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Abstract
Optimizing programs to run efficiently on modern parallel 
hardware is hard but crucial for many applications. The pre-
dominantly used imperative languages force the program-
mer to intertwine the code describing functionality and 
optimizations. This results in a portability nightmare that is 
particularly problematic given the accelerating trend toward 
specialized hardware devices to further increase efficiency.

Many emerging domain-specific languages (DSLs) used 
in performance-demanding domains such as deep learning 
attempt to simplify or even fully automate the optimization 
process. Using a high-level—often functional—language, 
programmers focus on describing functionality in a declara-
tive way. In some systems such as Halide or TVM, a separate 
schedule specifies how the program should be optimized. 
Unfortunately, these schedules are not written in well-defined 
programming languages. Instead, they are implemented 
as a set of ad hoc predefined APIs that the compiler writers 
have exposed.

In this paper, we show how to employ functional program-
ming techniques to solve this challenge with elegance. We 
present two functional languages that work together—each 
addressing a separate concern. RISE is a functional language 
for expressing computations using well-known data-parallel 
patterns. ELEVATE is a functional language for describing 
optimization strategies. A high-level RISE program is trans-
formed into a low-level form using optimization strategies 
written in ELEVATE. From the rewritten low-level program, 
high-performance parallel code is automatically generated. 
In contrast to existing high-performance domain-specific 
systems with scheduling APIs, in our approach programmers 
are not restricted to a set of built-in operations and optimiza-
tions but freely define their own computational patterns in 
RISE and optimization strategies in ELEVATE in a compos-
able and reusable way. We show how our holistic functional 
approach achieves competitive performance with the state-
of-the-art imperative systems such as Halide and TVM.

1. INTRODUCTION
As Moore’s Law and Dennard scaling are coming to an end,7 
performance and energy efficiency gains no longer come 
for free for software developers that have to optimize for 
an increasingly diverse set of hardware by exploiting subtle 
details of the architecture. The accelerating trend toward 
specialized hardware, which offers extreme benefits for 
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performance and energy efficiency if the optimized software 
exploits it, emphasizes the need for performance portability.

The predominant imperative and low-level programming 
approaches such as C, CUDA, or OpenCL force programmers 
to intertwine the code describing the program’s functional 
behavior with optimization decisions, making them—by 
design—non performance portable. As an alternative, 
higher-level domain-specific approaches have emerged 
allowing programmers to declaratively describe the func-
tional behavior without committing to a specific implemen-
tation. Prominent examples are machine learning systems 
such as TensorFlow1 or PyTorch,10 where the compilers and 
runtime systems are responsible for optimizing the compu-
tations expressed as data flow graphs. Large teams of engi-
neers provide fast implementations for the most common 
hardware, for TensorFlow including Google’s specialized 
TPU hardware. This labor-intensive support of new hard-
ware is currently only sustainable for the biggest compa-
nies—and even they struggle as highlighted by two of the 
original authors of TensorFlow.3

TVM4 and Halide11 are two state-of-the-art high- 
performance domain-specific code generators used in 
machine learning and image processing. Both attempt to 
tackle the performance portability challenge by separating the 
program into two parts: schedules and algorithms. A sched-
ule describes the optimizations to apply to an algorithm 
that defines the functional behavior of the computation. 
Schedules are implemented using a set of predefined ad hoc 
APIs that expose a fixed set of optimization options. TVM’s 
and Halide’s authors describe these APIs as a scheduling lan-
guage, but they lack many desirable properties of a program-
ming language. Most crucially, programmers are not able to 
define their own abstractions. Even the composition of exist-
ing optimization primitives can be unintuitive due to the lack 
of precise semantics and implicit behavior limiting experts’ 
control. Furthermore, for some desirable optimizations, it 
is not sufficient to change the schedule, but programmers 
must redefine the algorithm itself—violating the promise of 
separating algorithm and schedule. To overcome the inno-
vation obstacle of manually optimizing for specialized hard-
ware and for achieving automated performance portability, 
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optimize the memory access pattern, the algorithm has to be 
changed: A copy of the B matrix (pB) is introduced in line 5 (and 
used in line 8) whose elements are reordered depending on 
the tile size. This optimization is not expressible with schedul-
ing primitives and, therefore, requires the modification of the 
algorithm—violating the promise of separating algorithm and 
schedule. Generally, the separation between algorithm and 
schedule is blurred because both share the same Python iden-
tifiers and must live in the same scope. This unsharp separa-
tion limits the reuse of schedules across algorithms.

The optimized parallel schedule uses built-in optimiza-
tion primitives. Some are hardware-specific (like vector-
ize), some are algorithmic optimizations useful for many 
applications (like tiling to increase data locality), and 
others are low-level optimizations (like unroll and reor-
der that transform loop nests). However, TVM’s scheduling 
 language is not easily extensible, as adding optimization 
primitives requires extending the underlying compiler.

The behavior of some primitives is not intuitive, and only 
informal documentation is provided, for example, for cache_
write: “Create a cache write of original tensor, before storing 
into tensor.” Reasoning about schedules is difficult due to 
the lack of clear descriptions of optimization primitives.

If no schedule is provided (as in Listing 1), the compiler 
employs a set of implicit default optimizations that are out 

we will need to rethink how we separate, describe, and apply 
optimizations in a more principled way.

