
MARCH 2023 | VOL. 66 | NO. 3 | COMMUNICATIONS OF THE ACM 89

Achieving High
Performance the Functional Way:
Expressing High-Performance
Optimizations as Rewrite Strategies
By Bastian Hagedorn, Johannes Lenfers, Thomas Kœhler, Xueying Qin, Sergei Gorlatch, and Michel Steuwer

DOI:10.1145/3580371

Abstract
Optimizing programs to run efficiently on modern parallel
hardware is hard but crucial for many applications. The pre-
dominantly used imperative languages force the program-
mer to intertwine the code describing functionality and
optimizations. This results in a portability nightmare that is
particularly problematic given the accelerating trend toward
specialized hardware devices to further increase efficiency.

Many emerging domain-specific languages (DSLs) used
in performance-demanding domains such as deep learning
attempt to simplify or even fully automate the optimization
process. Using a high-level—often functional—language,
programmers focus on describing functionality in a declara-
tive way. In some systems such as Halide or TVM, a separate
schedule specifies how the program should be optimized.
Unfortunately, these schedules are not written in well-defined
programming languages. Instead, they are implemented
as a set of ad hoc predefined APIs that the compiler writers
have exposed.

In this paper, we show how to employ functional program-
ming techniques to solve this challenge with elegance. We
present two functional languages that work together—each
addressing a separate concern. RISE is a functional language
for expressing computations using well-known data-parallel
patterns. ELEVATE is a functional language for describing
optimization strategies. A high-level RISE program is trans-
formed into a low-level form using optimization strategies
written in ELEVATE. From the rewritten low-level program,
high-performance parallel code is automatically generated.
In contrast to existing high-performance domain-specific
systems with scheduling APIs, in our approach programmers
are not restricted to a set of built-in operations and optimiza-
tions but freely define their own computational patterns in
RISE and optimization strategies in ELEVATE in a compos-
able and reusable way. We show how our holistic functional
approach achieves competitive performance with the state-
of-the-art imperative systems such as Halide and TVM.

1. INTRODUCTION
As Moore’s Law and Dennard scaling are coming to an end,7
performance and energy efficiency gains no longer come
for free for software developers that have to optimize for
an increasingly diverse set of hardware by exploiting subtle
details of the architecture. The accelerating trend toward
specialized hardware, which offers extreme benefits for

The original version of this paper was published in
Proceedings of the ACM on Programming Languages 4
(Aug. 2020), Article 92.

performance and energy efficiency if the optimized software
exploits it, emphasizes the need for performance portability.

The predominant imperative and low-level programming
approaches such as C, CUDA, or OpenCL force programmers
to intertwine the code describing the program’s functional
behavior with optimization decisions, making them—by
design—non performance portable. As an alternative,
higher-level domain-specific approaches have emerged
allowing programmers to declaratively describe the func-
tional behavior without committing to a specific implemen-
tation. Prominent examples are machine learning systems
such as TensorFlow1 or PyTorch,10 where the compilers and
runtime systems are responsible for optimizing the compu-
tations expressed as data flow graphs. Large teams of engi-
neers provide fast implementations for the most common
hardware, for TensorFlow including Google’s specialized
TPU hardware. This labor-intensive support of new hard-
ware is currently only sustainable for the biggest compa-
nies—and even they struggle as highlighted by two of the
original authors of TensorFlow.3

TVM4 and Halide11 are two state-of-the-art high-
performance domain-specific code generators used in
machine learning and image processing. Both attempt to
tackle the performance portability challenge by separating the
program into two parts: schedules and algorithms. A sched-
ule describes the optimizations to apply to an algorithm
that defines the functional behavior of the computation.
Schedules are implemented using a set of predefined ad hoc
APIs that expose a fixed set of optimization options. TVM’s
and Halide’s authors describe these APIs as a scheduling lan-
guage, but they lack many desirable properties of a program-
ming language. Most crucially, programmers are not able to
define their own abstractions. Even the composition of exist-
ing optimization primitives can be unintuitive due to the lack
of precise semantics and implicit behavior limiting experts’
control. Furthermore, for some desirable optimizations, it
is not sufficient to change the schedule, but programmers
must redefine the algorithm itself—violating the promise of
separating algorithm and schedule. To overcome the inno-
vation obstacle of manually optimizing for specialized hard-
ware and for achieving automated performance portability,

To view the accompanying Technical Perspective,
visit doi.acm.org/10.1145/3580370 tp

https://dx.doi.org/10.1145/3580371
https://doi.acm.org/10.1145/3580370
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3580371&domain=pdf&date_stamp=2023-02-22

research highlights

90 COMMUNICATIONS OF THE ACM | MARCH 2023 | VOL. 66 | NO. 3

optimize the memory access pattern, the algorithm has to be
changed: A copy of the B matrix (pB) is introduced in line 5 (and
used in line 8) whose elements are reordered depending on
the tile size. This optimization is not expressible with schedul-
ing primitives and, therefore, requires the modification of the
algorithm—violating the promise of separating algorithm and
schedule. Generally, the separation between algorithm and
schedule is blurred because both share the same Python iden-
tifiers and must live in the same scope. This unsharp separa-
tion limits the reuse of schedules across algorithms.

The optimized parallel schedule uses built-in optimiza-
tion primitives. Some are hardware-specific (like vector-
ize), some are algorithmic optimizations useful for many
applications (like tiling to increase data locality), and
others are low-level optimizations (like unroll and reor-
der that transform loop nests). However, TVM’s scheduling
 language is not easily extensible, as adding optimization
primitives requires extending the underlying compiler.

The behavior of some primitives is not intuitive, and only
informal documentation is provided, for example, for cache_
write: “Create a cache write of original tensor, before storing
into tensor.” Reasoning about schedules is difficult due to
the lack of clear descriptions of optimization primitives.

If no schedule is provided (as in Listing 1), the compiler
employs a set of implicit default optimizations that are out

we will need to rethink how we separate, describe, and apply
optimizations in a more principled way.

