation is more sophistiated than any we have desribed

here.

The previous setion desribed many diretions in whih

one ould imagine make our system more expressive, but we

plan to develop more experiene of its pratial use before

elaborating it muh further. Indeed, the most pressing area

for further work is not even mentioned in Setion 8: it is the

question of how best to provide feedbak to the programmer

about whih rules have �red and, more espeially, whih

have not and why not. Sine rewrites are done on Core,

whih is quite far from Haskell, providing omprehensible

feedbak is a hard problem.

The status of this paper is as a report of work in progress.

We present it in the hope that it will attrat the interest of

the writers of library pakages, and will enourage them to

experiment with the feature and report on its inadequaies.

For the longer term, we wish to promote the priniple that a

programmer should supply further delarative information

together with the ode of the program; and suggest that

ompilers and other programming tools should take maxi-

mum advantage of these delarations.
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Appendix: Constraint Satisfation Problems

Here is the omplete ode for the onstraint satisfation

problem (CSP) searh kernel desribed in Setion 7

Problem De�nition

A CSP is haraterized by a number of variables vars, a

number of values vals, and a onsisteny relation rel be-

tween pairs of assignments of values to vars. We represent

assignments using an in�x onstrutor :=. To solve the CSP,

we must assign a value to eah variable suh that all pair-

wise ombinations of assignments are in rel. A well-known

example is the n-queens problem, under the standard opti-

mization that we only try to plae one queen in eah ol-

umn; this an be modeled as a CSP with n variables (the

olumns), n values (the rows), and a relation that permits

two assignments provided the orresponding positions are

on di�erent rows or di�erent diagonals.

type Var = Int

type Value = Int

data Assignment = Var := Value

type Relation = Assignment -> Assignment -> Bool

data CSP = C {vars, vals :: Int, rel :: Relation}

queens :: Int -> CSP

queens n = C{vals=n,vars=n,rel=safe}

where safe (ol1 := row1) (ol2 := row2) =

(row1 /= row2) &&

abs (ol1 - ol2) /= abs (row1 - row2)
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Searh States

Wemodel eah state in the spae of possible solutions as a se-

quene of assignments, together with the number of the most

reently assigned variable. States are built from emptyState

by repeated use of extensions, whih takes a state and on-

struts a list of extended states formed by assigning eah

possible value to the next variable.

data State = S [Assignment℄ Var

emptyState :: CSP -> State

emptyState C{vars=vars} = S [℄ 0

extensions :: CSP -> State -> [State℄

extensions C{vars=vars,vals=vals} (S as lastvar) =

[S ((nextvar := val):as) nextvar |

let nextvar = lastvar+1, nextvar <= vars,

val <- [1..vals℄℄

omplete :: CSP -> State -> Bool

omplete C{vars=vars} (S _ lastvar) =

lastvar == vars

onsistent :: CSP -> State -> Bool

onsistent _ (S [℄ _) = True

onsistent C{rel=rel} (S (a:as) _) = all (rel a) as

A solution is a omplete, onsistent state.

Rose Trees

Here is sample library ode for rose trees written without

onern for fusion. For onveniene, we do use foldTree in

the de�nition of prune and leaves.

data Tree a = T a [Tree a℄

initTree :: (a -> [a℄) -> a -> Tree a

initTree f a = go a

where go a = T a (map go (f a))

foldTree :: (a -> [b℄ -> b) -> Tree a -> b

foldTree f t = go t

where go (T a s) = f a (map go s)

mapTree :: (a -> b) -> Tree a -> Tree b

mapTree f (T a ts) = T (f a) (map (mapTree f) ts)

prune :: (a -> Bool) -> Tree a -> Tree a

prune p t =

head (foldTree f t)

where f a ts | p a = [℄

| otherwise = [T a (onat ts)℄

leaves :: Tree a -> [a℄

leaves = foldTree f

where f leaf [℄ = [leaf℄

f _ ts = onat ts

Rose trees supporting fusion

The ode for these was shown in Setion 7.2 .

Baktraking Searh for CSPs

mkSearhTree :: CSP -> Tree State

mkSearhTree sp =

initTree (extensions sp) (emptyState sp)

type Labeler a =

CSP -> Tree State -> Tree (State, a)

type Pruner a = (State,a) -> Bool

labelInonsistenies :: Labeler Bool

labelInonsistenies sp = mapTree f

where f s = (s,not (onsistent sp s))

solver :: Labeler a -> Pruner a -> CSP -> [State℄

solver labeler pruner sp =

(filter (omplete sp) . map fst . leaves .

prune pruner . (labeler sp) .

mkSearhTree) sp

btsolver :: CSP -> [State℄

btsolver sp = solver labelInonsistenies snd

qsolns :: Int -> Int

qsolns n = length (btsolver (queens n))

Hand-fused Code

A hand-fused version of qsolns in Haskell:

qsolns' :: Int -> Int

qsolns' n = f (emptyState sp)

where

sp = queens n

f state | omplete sp state = 1

| otherwise = g (extensions sp state)

g [℄ = 0

g (s':rest) | onsistent sp s' = f s' + g rest

g (_:rest) = g rest
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