In this paper, we describe a more principled but still 
practical holistic functional approach to high-performance 
code generation (Figure 1). We combine RISE, a data-parallel 
functional language for expressing computations, with a 
functional strategy language, called ELEVATE. RISE provides 
well-known functional data-parallel patterns for expressing 
computations at a high level. ELEVATE enables programmers 
to define their own abstractions for building optimization 
strategies in a composable and reusable way. As we will see 
in our experimental results, our approach provides competi-
tive performance compared with the state of the art while 
being built with and leveraging functional principles result-
ing in an elegant and composable design.

2. MOTIVATION AND BACKGROUND
We motivate the need for more principled optimizations 
with a study of TVM, the state of the art in high-performance 
domain-specific compilation for machine learning.

2.1. Scheduling languages for high-performance code 
generation
Halide11 proposed decoupling a program into the algorithm, 
describing the functional behavior, and the schedule, specifying 
how the compiler should optimize. This has inspired similar 
approaches such as TVM4 in deep learning.

Listings 1 and 2 show TVM Python code15 for optimizing 
matrix multiplication. Listing 1 shows a simple version where 
lines 2–6 define the computation: A and B are multiplied by 
performing the dot product for each coordinate pair (x, y). 
The dot product is expressed as pairwise multiplications and 
summation using the tvm.sum operator (line 6). Line 8 
instructs the compiler to use the default schedule-generating 
code to compute the output matrix sequentially.

Modifications for optimizing performance. Listing 
2 shows an optimized version. The schedule in lines 10–23 
specifies multiple optimizations including tiling (line 12), vec-
torization (line 19), and loop unrolling (line 18) for optimiz-
ing the performance on multicore CPUs. However, in order to 

Figure 1. Overview of our holistic functional approach to achieving 
high performance: Computations are expressed as High-Level 
Programs written in the data-parallel language RISE. These 
programs are rewritten following the instructions of an Optimization 
Strategy expressed in the strategy language ELEVATE. From the 
rewritten Low-Level Programs that encode optimizations explicitly, 
High-Performance Code is generated.
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1 # Naive algorithm

2 k = tvm.reduce_axis(( , K), 'k')
3 A = tvm.placeholder((M, K), name ='A')
4 B = tvm.placeholder((K, N), name ='B')
5 C = tvm.compute((M, N),

6 lambda x,y: tvm.sum(A[x,k] * B[k,y],axis=k),name ='C')
7 # Default schedule

8 s = tvm.create_schedule(C.op)

Listing 1: Matrix–matrix multiplication in TVM. Lines 2–6 
define the computation A × B, line 8 instructs the compiler 
to use the default schedule computing the output matrix 
sequentially in a row-major order.

1 # Optimized algorithm
2 k = tvm.reduce_axis(( , K),'k')
3 A = tvm.placeholder((M, K), name='A')
4 B = tvm.placeholder((K, N), name='B')
5 pB = tvm.compute((N/32,K,32), lambda x,y,z: B[y,x*32+z],
6 name='pB')
7 C = tvm.compute((M,N),lambda x,y:tvm.sum(
8 A[x,k]*pB[y/32,k,tvm.indexmod(y,32)]axis=k),name='C')
9 # Parallel schedule

10 s = tvm.create_schedule(C.op)
11 CC = s.cache_write (C, 'global')
12 xo,yo,xi,yi = s[C].tile(C.op.axis[ ], C.op.axis[1],32,32)
13 s[CC].compute_at (s[C], yo)
14 xc, yc = s[CC].op.axis
15 k, = s[CC].op.reduce_axis
16 ko, ki = s[CC].split(k, factor=4)
17 s[CC].reorder (ko, xc, ki, yc)
18 s[CC].unroll(ki)
19 s[CC].vectorize (yc)
20 s[C].parallel (xo)
21 x, y, z s[pB].op.axis
22 s[pB].vectorize (z)
23 s[pB].parallel (x)

Listing 2: Optimized matrix–matrix multiplication in TVM. 
Lines 2–8 define an optimized version of the algorithm in 
Listing 1, the other lines define a schedule specifying the 
optimizations for targeting CPUs.
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of reach for the user’s control. The implicit optimizations 
sometimes lead to the surprising behavior that algorithms 
without a schedule perform better (e.g., due to auto-vector-
ization) than ones with a provided schedule.

2.2. The need for a principled way to separate, 
describe, and apply optimizations
Out of the shortcomings of scheduling APIs, we identify 
desirable features for a more principled way to separate, 
describe, and apply optimizations for high-performance 
code generation. Our holistic functional approach aims to 
do the following:

1. Separate concerns: Computations should be expressed 
at a high abstraction level only. They should not be 
changed to express optimizations.

2. Facilitate reuse: Optimization strategies should be 
defined separated from the computational program 
facilitating reusability of programs and strategies.

3. Enable composability: Computations and strategies 
should be written as compositions of user-defined (possi-
bly domain-specific) building blocks; both languages 
should facilitate the creation of higher-level abstractions.

4. Allow reasoning: Computational patterns, but also 
especially strategies, should have a precise, well-defined 
semantics allowing reasoning about them.