In this paper, we describe a more principled but still
practical holistic functional approach to high-performance
code generation (Figure 1). We combine RISE, a data-parallel
functional language for expressing computations, with a
functional strategy language, called ELEVATE. RISE provides
well-known functional data-parallel patterns for expressing
computations at a high level. ELEVATE enables programmers
to define their own abstractions for building optimization
strategies in a composable and reusable way. As we will see
in our experimental results, our approach provides competi-
tive performance compared with the state of the art while
being built with and leveraging functional principles result-
ing in an elegant and composable design.

2. MOTIVATION AND BACKGROUND
We motivate the need for more principled optimizations
with a study of TVM, the state of the art in high-performance
domain-specific compilation for machine learning.

2.1. Scheduling languages for high-performance code
generation
Halide11 proposed decoupling a program into the algorithm,
describing the functional behavior, and the schedule, specifying
how the compiler should optimize. This has inspired similar
approaches such as TVM4 in deep learning.

Listings 1 and 2 show TVM Python code15 for optimizing
matrix multiplication. Listing 1 shows a simple version where
lines 2–6 define the computation: A and B are multiplied by
performing the dot product for each coordinate pair (x, y).
The dot product is expressed as pairwise multiplications and
summation using the tvm.sum operator (line 6). Line 8
instructs the compiler to use the default schedule-generating
code to compute the output matrix sequentially.

Modifications for optimizing performance. Listing
2 shows an optimized version. The schedule in lines 10–23
specifies multiple optimizations including tiling (line 12), vec-
torization (line 19), and loop unrolling (line 18) for optimiz-
ing the performance on multicore CPUs. However, in order to

Figure 1. Overview of our holistic functional approach to achieving
high performance: Computations are expressed as High-Level
Programs written in the data-parallel language RISE. These
programs are rewritten following the instructions of an Optimization
Strategy expressed in the strategy language ELEVATE. From the
rewritten Low-Level Programs that encode optimizations explicitly,
High-Performance Code is generated.

High-Performance Code

C
O

M
P

IL
E

R

Low-Level Program

Codegen

Rewriting

OpenMP

High-Level Program Optimization Strategy
RISE

RISE

ELEV TE

V

1 # Naive algorithm

2 k = tvm.reduce_axis((, K), 'k')
3 A = tvm.placeholder((M, K), name ='A')
4 B = tvm.placeholder((K, N), name ='B')
5 C = tvm.compute((M, N),

6 lambda x,y: tvm.sum(A[x,k] * B[k,y],axis=k),name ='C')
7 # Default schedule

8 s = tvm.create_schedule(C.op)

Listing 1: Matrix–matrix multiplication in TVM. Lines 2–6
define the computation A × B, line 8 instructs the compiler
to use the default schedule computing the output matrix
sequentially in a row-major order.

1 # Optimized algorithm
2 k = tvm.reduce_axis((, K),'k')
3 A = tvm.placeholder((M, K), name='A')
4 B = tvm.placeholder((K, N), name='B')
5 pB = tvm.compute((N/32,K,32), lambda x,y,z: B[y,x*32+z],
6 name='pB')
7 C = tvm.compute((M,N),lambda x,y:tvm.sum(
8 A[x,k]*pB[y/32,k,tvm.indexmod(y,32)]axis=k),name='C')
9 # Parallel schedule

10 s = tvm.create_schedule(C.op)
11 CC = s.cache_write (C, 'global')
12 xo,yo,xi,yi = s[C].tile(C.op.axis[], C.op.axis[1],32,32)
13 s[CC].compute_at (s[C], yo)
14 xc, yc = s[CC].op.axis
15 k, = s[CC].op.reduce_axis
16 ko, ki = s[CC].split(k, factor=4)
17 s[CC].reorder (ko, xc, ki, yc)
18 s[CC].unroll(ki)
19 s[CC].vectorize (yc)
20 s[C].parallel (xo)
21 x, y, z s[pB].op.axis
22 s[pB].vectorize (z)
23 s[pB].parallel (x)

Listing 2: Optimized matrix–matrix multiplication in TVM.
Lines 2–8 define an optimized version of the algorithm in
Listing 1, the other lines define a schedule specifying the
optimizations for targeting CPUs.

MARCH 2023 | VOL. 66 | NO. 3 | COMMUNICATIONS OF THE ACM 91

of reach for the user’s control. The implicit optimizations
sometimes lead to the surprising behavior that algorithms
without a schedule perform better (e.g., due to auto-vector-
ization) than ones with a provided schedule.

2.2. The need for a principled way to separate,
describe, and apply optimizations
Out of the shortcomings of scheduling APIs, we identify
desirable features for a more principled way to separate,
describe, and apply optimizations for high-performance
code generation. Our holistic functional approach aims to
do the following:

1. Separate concerns: Computations should be expressed
at a high abstraction level only. They should not be
changed to express optimizations.

2. Facilitate reuse: Optimization strategies should be
defined separated from the computational program
facilitating reusability of programs and strategies.

3. Enable composability: Computations and strategies
should be written as compositions of user-defined (possi-
bly domain-specific) building blocks; both languages
should facilitate the creation of higher-level abstractions.

4. Allow reasoning: Computational patterns, but also
especially strategies, should have a precise, well-defined
semantics allowing reasoning about them.

5. Be explicit: Implicit default behavior should be avoided
to empower users to be in control.

Fundamentally, we argue that a more principled high-
performance code generation approach should be holistic by
considering computation and optimization strategies equally
important. As a consequence, a strategy language should be built
with the same standards as a language describing computation.

In this paper, we present such an approach combining
two functional languages: RISE and ELEVATE.

Figure 2 shows an example of a RISE program defining
matrix multiplication computation as a composition of
well-known data-parallel functional patterns. Below is an
ELEVATE strategy that defines one possible optimization by
applying the well-known tiling optimization. The optimiza-
tion strategy is defined as a sequential composition (‘;’) of
user-defined strategies that are themselves defined as com-
positions of simple rewrite rules giving the strategy precise
semantics. We do not use implicit behavior and instead gen-
erate low-level code according to the optimization strategy.

3. RISE: A LANGUAGE FOR EXPRESSING DATA-
PARALLEL COMPUTATIONS
RISE is a functional programming language with data- parallel
patterns for expressing computations over multidimensional
arrays. RISE is a spiritual successor of Lift12, 13, 14 that has dem-
onstrated that functional, high-performance code genera-
tion is feasible for different domains, including dense linear
algebra, sparse linear algebra, and stencil computations.6

The top of Figure 2 shows an example of a RISE program
using usual functional constructs of function abstraction
(written fun(x, e)), application (written with parenthesis),
identifiers, and literals (underlined). We use the following
syntactic sugar: We write reverse function application as
e |> f (equivalent to f(e)); we write function
 composition as g << f and in the reverse form as f >> g,
both meaning f is applied before g. The type system allows
to symbolically track the length of arrays using a restricted
form of dependent types. Grammar and typing rules are given
elsewhere.5, 2

RISE defines a set of high-level primitives that describe
computations over multidimensional arrays. These primi-
tives are well known in the functional programming com-
munity: fst, snd, and the binary functions add and mult
have their obvious meaning. map and reduce are the well-
known higher-order functions operating on arrays and
allowing for easy parallelization. zip, split, join, and
transpose shape multidimensional array data in various
ways.

A functional representation of hardware features.
Besides the high-level primitives, RISE offers low-level
primitives to indicate how to exploit the underlying hard-
ware. Generally, programmers do not directly use these
primitives; instead, they are introduced by rewrite rules.
The mapSeq and mapPar patterns indicate if a function
is applied to an array using a sequential or a parallel loop.
Similarly, reduceSeq and reduceSeqUnroll indicate
if the sequential reduction loop should be unrolled or not.
RISE does not provide a parallel reduction as a building
block because it is expressable using other low-level primi-
tives such as mapPar. toMem(a)(fun(x,b)) indicates that
a is stored in memory and accessible in b with the name x.
Three more low-level patterns, mapVec, asVector, and
asScalar, enable the use of SIMD-style vectorization. The
low-level primitives presented here are OpenMP-specific for
expressing parallelization on CPUs; a similar set of low-level
primitives exists for targeting the OpenCL programming
language for GPUs.

Strategy-preserving code generation from RISE. The
compilation of RISE programs is slightly unusual. A high-
level program is rewritten using a set of rewrite rules into
the low-level patterns. From the low-level representation,
imperative parallel code is generated. This design leads to
a clear separation of concerns—one of the key aims that
we set out for our approach. All optimization decisions must
be made in the rewriting stage before code generation.
Atkey et al.2 describe a code generation process that is guar-
anteed to be strategy preserving, meaning that no implicit
implementation decisions are made. Instead, the compiler
respects the implementation and optimization decisions

Figure 2. Matrix-matrix multiplication in RISE (top) and the tiling
optimization strategy in ELEVATE (bottom).

1 // Matrix Matrix Multiplication in RISE
2 val dot fun(as, fun(bs, zip(as)(bs) |>
3 map(fun(ab, mult(fst(ab))(snd(ab)))) |> reduce(add)(_)))
4 val mm fun(a : M.K.float, fun(b : K.N.float,
5 a |> map(fun(arow, // iterating over M
6 transpose (b) |> map(fun(bcol, // iterating over N
7 dot(arow)(bcol))))))) // iterating over K

1 val tiledmm = // Optimization Strategy in ELEVATE
2 (tile(32, 32)‘@‘ outermost (mapNest(2)) ‘;‘ lowerToC)(mm)

research highlights

92 COMMUNICATIONS OF THE ACM | MARCH 2023 | VOL. 66 | NO. 3

explicitly encoded in the low-level RISE program.

4. ELEVATE: A LANGUAGE FOR DESCRIBING
OPTIMIZATION STRATEGIES
ELEVATE is a functional language for describing optimiza-
tion strategies with a standard feature set, including recur-
sion, algebraic data types, and pattern matching. It is heavily
inspired by earlier work on strategy languages,8 for example,
Stratego,16, 18 and complements our functional language
RISE that describes computations. Our current implemen-
tation is a shallow-embedded DSL in Scala, and we use
Scala-like notation for ELEVATE strategies in the paper.

4.1. Strategies
A strategy is the fundamental building block of ELEVATE
encoding a program transformation as a function with type:

type Strategy[P] = P => RewriteResult[P]

Here, P is the type of the rewritten program, such as Rise
for RISE programs. A RewriteResult is an applicative error
monad encoding the success or failure of applying a strategy:

RewriteResult[P] = Success[P](p: P)
 | Failure[P](s: Strategy[P])

In case of success, Success contains the rewritten program;
otherwise, Failure contains the unsuccessful strategy.

The simplest examples of strategies are strategies that
always succeed (id) and always fail (fail):

def id[P]:Strategy[P] = (p:P) => Success(p)
def fail[P]:Strategy[P] = (p:P) => Failure(fail)

4.2. Rewrite rules as strategies
In ELEVATE, rewrite rules are also strategies, that is, func-
tions satisfying the type given above. The left-hand side of
the well-known mapFusion rule (Figure 3) is expressed in
RISE as:

val p: Rise = fun(xs, map(f)(map(g)(xs)))

The fusion rule is implemented in ELEVATE as follows:

def mapFusion: Strategy[Rise] = p => p match {
 case app(app(map, f), app(app(map, g), xs))
 => Success(map(fun(x, f(g(x))))(xs))
 case _ => Failure(mapFusion) }

We are mixing RISE (i.e., map(f)) and ELEVATE expres-
sions and use app(f, x) to pattern-match the function
application that we write as f(x) in RISE. The expression
nested inside Success is the result of the rewrite rule
application. Figure 3 shows all rewrite rules used as basic
building blocks for expressing optimizations such as til-
ing, discussed later.

4.3. Strategy combinators
An idea that ELEVATE inherits from Stratego17 is to describe

strategies as compositions—one of our key aims. Therefore,
we introduce strategy combinators.