5. Be explicit: Implicit default behavior should be avoided 
to empower users to be in control.

Fundamentally, we argue that a more principled high-
performance code generation approach should be holistic by 
considering computation and optimization strategies equally 
important. As a consequence, a strategy language should be built 
with the same standards as a language describing computation.

In this paper, we present such an approach combining 
two functional languages: RISE and ELEVATE.

Figure 2 shows an example of a RISE program defining 
matrix multiplication computation as a composition of 
well-known data-parallel functional patterns. Below is an 
ELEVATE strategy that defines one possible optimization by 
applying the well-known tiling optimization. The optimiza-
tion strategy is defined as a sequential composition (‘;’) of 
user-defined strategies that are themselves defined as com-
positions of simple rewrite rules giving the strategy precise 
semantics. We do not use implicit behavior and instead gen-
erate low-level code according to the optimization strategy.

3. RISE: A LANGUAGE FOR EXPRESSING DATA- 
PARALLEL COMPUTATIONS
RISE is a functional programming language with data- parallel 
patterns for expressing computations over multidimensional 
arrays. RISE is a spiritual successor of Lift12, 13, 14 that has dem-
onstrated that functional, high-performance code genera-
tion is feasible for different domains, including dense linear 
algebra, sparse linear algebra, and stencil computations.6

The top of Figure 2 shows an example of a RISE program 
using usual functional constructs of function abstraction 
(written fun(x, e)), application (written with parenthesis), 
identifiers, and literals (underlined). We use the following 
syntactic sugar: We write reverse function application as  
e |> f (equivalent to f(e)); we write function 
 composition as g << f and in the reverse form as f >> g, 
both meaning f is applied before g. The type system allows 
to symbolically track the length of arrays using a restricted 
form of dependent types. Grammar and typing rules are given 
elsewhere.5, 2

RISE defines a set of high-level primitives that describe 
computations over multidimensional arrays. These primi-
tives are well known in the functional programming com-
munity: fst, snd, and the binary functions add and mult 
have their obvious meaning. map and reduce are the well-
known higher-order functions operating on arrays and 
allowing for easy parallelization. zip, split, join, and 
transpose shape multidimensional array data in various 
ways.

A functional representation of hardware features. 
Besides the high-level primitives, RISE offers low-level 
primitives to indicate how to exploit the underlying hard-
ware. Generally, programmers do not directly use these 
primitives; instead, they are introduced by rewrite rules. 
The mapSeq and mapPar patterns indicate if a function 
is applied to an array using a sequential or a parallel loop. 
Similarly, reduceSeq and reduceSeqUnroll indicate 
if the sequential reduction loop should be unrolled or not. 
RISE does not provide a parallel reduction as a building 
block because it is expressable using other low-level primi-
tives such as mapPar. toMem(a)(fun(x,b)) indicates that  
a is stored in memory and accessible in b with the name x. 
Three more low-level patterns, mapVec, asVector, and 
asScalar, enable the use of SIMD-style vectorization. The 
low-level primitives presented here are OpenMP-specific for 
expressing parallelization on CPUs; a similar set of low-level 
primitives exists for targeting the OpenCL programming 
language for GPUs.

Strategy-preserving code generation from RISE. The 
compilation of RISE programs is slightly unusual. A high-
level program is rewritten using a set of rewrite rules into 
the low-level patterns. From the low-level representation, 
imperative parallel code is generated. This design leads to 
a clear separation of concerns—one of the key aims that 
we set out for our approach. All optimization decisions must 
be made in the rewriting stage before code generation. 
Atkey et al.2 describe a code generation process that is guar-
anteed to be strategy preserving, meaning that no implicit 
implementation decisions are made. Instead, the compiler 
respects the implementation and optimization decisions 

Figure 2. Matrix-matrix multiplication in RISE (top) and the tiling 
optimization strategy in ELEVATE (bottom).

1 // Matrix Matrix Multiplication in RISE
2 val dot fun(as, fun(bs, zip(as)(bs) |>
3 map(fun(ab, mult(fst(ab))(snd(ab)))) |> reduce(add)(_) ))
4 val mm fun(a : M.K.float, fun(b : K.N.float,
5 a |> map(fun(arow, // iterating over M
6 transpose (b) |> map(fun(bcol, // iterating over N
7 dot(arow)(bcol) )))) ) ) // iterating over K

1 val tiledmm = // Optimization Strategy in ELEVATE
2 (tile(32, 32)‘@‘ outermost (mapNest(2)) ‘;‘ lowerToC)(mm)
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explicitly encoded in the low-level RISE program.

4. ELEVATE: A LANGUAGE FOR DESCRIBING  
OPTIMIZATION STRATEGIES
ELEVATE is a functional language for describing optimiza-
tion strategies with a standard feature set, including recur-
sion, algebraic data types, and pattern matching. It is heavily 
inspired by earlier work on strategy languages,8 for example, 
Stratego,16, 18 and complements our functional language 
RISE that describes computations. Our current implemen-
tation is a shallow-embedded DSL in Scala, and we use 
Scala-like notation for ELEVATE strategies in the paper.

4.1. Strategies
A strategy is the fundamental building block of ELEVATE 
encoding a program transformation as a function with type:

type Strategy[P] = P => RewriteResult[P]

Here, P is the type of the rewritten program, such as Rise 
for RISE programs. A RewriteResult is an applicative error 
monad encoding the success or failure of applying a strategy:

RewriteResult[P] = Success[P](p: P)
            | Failure[P](s: Strategy[P])

In case of success, Success contains the rewritten program; 
otherwise, Failure contains the unsuccessful strategy.

The simplest examples of strategies are strategies that 
always succeed (id) and always fail (fail):

def id[P]:Strategy[P] = (p:P) => Success(p)
def fail[P]:Strategy[P] = (p:P) => Failure(fail)

4.2. Rewrite rules as strategies
In ELEVATE, rewrite rules are also strategies, that is, func-
tions satisfying the type given above. The left-hand side of 
the well-known mapFusion rule (Figure 3) is expressed in 
RISE as:

val p: Rise = fun(xs, map(f)(map(g)(xs)))

The fusion rule is implemented in ELEVATE as follows:

def mapFusion: Strategy[Rise] = p => p match {
 case app(app(map, f), app(app(map, g), xs))
         => Success( map(fun(x, f(g(x))))(xs) )
 case _ => Failure(mapFusion)            }

We are mixing RISE (i.e., map(f)) and ELEVATE expres-
sions and use app(f, x) to pattern-match the function 
application that we write as f(x) in RISE. The expression 
nested inside Success is the result of the rewrite rule 
application. Figure 3 shows all rewrite rules used as basic 
building blocks for expressing optimizations such as til-
ing, discussed later.

4.3. Strategy combinators
An idea that ELEVATE inherits from Stratego17 is to describe 

strategies as compositions—one of our key aims. Therefore, 
we introduce strategy combinators.

The seq combinator composes two strategies fs and ss 
sequentially by applying the first strategy to the input pro-
gram p, and then, the second strategy is applied to the result.

def seq[P]:
     Strategy[P] => Strategy[P] => Strategy[P] =
     fs => ss => p => fs(p) »= (q => ss(q))

The seq strategy is successful when it applied both strate-
gies successfully in succession; otherwise, seq fails. In our 
combinator’s implementation, we use the monadic interface 
of RewriteResult and use the standard Haskell operators 
»= for monadic bind, <|> for mplus, and <$> for fmap.

The lChoice combinator is given two strategies and 
applies the second one only if the first failed.

def lChoice[P]:
   Strategy[P] => Strategy[P] => Strategy[P] =
   fs => ss => p => fs(p) <|> ss(p)

We use <+ as an infix operator for lChoice and ‘;’ for 
seq. Using these basic combinators, we define others such 
as try that applies a strategy and, in case of failure, applies 
the identity strategy. Therefore, try never fails.

def try[P]: Strategy[P] => Strategy[P] =
   s => p => (s <+ id)(p)

  repeat applies a strategy until it is no longer applicable.

def repeat[P]: Strategy[P] => Strategy[P] =
   s => p => try(s ‘;’ repeat(s)  )(p)

4.4. Traversals as strategy transformers
In the implementation of the mapFusion strategy, the match 
statement will try to pattern-match its argument—the entire 
program. This means that a strategy on its own is hard to 
reuse in different circumstances.

In addition, a strategy is often applicable at multiple 

Figure 3. Rewrite rules of high-level RISE expressions used for 
optimizations in this paper.

id (addId)

(id : m.n.d m.n.d ) transpose transpose
(idToTranspose)

transpose map(map(f)) map(map(f)) transpose
(transposeMove)

map(f) split(n) map(map(f)) join
(splitJoin)

map(f g) map(f) map(g)
(mapFusion/mapFission)

map(f) reduce(fun((acc,y), op(acc)(y)))(init)
reduce(fun((acc,y), op(acc)(f(y))))(init)

(fuseReduceMap/fissionReduceMap)
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Particularly in the context of program optimization, it rarely 
makes sense to apply a strategy to all sub-expressions.

In ELEVATE, one can easily specify program language- 
specific traversals. As we have seen in the previous section, 
RISE is a functional language using l-calculus as its represen-
tation. Therefore, it makes sense to introduce traversals that 
navigate the two core concepts of l-calculus: function abstrac-
tion and application. To apply a strategy to the body of a func-
tion abstraction, we define the body traversal that applies a 
strategy to the function body, and if successful, a function is 
built around the transformed body. Similarly, we define tra-
versals function and argument for function applications.

For the RISE program shown in Figure 4, we can now 
describe a precise path in the AST. To fuse the first two maps, 
we may write body(mapFusion)(maps3), and to fuse the 
others, we write body(argument(mapFusion))(maps3).

All traversal primitives introduced so far apply their given 
strategies only to immediate sub-expressions. Using strat-
egy combinators and traversals, we can define recursive 
strategies that traverse entire expressions:

def topDown[P]: Traversal[P] =
  s => p => (s <+ one(topDown(s)))(p)
def bottomUp[P]: Traversal[P] =
  s => p => (one(bottomUp(s)) <+ s)(p)
def tryAll[P]: Traversal[P] =
  s =>  p => (all(tryAll(try(s))) ‘;’ try(s))(p)

topDown and bottomUp are useful strategies travers-
ing an expression either from the top or from the bottom, 
trying to apply a strategy at every sub-expression and stop-
ping at the first successful application. If the strategy is not 
applicable at any sub-expression, topDown and bottomUp 
fail. The tryAll strategy is often more useful as it wraps its 
given strategy in a try and thus never fails but applies the 
strategy wherever possible. Also, note that the tryAll strat-
egy traverses the AST bottom-up instead of top-down.