The seq combinator composes two strategies fs and ss
sequentially by applying the first strategy to the input pro-
gram p, and then, the second strategy is applied to the result.

def seq[P]:
 Strategy[P] => Strategy[P] => Strategy[P] =
 fs => ss => p => fs(p) »= (q => ss(q))

The seq strategy is successful when it applied both strate-
gies successfully in succession; otherwise, seq fails. In our
combinator’s implementation, we use the monadic interface
of RewriteResult and use the standard Haskell operators
»= for monadic bind, <|> for mplus, and <$> for fmap.

The lChoice combinator is given two strategies and
applies the second one only if the first failed.

def lChoice[P]:
 Strategy[P] => Strategy[P] => Strategy[P] =
 fs => ss => p => fs(p) <|> ss(p)

We use <+ as an infix operator for lChoice and ‘;’ for
seq. Using these basic combinators, we define others such
as try that applies a strategy and, in case of failure, applies
the identity strategy. Therefore, try never fails.

def try[P]: Strategy[P] => Strategy[P] =
 s => p => (s <+ id)(p)

 repeat applies a strategy until it is no longer applicable.

def repeat[P]: Strategy[P] => Strategy[P] =
 s => p => try(s ‘;’ repeat(s))(p)

4.4. Traversals as strategy transformers
In the implementation of the mapFusion strategy, the match
statement will try to pattern-match its argument—the entire
program. This means that a strategy on its own is hard to
reuse in different circumstances.

In addition, a strategy is often applicable at multiple

Figure 3. Rewrite rules of high-level RISE expressions used for
optimizations in this paper.

id (addId)

(id : m.n.d m.n.d) transpose transpose
(idToTranspose)

transpose map(map(f)) map(map(f)) transpose
(transposeMove)

map(f) split(n) map(map(f)) join
(splitJoin)

map(f g) map(f) map(g)
(mapFusion/mapFission)

map(f) reduce(fun((acc,y), op(acc)(y)))(init)
reduce(fun((acc,y), op(acc)(f(y))))(init)

(fuseReduceMap/fissionReduceMap)

MARCH 2023 | VOL. 66 | NO. 3 | COMMUNICATIONS OF THE ACM 93

Particularly in the context of program optimization, it rarely
makes sense to apply a strategy to all sub-expressions.

In ELEVATE, one can easily specify program language-
specific traversals. As we have seen in the previous section,
RISE is a functional language using l-calculus as its represen-
tation. Therefore, it makes sense to introduce traversals that
navigate the two core concepts of l-calculus: function abstrac-
tion and application. To apply a strategy to the body of a func-
tion abstraction, we define the body traversal that applies a
strategy to the function body, and if successful, a function is
built around the transformed body. Similarly, we define tra-
versals function and argument for function applications.

For the RISE program shown in Figure 4, we can now
describe a precise path in the AST. To fuse the first two maps,
we may write body(mapFusion)(maps3), and to fuse the
others, we write body(argument(mapFusion))(maps3).

All traversal primitives introduced so far apply their given
strategies only to immediate sub-expressions. Using strat-
egy combinators and traversals, we can define recursive
strategies that traverse entire expressions:

def topDown[P]: Traversal[P] =
 s => p => (s <+ one(topDown(s)))(p)
def bottomUp[P]: Traversal[P] =
 s => p => (one(bottomUp(s)) <+ s)(p)
def tryAll[P]: Traversal[P] =
 s => p => (all(tryAll(try(s))) ‘;’ try(s))(p)

topDown and bottomUp are useful strategies travers-
ing an expression either from the top or from the bottom,
trying to apply a strategy at every sub-expression and stop-
ping at the first successful application. If the strategy is not
applicable at any sub-expression, topDown and bottomUp
fail. The tryAll strategy is often more useful as it wraps its
given strategy in a try and thus never fails but applies the
strategy wherever possible. Also, note that the tryAll strat-
egy traverses the AST bottom-up instead of top-down.

4.5. Normalization
When implementing rewrite rules, such as the mapFusion
rule as strategies, the match statement expects the input
expression to be in a particular syntactic form. For a func-
tional language like RISE, we might, for example, expect that
expressions are fully b-reduced. To ensure that expressions
satisfy a normal-form, we define:

def normalize[P]: Strategy[P] => Strategy[P] =
 s => p => repeat(topDown(s))(p)

The normalize strategy repeatedly applies a given strategy
to every possible sub-expression until it cannot be applied
anymore. Therefore, after normalize successfully finishes,
it is not possible to apply the given strategy to any sub-
expression any more.

For RISE specifically, we use in the following two normal
forms whose implementation is explained in the original paper5:

1. the Beta-Eta-Normal-Form (BENF) transforms a RISE
expression such that the standard lambda calculus

places within the same program or only applicable at a spe-
cific location. For example, the mapFusion strategy is appli-
cable twice in the following RISE program:

val maps3 = fun(xs, map(f)(map(g)(map(h)(xs))))

We may fuse the first or last two maps, as shown in Figure 4.
In ELEVATE, we use traversals to describe at which exact

location a strategy is applied. Luttik and Visser9 proposed
two basic traversals encoded as strategy transformers:

type Traversal[P] = Strategy[P] => Strategy[P]
def all[P]: Traversal[P];
def one[P]: Traversal[P];

Traversal all applies a given strategy to all sub-expres-
sions of the current expression and fails if the strategy is not
applicable to all sub-expressions. one applies a given strat-
egy to exactly one sub-expression and fails if the strategy is
not applicable to any sub-expression.

In ELEVATE, we view these basic traversals as a type class:
an interface that has to be implemented for each program
type P. The implementation for RISE is straightforward. RISE
programs are represented by ASTs such as the one in Figure
4; therefore, all and one correspond to the obvious imple-
mentations on the tree-based representation.

To fuse the first two maps in Figure 4, we use the one
traversal: one(mapFusion)(maps3). This applies the
mapFusion strategy, not at the root of the AST, but instead
one level down, first trying to apply the strategy (unsuccess-
fully) to the function parameter and then (successfully) to
the function body highlighted in the upper-right blue box.