4.5. Normalization
When implementing rewrite rules, such as the mapFusion 
rule as strategies, the match statement expects the input 
expression to be in a particular syntactic form. For a func-
tional language like RISE, we might, for example, expect that 
expressions are fully b-reduced. To ensure that expressions 
satisfy a normal-form, we define:

def normalize[P]: Strategy[P] => Strategy[P] =
 s => p => repeat(topDown(s))(p)

The normalize strategy repeatedly applies a given strategy 
to every possible sub-expression until it cannot be applied 
anymore. Therefore, after normalize successfully finishes, 
it is not possible to apply the given strategy to any sub- 
expression any more.

For RISE specifically, we use in the following two normal 
forms whose implementation is explained in the original paper5:

1. the Beta-Eta-Normal-Form (BENF) transforms a RISE 
expression such that the standard lambda calculus 

places within the same program or only applicable at a spe-
cific location. For example, the mapFusion strategy is appli-
cable twice in the following RISE program:

val maps3 = fun(xs, map(f)(map(g)(map(h)(xs))))

We may fuse the first or last two maps, as shown in Figure 4.
In ELEVATE, we use traversals to describe at which exact 

location a strategy is applied. Luttik and Visser9 proposed 
two basic traversals encoded as strategy transformers:

type Traversal[P] = Strategy[P] => Strategy[P]
def all[P]: Traversal[P];
def one[P]: Traversal[P];

Traversal all applies a given strategy to all sub-expres-
sions of the current expression and fails if the strategy is not 
applicable to all sub-expressions. one applies a given strat-
egy to exactly one sub-expression and fails if the strategy is 
not applicable to any sub-expression.

In ELEVATE, we view these basic traversals as a type class: 
an interface that has to be implemented for each program 
type P. The implementation for RISE is straightforward. RISE 
programs are represented by ASTs such as the one in Figure 
4; therefore, all and one correspond to the obvious imple-
mentations on the tree-based representation.

To fuse the first two maps in Figure 4, we use the one 
traversal: one(mapFusion)(maps3). This applies the 
mapFusion strategy, not at the root of the AST, but instead 
one level down, first trying to apply the strategy (unsuccess-
fully) to the function parameter and then (successfully) to 
the function body highlighted in the upper-right blue box.

To fuse the last two maps, we use the one traversal twice: 
one(one(mapFusion))(maps3). This successfully applies 
the fusion strategy to the expression highlighted in the lower-
right purple box in Figure 4.

The traversals we have discussed so far are not specific to 
RISE. These traversals are flexible but offer only limited con-
trol as for one the selection of sub-expressions is either non-
deterministic or implementation-dependent (as for RISE). 

Figure 4. Two possible locations for applying the map-fusion rule 
within the same program.
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that will be unrolled by the RISE compiler during code 
generation.

5.2. Multidimensional tiling as a strategy
Tiling is a crucial optimization improving the cache hit 
rate by exploiting locality within a small neighborhood of 
elements. TVM’s tile is a more complicated scheduling 
primitive to implement because it is essentially a combina-
tion of two traditional loop transformations: loop blocking 
and loop interchange. In fact, tile in TVM is a built-in 
combination of split for loop blocking and reorder for 
loop interchange. We already saw how to implement split 
using ELEVATE. We will now discuss how to implement a 
tile strategy using a combination of rules, normal-forms, 
and domain-specific traversals. Where TVM only imple-
ments 2D tiling, our generalized strategy tiles an arbitrary 
number of dimensions.

We require five basic rules for expressing our multidimen-
sional tiling strategy: splitJoin, addId, idToTrans-
pose, transposeMove, and mapFission (all shown in 
Figure 3). In addition, we require three standard l-calculus-
specific transformations: h- and b-reduction, and h-abstrac-
tion. We implement these rules as basic ELEVATE strategies.

Listing 3 shows the ELEVATE implementation of the til-
ing optimization. The multidimensional tileND strategy 
expects a list of tile sizes, one per tiled dimension. The intu-
ition for the implementation is simple: First, we ensure 
that the required rules are applicable to the input expres-
sion by normalizing the expression using the DFNF normal 
form. Then, we apply the previously introduced split 
strategy to every map to be blocked, recursively going from 
the innermost to outermost, as explained below. Finally, 
the interchange strategy rearranges the blocked loops 
in the expected final order; this strategy is explained in 
detail in the original paper.5

To recursively apply the loop blocking strategy to nested 
maps, we make use of the RISE-specific traversal fmap:

def fmap: Traversal[Rise] = s =>
  function(argOf(map, body(s)))

fmap traverses to the function argument of a map primi-
tive and applies the given strategy s. Note that the strategy 
requires the function argument of a map primitive to be a 
function abstraction, which we can assume because we nor-
malize the expression using DFNF. The fmap strategy is use-
ful because it can be nested to “push” the application of the 
given strategy inside of a map-nest. For example,

fmap(fmap(split(n)))(DFNF(map(map(map(f)))))

transformations b-reduction and h-reduction are no 
longer applicable, and

2. the Data-Flow-Normal-Form (DFNF) ensures a partic-
ular syntactic structure for higher-order RISE primi-
tives like map. Specifically, DFNF ensures that a 
function abstraction is present in every higher-order 
primitive and that higher-order primitive are fully 
applied.