To fuse the last two maps, we use the one traversal twice:
one(one(mapFusion))(maps3). This successfully applies
the fusion strategy to the expression highlighted in the lower-
right purple box in Figure 4.

The traversals we have discussed so far are not specific to
RISE. These traversals are flexible but offer only limited con-
trol as for one the selection of sub-expressions is either non-
deterministic or implementation-dependent (as for RISE).

Figure 4. Two possible locations for applying the map-fusion rule
within the same program.

body

fun

fun

fun

fun

fun
fun

arg arg

arg

id
fun

fun(xs, map(f)(map(g)(map(h)(xs))))

app app

app

app app

map

map

map

f

g

h

xs

app

arg

arg

arg

research highlights

94 COMMUNICATIONS OF THE ACM | MARCH 2023 | VOL. 66 | NO. 3

that will be unrolled by the RISE compiler during code
generation.

5.2. Multidimensional tiling as a strategy
Tiling is a crucial optimization improving the cache hit
rate by exploiting locality within a small neighborhood of
elements. TVM’s tile is a more complicated scheduling
primitive to implement because it is essentially a combina-
tion of two traditional loop transformations: loop blocking
and loop interchange. In fact, tile in TVM is a built-in
combination of split for loop blocking and reorder for
loop interchange. We already saw how to implement split
using ELEVATE. We will now discuss how to implement a
tile strategy using a combination of rules, normal-forms,
and domain-specific traversals. Where TVM only imple-
ments 2D tiling, our generalized strategy tiles an arbitrary
number of dimensions.

We require five basic rules for expressing our multidimen-
sional tiling strategy: splitJoin, addId, idToTrans-
pose, transposeMove, and mapFission (all shown in
Figure 3). In addition, we require three standard l-calculus-
specific transformations: h- and b-reduction, and h-abstrac-
tion. We implement these rules as basic ELEVATE strategies.

Listing 3 shows the ELEVATE implementation of the til-
ing optimization. The multidimensional tileND strategy
expects a list of tile sizes, one per tiled dimension. The intu-
ition for the implementation is simple: First, we ensure
that the required rules are applicable to the input expres-
sion by normalizing the expression using the DFNF normal
form. Then, we apply the previously introduced split
strategy to every map to be blocked, recursively going from
the innermost to outermost, as explained below. Finally,
the interchange strategy rearranges the blocked loops
in the expected final order; this strategy is explained in
detail in the original paper.5

To recursively apply the loop blocking strategy to nested
maps, we make use of the RISE-specific traversal fmap:

def fmap: Traversal[Rise] = s =>
 function(argOf(map, body(s)))

fmap traverses to the function argument of a map primi-
tive and applies the given strategy s. Note that the strategy
requires the function argument of a map primitive to be a
function abstraction, which we can assume because we nor-
malize the expression using DFNF. The fmap strategy is use-
ful because it can be nested to “push” the application of the
given strategy inside of a map-nest. For example,

fmap(fmap(split(n)))(DFNF(map(map(map(f)))))

transformations b-reduction and h-reduction are no
longer applicable, and

2. the Data-Flow-Normal-Form (DFNF) ensures a partic-
ular syntactic structure for higher-order RISE primi-
tives like map. Specifically, DFNF ensures that a
function abstraction is present in every higher-order
primitive and that higher-order primitive are fully
applied.

5. OPTIMIZATIONS AS STRATEGIES
In this section, we explore the use of ELEVATE to encode
high-performance optimizations by leveraging its ability to
define custom abstractions. We use TVM4 as a comparison
for a state-of-the-art imperative optimizing deep learning
compiler with a scheduling API implemented in Python.
TVM allows expressing computations using an EDSL (in
Python) and controlling the application for optimizations
using a separate scheduling API.

We start by expressing basic scheduling primitives
such as parallel in ELEVATE. Then, we explore the
implementation of more complex scheduling primi-
tives like tile by composition in ELEVATE, whereas it is
a built-in optimization in TVM. Following our functional
approach, we express sophisticated optimization strat-
egies as compositions of a small set of general rewrite
rules resulting in a more principled and even more pow-
erful design. Specifically, the tiling optimization strategy
in ELEVATE can tile arbitrary many dimensions instead of
only two, while being composed of only five RISE-specific
rewrite rules.

5.1. Basic scheduling primitives as strategies
TVM’s scheduling primitives parallel, split, and unroll
specify loop transformations. We implement those as rewrite
rules for RISE. The parallel primitive indicates the parallel
computation of a particular loop. In RISE, this is indicated by
transforming a high-level map into its low-level mapPar ver-
sion as expressed in the following ELEVATE strategy:

def parallel: Strategy[Rise] = p => p match {
 case map => Success(mapPar)
 case _ => Failure(parallel)}

We define a strategy for the sequential mapSeq similarly.
TVM’s split primitive implements loop blocking. In

RISE, this is achieved by rewriting the computation over an
array expressed by map(f): First, the input is split into a
two-dimensional array using split(n), then f is mapped
twice to apply the function to all elements of the now nested
array, and finally, the resulting array is attended into the
original one-dimensional form using join.

def split(n:Int):Strategy[Rise] = p => p match {
 case app(map, f) =>
 Success(split(n) >> map(map(f)) >> join)
 case _ => Failure(split(n)) }

The unroll strategy rewrites the high-level map and
reduce primitives into specific RISE low-level primitives

1 def tileND(n: List[Int]): Strategy[Rise] =
2 DFNF ‘;‘ (n.size match {
3 case 1 => function(split(n.head)) // loop-blocking
4 case i => fmap (tileND(d-1)(n.tail)) ‘;‘ // recurse
5 function (split(n.head)) ‘;‘ // loop-blocking
6 interchange (i) }) // loop-reorder

Listing 3: ELEVATE strategy implementing tiling recursively
for arbitray dimensions.

MARCH 2023 | VOL. 66 | NO. 3 | COMMUNICATIONS OF THE ACM 95

 case x if x < => Failure(mapNest(d))
 case _ => fmap(mapNest(d-1))(p)})

outermost traverses from top to bottom visiting nested
primitives from outermost to innermost, trying to apply the
predicate. If the predicate is applied successfully, it applies
the given strategy s. Similarly, we define function innermost,
which instead uses bottomUp. The mapNest predicate
recursively traverses a DFNF-normalized map nest of a given
depth using nested fmap traversals. If the traversal is success-
ful, a map nest of depth d has been found.

By combining these abstractions, we conveniently describe
applying the tiling optimization to the two outermost loop
nests elegantly in ELEVATE:

(tile(32,32) ‘@’ outermost(mapNest(2)))(mm)

6. EXPERIMENTAL EVALUATION
In this section, we evaluate our functional approach to high-
performance code generation. We use ELEVATE strategies
to describe optimizations that are equivalent to TVM sched-
ules using matrix–matrix multiplication as our case study.
We compare the performance achieved using code gener-
ated by the RISE compiler and code generated by TVM. The
original paper5 also includes a performance comparison
with Halide.

6.1. Optimizing matrix-matrix multiplication
For our case study of matrix-matrix multiplication, we follow
a tutorial from the TVM authors that discuss seven progres-
sively optimized versions: baseline, blocking, vectorized, loop
permutation, array packing, cache blocks, and parallel. For
each TVM schedule, we developed an equivalent ELEVATE
strategy using the TVM-like scheduling abstractions and the
traversal utilities. The vectorized, loop permutation and cache
blocks versions are not discussed here for brevity but are dis-
cussed in the original paper5; we discuss the rest here.

Baseline. For the baseline version, TVM uses a default
schedule, whereas ELEVATE describes the implementation
decisions explicitly as shown in Figure 5—one of the key
aims that we set out for our approach.

The TVM algorithm shown in Listing 1 computes the
dot product in a single statement in line 6. The RISE
program shown at the top of Figure 5 describes the dot

skips two maps and applies loop blocking to the inner-
most map. In Listing 3 line 4, we use fmap to recursively
call tileND applying loop blocking first to the inner maps
before to the outer map.

5.3. Abstractions for describing locations in RISE
In TVM, named identifiers describe locations at which opti-
mizations should be applied. For example, TVM’s split is
invoked with an argument specifying the loop to block:

1 k, = s[C].op.reduce_axis
2 ko,ki = s[C].split(k, factor=4)

Using identifiers ties schedules to computational expressions
and makes reusing schedules hard. ELEVATE does not use
names to identify locations, but instead uses the traversals
defined in Section 4. This is another example of how we
facilitate reuse—one of the key aims of our approach.

By using ELEVATE’s traversal strategies, we apply the basic
scheduling strategies in a much more flexible way: For exam-
ple, topDown(parallel) traverses the AST from top to
bottom and will thus always parallelize the outermost map,
corresponding to the outermost for loop. tryAll(parallel)
traverses the whole AST instead, and all maps are parallelized.

In order to apply optimizations on large ASTs, it is often
insufficient to use the topDown or tryAll traversals. For
example, we might want to block a specific loop in a loop
nest. None of the introduced traversals so far allow the
description of a precise loop conveniently, or rather a pre-
cise location, required for these kinds of optimizations.
Strategy predicates allow us to describe locations in a con-
venient way. A strategy predicate checks the program for a
syntactic structure and returns Success without changing
the program if the structure is found. Two simple examples
for strategy predicates are isReduce and isApp that check
if the current node is a reduce primitive or an applied func-
tion, respectively. These predicates can be composed with
the regular traversals to define precise locations. The ‘@’
strategy allows us to describe the application of strategies at
precise locations conveniently:

def ‘@’[P](s:Strategy[P], t:Traversal[P]) = t(s)

We write this function in infix notation.
The left-hand side of the ‘@’ operator specifies the strategy

to apply, and the right-hand side specifies the precise loca-
tion as a traversal. This nicely separates the strategy to apply
from the traversal describing the location. This abstraction
is especially useful for complex optimization strategies with
nested location descriptions. For RISE, we specify multiple
useful traversals and predicates, which can be extended as
needed. Two useful ones are outermost and mapNest that
are defined as follows:

def outermost: Strategy[Rise] => Traversal[Rise]
 = pred => s => topDown(pred ‘;’ s)
def mapNest(d: Int): Strategy[Rise] = p =>
 (d match {
 case x if x == => Success(p)

Figure 5. RISE matrix multiplication expression (top) and baseline
strategy in ELEVATE (bottom).

1 // matrix multiplication in RISE
2 val dot fun(as, fun(bs, zip(as)(bs) |>
3 map(fun(ab, mult(fst(ab))(snd(ab)))) |>
4 reduce(add)()))
5 val mm fun(a, fun(b, a |>
6 map(fun(arow, transpose (b) |>
7 map(fun(bcol,
8 dot(arow)(bcol)))))))

1 // baseline strategy in ELEVATE
2 val baseline DFNF ‘;‘ fuseReduceMap ‘@‘ topDown)
3 (baseline ‘;‘

(
lowerToC)(mm)

research highlights

96 COMMUNICATIONS OF THE ACM | MARCH 2023 | VOL. 66 | NO. 3

strategy (line 13) while adding strategies for unrolling the
innermost reduction (line 16) and parallelizing the outer-
most loop (line 14).

6.2. Rewriting overhead and performance
We now investigate the scalability, overhead, and perfor-
mance of our functional rewrite-based approach.

Scalability and overhead. To evaluate scalability and the
overhead of rewriting, we are counting the number of suc-
cessfully applied rewrite steps performed when applying a
strategy to the RISE matrix multiply expression. We count
every intermediate step, which includes traversals as these
are implemented as rewrite steps too.