5. OPTIMIZATIONS AS STRATEGIES
In this section, we explore the use of ELEVATE to encode 
high-performance optimizations by leveraging its ability to 
define custom abstractions. We use TVM4 as a comparison 
for a state-of-the-art imperative optimizing deep learning 
compiler with a scheduling API implemented in Python. 
TVM allows expressing computations using an EDSL (in 
Python) and controlling the application for optimizations 
using a separate scheduling API.

We start by expressing basic scheduling primitives 
such as parallel in ELEVATE. Then, we explore the 
implementation of more complex scheduling primi-
tives like tile by composition in ELEVATE, whereas it is 
a built-in optimization in TVM. Following our functional 
approach, we express sophisticated optimization strat-
egies as compositions of a small set of general rewrite 
rules resulting in a more principled and even more pow-
erful design. Specifically, the tiling optimization strategy 
in ELEVATE can tile arbitrary many dimensions instead of 
only two, while being composed of only five RISE-specific 
rewrite rules.

5.1. Basic scheduling primitives as strategies
TVM’s scheduling primitives parallel, split, and unroll 
specify loop transformations. We implement those as rewrite 
rules for RISE. The parallel primitive indicates the parallel 
computation of a particular loop. In RISE, this is indicated by 
transforming a high-level map into its low-level mapPar ver-
sion as expressed in the following ELEVATE strategy:

def parallel:  Strategy[Rise] = p => p match {
 case map => Success( mapPar )
 case _   => Failure( parallel )}

We define a strategy for the sequential mapSeq similarly.
TVM’s split primitive implements loop blocking. In 

RISE, this is achieved by rewriting the computation over an 
array expressed by map(f ): First, the input is split into a 
two-dimensional array using split(n), then f is mapped 
twice to apply the function to all elements of the now nested 
array, and finally, the resulting array is attended into the 
original one-dimensional form using join.

def split(n:Int):Strategy[Rise] = p => p match {
 case app(map, f) =>
     Success( split(n) >> map(map(f)) >> join )
 case _ => Failure( split(n) ) }

The unroll strategy rewrites the high-level map and 
reduce primitives into specific RISE low-level primitives 

1 def tileND(n: List[Int]): Strategy[Rise] =
2 DFNF ‘;‘ (n.size match {
3 case 1 => function(split(n.head)) // loop-blocking
4 case i => fmap (tileND(d-1)(n.tail)) ‘;‘ // recurse
5 function (split(n.head)) ‘;‘ // loop-blocking
6 interchange (i) }) // loop-reorder

Listing 3: ELEVATE strategy implementing tiling recursively 
for arbitray dimensions.
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    case x if x <  => Failure(mapNest(d))
    case _ => fmap(mapNest(d-1))(p)})

outermost traverses from top to bottom visiting nested 
primitives from outermost to innermost, trying to apply the 
predicate. If the predicate is applied successfully, it applies 
the given strategy s. Similarly, we define function innermost, 
which instead uses bottomUp. The mapNest predicate 
recursively traverses a DFNF-normalized map nest of a given 
depth using nested fmap traversals. If the traversal is success-
ful, a map nest of depth d has been found.

By combining these abstractions, we conveniently describe 
applying the tiling optimization to the two outermost loop 
nests elegantly in ELEVATE:

(tile(32,32) ‘@’ outermost(mapNest(2)))(mm)

6. EXPERIMENTAL EVALUATION
In this section, we evaluate our functional approach to high-
performance code generation. We use ELEVATE strategies 
to describe optimizations that are equivalent to TVM sched-
ules using matrix–matrix multiplication as our case study. 
We compare the performance achieved using code gener-
ated by the RISE compiler and code generated by TVM. The 
original paper5 also includes a performance comparison 
with Halide.

6.1. Optimizing matrix-matrix multiplication
For our case study of matrix-matrix multiplication, we follow 
a tutorial from the TVM authors that discuss seven progres-
sively optimized versions: baseline, blocking, vectorized, loop 
permutation, array packing, cache blocks, and parallel. For 
each TVM schedule, we developed an equivalent ELEVATE 
strategy using the TVM-like scheduling abstractions and the 
traversal utilities. The vectorized, loop permutation and cache 
blocks versions are not discussed here for brevity but are dis-
cussed in the original paper5; we discuss the rest here.

Baseline. For the baseline version, TVM uses a default 
schedule, whereas ELEVATE describes the implementation 
decisions explicitly as shown in Figure 5—one of the key 
aims that we set out for our approach.

The TVM algorithm shown in Listing 1 computes the 
dot product in a single statement in line 6. The RISE 
program shown at the top of Figure 5 describes the dot 

skips two maps and applies loop blocking to the inner-
most map. In Listing 3 line 4, we use fmap to recursively 
call tileND applying loop blocking first to the inner maps 
before to the outer map.