Figure 6 shows the number of rewrites for each version.
No major optimizations are applied to the baseline version,
and 657 rewrite steps are performed. However, as soon
as interesting optimizations are applied, we reach about
40,000 steps for the next three versions and about 63,000 for
the most complicated optimizations. These high numbers
clearly show the scalability of our compositional approach,
in which complex optimizations are composed of a small set
of fundamental building blocks. It also shows that abstrac-
tions are required to control this many rewrite steps. The
high-level strategies encode practical optimizations and
hide massive numbers of individual rewrite steps that are
performed. Applying the strategies to the RISE expression
took less than two seconds per version on a commodity lap-
top, demonstrating the moderate overhead of our unopti-
mized implementation.

Performance comparison against TVM. Finally, we are
interested in the performance achieved when optimizing

product with separate map and reduce primitives, which
are fused as described in the ELEVATE program below using
the fuseReduceMap rewrite rules from Figure 3. The low-
erToC strategy rewrites map and reduce into their sequen-
tial versions. Both systems generate equivalent C code of two
nested loops iterating over the output matrix and a single
nested reduction loop performing the dot product.

Blocking. For the blocking version, we reuse the baseline
and lowerToC strategy, but first, we use the abstractions
built in the previous sections, emulating the TVM schedule as
shown in Listings 4 and 5. We first apply tile, then split,
and then reorder, just as specified in the TVM schedule.
To split the reduction, we need to fission the fused map
and reduce primitives again using fissionReduceMap.
We describe locations using outermost and innermost
applying tile to the outermost maps and split to the
nested reduction. In contrast to TVM, for reorder, we iden-
tify dimensions by index rather than by name. We introduce
the ‘;;’ combinator for convenience denoting that we apply
DFNF to normalize intermediate expressions between
each step.

Array packing. As already discussed in the motivation
section, some optimizations are not expressible in TVM’s
scheduling API without changing the algorithm—clearly
violating the separation between specifying computations
and optimizations. Specifically, the array packing optimiza-
tion permutes the B matrix’s elements in memory improv-
ing memory access patterns by introducing an additional
computation pB in Listing 2 line 6, before using it in line 8.

For our implementation of the array packing optimization,
we are not required to change the RISE program, but define
and apply the array packing of matrix B simply as another
rewrite step in ELEVATE (Listing 6 line 10). Our arrayPacking
strategy is itself composed out of other strategies, for exam-
ple, storeInMemory or loopPerm, which are left out for
brevity here but are explained in detail in the original paper.5

Parallel. The TVM version parallel changes the algorithm
yet again to introduce a temporary buffer (CC in Listing 2
line 11) for the accumulation along the K-dimension to
improve the cache writing behavior and unrolls the inner
reduction loop. For expressing the parallel version in
ELEVATE (Listing 6 line 12), we reuse the arrayPacking

1 val appliedReduce = isApp(isApp(isApp(isReduce)))
2 val blocking = (baseline ‘;‘
3 tile(32,32) ‘@‘ outermost (mapNest(2)) ‘;;‘
4 fissionReduceMap ‘@‘ outermost (appliedReduce)‘;;‘
5 split(4) ‘@‘ innermost (appliedReduce)‘;;‘
6 reorder(List(1,2,5,6,3,4)))
7 (blocking ‘;‘ lowerToC)(mm)

Listing 4: ELEVATE blocking strategy

Listing 5: TVM blocking schedule

1 # blocking version
2 xo, yo, xi, yi = s[C].tile(
3 C.op.axis[],C.op.axis[1],32,32)
4 k, = s[C].op.reduce_axis
5 ko, ki = s[C].split(k, factor=4)
6 s[C].reorder(xo, yo, ko, ki, xi, yi)

1 val appliedMap = isApp(isApp(isMap))
2 val isTransposedB = isApp(isTranspose)
3
4 val packB = storeInMemory (isTransposedB ,
5 permuteB ‘;;‘
6 vectorize(32) ‘@‘ innermost(appliedMap) ‘;;‘
7 parallel ‘@‘ outermost(isMap)
8) ‘@‘ inLambda
9

10 val arrayPacking = packB ‘;;‘ loopPerm
11
12 val par = (
13 arrayPacking ‘;;‘
14 (parallel ‘@‘ outermost (isMap))
15 ‘@‘ outermost (isToMem) ‘;;‘
16 unroll ‘@‘ innermost (isReduce))
17
18 (par ‘;‘ lowerToC)(mm)

Listing 6: ELEVATE parallel strategy

baseline
blocking

vectorization
loop-perm

array-packing
cache-blocks

parallel
0

20,000

40,000

60,000

R
ew

rit
e

S
te

ps

Figure 6. Total number of successful rewrite steps when applying
different optimization strategies.

MARCH 2023 | VOL. 66 | NO. 3 | COMMUNICATIONS OF THE ACM 97

RISE programs with ELEVATE compared with TVM. Ideally,
the RISE code optimized with ELEVATE should be similar
to the TVM-generated code and achieve competitive per-
formance. We performed measurements on an Intel mul-
ticore CPU. For a detailed description of the experimental
setup see the original paper.5

Figure 7 shows the performance of RISE- and TVM-
generated code. The code generated by RISE controlled by
the ELEVATE optimization strategies performs competitively
with TVM. Our experiment indicates a matching trend across
versions compared with TVM, showing that our ELEVATE
strategies encode the same optimizations used in the TVM
schedules. The most optimized parallel RISE generated ver-
sion improves the performance over the baseline by about
110×. The strategies developed in an extensible style by com-
posing individual rewrite steps using ELEVATE are practically
usable and provide competitive performance for important
high-performance code optimizations.

7. CONCLUSION
In this paper, we presented a holistic functional approach
to high-performance code generation. We presented two
functional languages: RISE for describing computations
as compositions of data-parallel patterns and ELEVATE for
describing optimization strategies as composition of rewrite
rules. We showed that our approach successfully: separates
concerns by truly separating the computation and strategy
languages; facilitates reuse of computational patterns as well
as rewrite rules; enables composability by building programs
as well as rewrite strategies as compositions of a small num-
ber of fundamental building blocks; allows reasoning about
programs and strategies with well-defined semantics; and is
explicit by empowering users to be in control over the opti-
mization strategy that is respected by our compiler. In con-
trast to existing imperative systems with scheduling APIs
such as Halide and TVM, programmers are not restricted
to apply a set of built-in optimizations but define their own
optimization strategies. Our experimental evaluation dem-
onstrates that our holistic functional approach achieves
competitive performance compared with the state-of-the-art
code generator TVM.