5.3. Abstractions for describing locations in RISE
In TVM, named identifiers describe locations at which opti-
mizations should be applied. For example, TVM’s split is 
invoked with an argument specifying the loop to block:

1 k,    = s[C].op.reduce_axis
2 ko,ki = s[C].split(k, factor=4)

Using identifiers ties schedules to computational expressions 
and makes reusing schedules hard. ELEVATE does not use 
names to identify locations, but instead uses the traversals 
defined in Section 4. This is another example of how we 
facilitate reuse—one of the key aims of our approach.

By using ELEVATE’s traversal strategies, we apply the basic 
scheduling strategies in a much more flexible way: For exam-
ple, topDown(parallel) traverses the AST from top to 
bottom and will thus always parallelize the outermost map, 
corresponding to the outermost for loop. tryAll(parallel) 
traverses the whole AST instead, and all maps are parallelized.

In order to apply optimizations on large ASTs, it is often 
insufficient to use the topDown or tryAll traversals. For 
example, we might want to block a specific loop in a loop 
nest. None of the introduced traversals so far allow the 
description of a precise loop conveniently, or rather a pre-
cise location, required for these kinds of optimizations. 
Strategy predicates allow us to describe locations in a con-
venient way. A strategy predicate checks the program for a 
syntactic structure and returns Success without changing 
the program if the structure is found. Two simple examples 
for strategy predicates are isReduce and isApp that check 
if the current node is a reduce primitive or an applied func-
tion, respectively. These predicates can be composed with 
the regular traversals to define precise locations. The ‘@’ 
strategy allows us to describe the application of strategies at 
precise locations conveniently:

def  ‘@’[P](s:Strategy[P], t:Traversal[P]) = t(s)

We write this function in infix notation.
The left-hand side of the ‘@’ operator specifies the strategy 

to apply, and the right-hand side specifies the precise loca-
tion as a traversal. This nicely separates the strategy to apply 
from the traversal describing the location. This abstraction 
is especially useful for complex optimization strategies with 
nested location descriptions. For RISE, we specify multiple 
useful traversals and predicates, which can be extended as 
needed. Two useful ones are outermost and mapNest that 
are defined as follows:

def outermost: Strategy[Rise] => Traversal[Rise]
   = pred => s => topDown(pred ‘;’ s)
def mapNest(d: Int): Strategy[Rise] = p =>
 (d match {
    case x if x ==  => Success(p)

Figure 5. RISE matrix multiplication expression (top) and baseline 
strategy in ELEVATE (bottom).

1 //     matrix  multiplication  in  RISE
2 val dot fun(as, fun(bs, zip(as)(bs) |>
3 map(fun(ab, mult(fst(ab))(snd(ab)))) |>
4 reduce(add)( ) ) )
5 val mm fun(a, fun(b, a |>
6 map( fun(arow, transpose (b) |>
7 map( fun(bcol,
8 dot(arow)(bcol) )))) ))

1 // baseline  strategy  in ELEVATE
2 val baseline DFNF ‘;‘ fuseReduceMap ‘@‘ topDown )
3 (baseline ‘;‘

(
lowerToC )(mm)
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strategy (line 13) while adding strategies for unrolling the 
innermost reduction (line 16) and parallelizing the outer-
most loop (line 14).

6.2. Rewriting overhead and performance
We now investigate the scalability, overhead, and perfor-
mance of our functional rewrite-based approach.

Scalability and overhead. To evaluate scalability and the 
overhead of rewriting, we are counting the number of suc-
cessfully applied rewrite steps performed when applying a 
strategy to the RISE matrix multiply expression. We count 
every intermediate step, which includes traversals as these 
are implemented as rewrite steps too.

Figure 6 shows the number of rewrites for each version. 
No major optimizations are applied to the baseline version, 
and 657 rewrite steps are performed. However, as soon 
as interesting optimizations are applied, we reach about 
40,000 steps for the next three versions and about 63,000 for 
the most complicated optimizations. These high numbers 
clearly show the scalability of our compositional approach, 
in which complex optimizations are composed of a small set 
of fundamental building blocks. It also shows that abstrac-
tions are required to control this many rewrite steps. The 
high-level strategies encode practical optimizations and 
hide massive numbers of individual rewrite steps that are 
performed. Applying the strategies to the RISE expression 
took less than two seconds per version on a commodity lap-
top, demonstrating the moderate overhead of our unopti-
mized implementation.

Performance comparison against TVM. Finally, we are 
interested in the performance achieved when optimizing 

product with separate map and reduce primitives, which 
are fused as described in the ELEVATE program below using 
the fuseReduceMap rewrite rules from Figure 3. The low-
erToC strategy rewrites map and reduce into their sequen-
tial versions. Both systems generate equivalent C code of two 
nested loops iterating over the output matrix and a single 
nested reduction loop performing the dot product.

Blocking. For the blocking version, we reuse the baseline 
and lowerToC strategy, but first, we use the abstractions 
built in the previous sections, emulating the TVM schedule as 
shown in Listings 4 and 5. We first apply tile, then split, 
and then reorder, just as specified in the TVM schedule. 
To split the reduction, we need to fission the fused map 
and reduce primitives again using fissionReduceMap. 
We describe locations using outermost and innermost 
applying tile to the outermost maps and split to the 
nested reduction. In contrast to TVM, for reorder, we iden-
tify dimensions by index rather than by name. We introduce  
the ‘;;’ combinator for convenience denoting that we apply 
DFNF to normalize intermediate expressions between 
each step.

Array packing. As already discussed in the motivation 
section, some optimizations are not expressible in TVM’s 
scheduling API without changing the algorithm—clearly 
violating the separation between specifying computations 
and optimizations. Specifically, the array packing optimiza-
tion permutes the B matrix’s elements in memory improv-
ing memory access patterns by introducing an additional 
computation pB in Listing 2 line 6, before using it in line 8.

For our implementation of the array packing optimization, 
we are not required to change the RISE program, but define 
and apply the array packing of matrix B simply as another 
rewrite step in ELEVATE (Listing 6 line 10). Our arrayPacking 
strategy is itself composed out of other strategies, for exam-
ple, storeInMemory or loopPerm, which are left out for 
brevity here but are explained in detail in the original paper.5

Parallel. The TVM version parallel changes the algorithm 
yet again to introduce a temporary buffer (CC in Listing 2 
line 11) for the accumulation along the K-dimension to 
improve the cache writing behavior and unrolls the inner 
reduction loop. For expressing the parallel version in 
ELEVATE (Listing 6 line 12), we reuse the arrayPacking 

1 val appliedReduce = isApp(isApp(isApp(isReduce )))
2 val blocking = ( baseline ‘;‘
3 tile(32,32)      ‘@‘ outermost (mapNest(2))   ‘;;‘
4 fissionReduceMap ‘@‘ outermost (appliedReduce)‘;;‘
5 split(4)         ‘@‘ innermost (appliedReduce)‘;;‘
6 reorder(List(1,2,5,6,3,4)))
7 (blocking ‘;‘ lowerToC )(mm)

Listing 4: ELEVATE blocking strategy

Listing 5: TVM blocking schedule

1 # blocking version
2 xo, yo, xi, yi = s[C].tile(
3 C.op.axis[ ],C.op.axis[1],32,32)
4 k,  = s[C].op.reduce_axis
5 ko, ki  = s[C].split(k, factor=4)
6 s[C].reorder(xo, yo, ko, ki, xi, yi)

1 val appliedMap = isApp(isApp(isMap))
2 val isTransposedB = isApp(isTranspose )
3
4 val packB = storeInMemory (isTransposedB ,
5 permuteB ‘;;‘
6 vectorize(32) ‘@‘ innermost(appliedMap) ‘;;‘
7 parallel ‘@‘ outermost(isMap)
8 ) ‘@‘ inLambda
9

10 val arrayPacking = packB ‘;;‘ loopPerm
11
12 val par = (
13 arrayPacking ‘;;‘
14 (parallel ‘@‘ outermost (isMap))
15 ‘@‘ outermost (isToMem ) ‘;;‘
16 unroll ‘@‘ innermost (isReduce ))
17
18 (par ‘;‘ lowerToC )(mm)

Listing 6: ELEVATE parallel strategy
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Figure 6. Total number of successful rewrite steps when applying 
different optimization strategies.
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RISE programs with ELEVATE compared with TVM. Ideally, 
the RISE code optimized with ELEVATE should be similar 
to the TVM-generated code and achieve competitive per-
formance. We performed measurements on an Intel mul-
ticore CPU. For a detailed description of the experimental 
setup see the original paper.5

Figure 7 shows the performance of RISE- and TVM-
generated code. The code generated by RISE controlled by 
the ELEVATE optimization strategies performs competitively 
with TVM. Our experiment indicates a matching trend across 
versions compared with TVM, showing that our ELEVATE 
strategies encode the same optimizations used in the TVM 
schedules. The most optimized parallel RISE generated ver-
sion improves the performance over the baseline by about 
110×. The strategies developed in an extensible style by com-
posing individual rewrite steps using ELEVATE are practically 
usable and provide competitive performance for important 
high-performance code optimizations.

7. CONCLUSION
In this paper, we presented a holistic functional approach 
to high-performance code generation. We presented two 
functional languages: RISE for describing computations 
as compositions of data-parallel patterns and ELEVATE for 
describing optimization strategies as composition of rewrite 
rules. We showed that our approach successfully: separates 
concerns by truly separating the computation and strategy 
languages; facilitates reuse of computational patterns as well 
as rewrite rules; enables composability by building programs 
as well as rewrite strategies as compositions of a small num-
ber of fundamental building blocks; allows reasoning about 
programs and strategies with well-defined semantics; and is 
explicit by empowering users to be in control over the opti-
mization strategy that is respected by our compiler. In con-
trast to existing imperative systems with scheduling APIs 
such as Halide and TVM, programmers are not restricted 
to apply a set of built-in optimizations but define their own 
optimization strategies. Our experimental evaluation dem-
onstrates that our holistic functional approach achieves 
competitive performance compared with the state-of-the-art 
code  generator TVM. 
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Figure 7. Performance of TVM- vs. RISE-generated code that has 
been optimized by ELEVATE strategies.
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