References
 1. Abadi, M., Agarwal, A., Barham, P.,

Brevdo, E., Chen, Z., Citro, C., Corrado,
G.S., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Goodfellow, I., Harp, A.,
Irving, G., Isard, M., Jia, Y., Jozefowicz,

R., Kaiser, L., Kudlur, M., Levenberg, J.,
Mané, D., Monga, R., Moore, S.,
Murray, D., Olah, C., Schuster, M.,
Shlens, J., Steiner, B., Sutskever, I.,
Talwar, K., Tucker, P., Vanhoucke, V.,
Vasudevan, V., Viégas, F., Vinyals, O.,

Warden, P., Wattenberg, M., Wicke, M.,
Yu, Y., Zheng, X. TensorFlow:
Large-scale machine learning on
heterogeneous systems, 2015.
Software available from tensorow.org.

 2. Atkey, R., Steuwer, M., Lindley, S.,
Dubach, C. Strategy preserving
compilation for parallel functional
code. CoRR, abs/1710.08332, 2017.

 3. Barham, P., Isard, M. Machine learning
systems are stuck in a rut. In HotOS.
ACM, 2019, 177–183.

 4. Chen, T., Moreau, T., Jiang, Z., Zheng, L.,
Yan, E.Q., Shen, H., Cowan, M., Wang, L.,
Hu, Y., Ceze, L., Guestrin, C.,
Krishnamurthy, A. TVM: An automated
end-to-end optimizing compiler
for deep learning. In 13th USENIX
Symposium on Operating Systems
Design and Implementation, OSDI
2018. (Carlsbad, CA, USA, October
8–10, 2018), 2018, 578–594.

 5. Hagedorn, B., Lenfers, J., Koehler, T.,
Qin, X., Gorlatch, S., Steuwer, M.
Achieving high-performance the
functional way: A functional pearl
on expressing high-performance
optimizations as rewrite strategies.
Proc. ACM Program. Lang. 4, (ICFP),
2020.

 6. Hagedorn, B., Stoltzfus, L., Steuwer, M.,
Gorlatch, S., Dubach, C. High
performance stencil code generation
with Lift. In Proceedings of the 2018
International Symposium on Code
Generation and Optimization, CGO
2018, (Vösendorf/Vienna, Austria,
February 24–28, 2018), 2018, 100–112.

 7. Hennessy, J.L., Patterson, D.A. A new
golden age for computer architecture.
Commun. ACM 62, 2 (2019), 48–60.

 8. Kirchner, H. Rewriting strategies and
strategic rewrite programs. In Logic,
Rewriting, and Concurrency - Essays
dedicated to José Meseguer on the
Occasion of His 65th Birthday, 2015,
380–403.

 9. Luttik, S.P., Visser, E., et al.
Specification of rewriting strategies.
Universiteit van Amsterdam.
Programming Research Group, 1997.

 10. Paszke, A., Gross, S., Chintala, S.,
Chanan, G., Yang, E., DeVito, Z., Lin, Z.,

Desmaison, A., Antiga, L., Lerer, A.
Automatic differentiation in pytorch.
2017.

 11. Ragan-Kelley, J., Adams, A., Sharlet, D.,
Barnes, C., Paris, S., Levoy, M.,
Amarasinghe, S. P., Durand, F.
Halide: Decoupling algorithms from
schedules for high-performance image
processing. Commun. ACM 61, 1
(2018), 106–115.

 12. Steuwer, M., Fensch, C., Lindley, S.,
Dubach, C. Generating performance
portable code using rewrite rules:
From high-level functional expressions
to high-performance opencl code. In
ICFP. ACM, 2015, 205–217.

 13. Steuwer, M., Remmelg, T., Dubach, C.
Matrix multiplication beyond auto-
tuning: rewrite-based GPU code
generation. In CASES. ACM, 2016,
15:1–15:10.

 14. Steuwer, M., Remmelg, T., Dubach, C.
Lift: A functional data-parallel IR
for high-performance GPU code
generation. In Proceedings of the 2017
International Symposium on Code
Generation and Optimization, CGO
2017 (Austin, TX, USA, February 4–8,
2017), 2017, 74–85.

 15. TVM. How to optimize gemm on cpu,
2020.

 16. Visser, E. Stratego: A language for
program transformation based on
rewriting strategies. In Rewriting
Techniques and Applications, 12th
International Conference, RTA 2001,
Utrecht, The Netherlands, May
22–24, 2001, Proceedings, 2001,
357–362.

 17. Visser, E. Program transformation
with Stratego/XT. In Domain-specific
program generation. Springer, 2004,
216–238.

 18. Visser, E., Benaissa, Z., Tolmach, A.P.
Building program optimizers with
rewriting strategies. In Proceedings of
the third ACM SIGPLAN International
Conference on Functional
Programming (ICFP ‘98) (Baltimore,
Maryland, USA, September 27–29,
1998), 1998, 13–26.

Bastian Hagedorn (bhagedorn@nvidia.
com), NVIDIA, Würselen, Germany.

Johannes Lenfers, Sergei Gorlatch ({j.le,
gorlatch}@wwu.de), University of
Münster, Germany.

Thomas Koehler (thomas.koehler@thok.
eu), University of Glasgow, U.K.

Xueying Qin, Michel Steuwer (xueying.
qin, michel.steuwer@ed.ac.uk), The
University of Edinburgh, U.K.

Copyright held by authors/owners. Publication rights licensed to ACM.

Figure 7. Performance of TVM- vs. RISE-generated code that has
been optimized by ELEVATE strategies.

baseline
blocking

vectorization
loop-perm

array-packing
cache-blocks

parallel

50
100
200
500

1,000
2,000

R
un

tim
e

in
m

s

TVM
ELEVATE+RISE

