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Halide is a domain-specific language for high-performance image processing and tensor computations, widely

adopted in industry. Internally, the Halide compiler relies on a term rewriting system to prove properties

of code required for efficient and correct compilation. This rewrite system is a collection of handwritten

transformation rules that incrementally rewrite expressions into simpler forms; the system requires high

performance in both time and memory usage to keep compile times low, while operating over the undecidable

theory of integers. In this work, we apply formal techniques to prove the correctness of existing rewrite rules

and provide a guarantee of termination. Then, we build an automatic program synthesis system in order

to craft new, provably correct rules from failure cases where the compiler was unable to prove properties.

We identify and fix 4 incorrect rules as well as 8 rules which could give rise to infinite rewriting loops. We

demonstrate that the synthesizer can produce better rules than hand-authored ones in five bug fixes, and

describe four cases in which it has served as an assistant to a human compiler engineer. We further show that

it can proactively improve weaknesses in the compiler by synthesizing a large number of rules without human

supervision and showing that the enhanced ruleset lowers peak memory usage of compiled code without

appreciably increasing compilation times.
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1 INTRODUCTION

To compile an image processing pipeline written in the Halide language, the compiler must perform
a variety of analyses of the pipeline’s properties. For example, if the user marks a loop to be fully
unrolled, the compiler must infer a constant upper bound for the extent of the loop. If the user
marks a loop as parallel, the compiler must prove the absence of data races. These analyses also
affect performance more than in most compilers. In Halide, the compiler infers loop bounds and
allocation sizes. If these are overestimated, the generated code may perform an amount of wasted
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work sufficient to alter the computational complexity of the algorithm. These analyses all depend
critically on the quality of Halide’s expression simplifier. In fact, Halide relies so heavily on its
simplifier that restricting it to mere constant-folding causes a geomean 5.1× increase in compilation
times and a 26.4× increase in runtimes across Halide’s benchmark suite.
This simplifier must balance three key criteria:

• Completeness: It must work in the theory of integers, which is undecidable, and make use
of operations such as Euclidean division and maximum/minimum which can be especially
difficult for automated reasoning. Although any solver in this theory is necessarily incomplete,
but in general, the compiler can generate higher-performing code as the simplifier becomes
more powerful.

• High performance: However, the simplifier is called many thousands of times over the
course of a single compilation, and so requires high performance and low memory usage.

• Determinism: The compiler must always return the same result for the same program,
regardless of what platform runs the compiler, so the simplifier must be deterministic. This
is a hard requirement.

Halide addresses this problem with a term rewriting system. Using a custom algorithm that
greedily applies rules in a fixed order and keeps only the expression being currently rewritten as
state, the term rewriting system (TRS) provides the performance and determinism that the compiler
requires. This algorithm scales well in terms of the number of rules in the TRS, so Halide developers
continue to improve and increase its power by refining the ruleset and adding new rules by hand.

However, maintaining a TRS by hand presents significant challenges. Rules are carefully inspected
and fuzz-tested, but are not formally proven sound. The rule application algorithm itself is not
guaranteed to terminate, so changing, adding, or reordering rules may result in cycles on untested
inputs. Debugging the system can be difficult, since it is not clear which rule or combination
of rules is responsible for undesired behavior. The TRS is not complete enough to address all
compiler queries (for example, it may fail to compute tight bounds on intermediate arrays, leading
to over-allocations). Finally, although the overarching goal of the TRS is to simplify expressions,
łsimplifyž is an imprecise notion. If developers are not familiar with the entire ruleset, or the full
variety of applications of the simplifier, they may inadvertently add a rule that makes the simplifier
worse for some of its usecases.

In this work, we show how techniques based on formal methods can help developers maintain a
complex term rewriting system, first by providing formal guarantees of soundness and termination,
then by growing the ruleset to increase the simplifier’s power while ensuring the performance
and determinism required by a compiler in industrial use. We further demonstrate a strategy for
growing a simplifier’s power when completeness is impossible, by synthesizing new rules that
operate in the subset of the theory encountered during real-world compilation.

First, we formally verify the existing ruleset, demonstrating that proofs of soundness are possible
despite the lack of a decision procedure for our theory. We model the Halide expression language
and verify the ruleset via an SMT solver that can prove about 88% of the existing ruleset; we prove
the remaining rules by hand via the proof assistant Coq [Coq Development Team 2019]. We find
four unsound rules, as well as several rules which could be made more general by relaxing their
predicate guards. The Halide developers changed the language’s semantics for division during
this work; we reran our verification process to find 44 rules which were incorrect under the new
semantics, demonstrating the usefulness of our technique.
Next, we define the meaning of simplification in the context of the Halide TRS by formalizing

what it means for a rule to usefully modify an expression. While many notions of łsimplerž are
possible, we encode the specific criteria for Halide expressions by defining an ordering over the
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left-hand and right-hand terms of the rules in the TRS that captures the intentions behind the
rewrites. This ordering means that every local change caused by the application of a rewrite rule
moves the expression in some useful direction. By composing several orders lexicographically,
we can express many different intuitions about what makes an expression simpler in a defined
priority: we may want to remove as many vector operations as possible, then reduce the overall
size of the expression, and so on. Usefully, this order also provides a termination guarantee: if every
rewrite leaves the rewritten expression strictly less in terms of our order, then it is impossible for
any sequence of rewrites to form cycles, so the rewrite algorithm must terminate. This is not a
hypothetical issue: Halide developers have previously observed non-termination when adding rules.
We devise an ordering that fits as many of the existing rules as possible, and then remove the few
rules that do not obey this ordering, proving that the TRS will now always terminate. Maintaining
this order as an invariant over any future rules means any additions to the ruleset will not undo
progress made by existing rules; it also means rules can be freely removed or reordered without
affecting termination.

Having guaranteed soundness and termination, we increase the solving power of the TRS. We do
this through synthesis of new rules. Even given the constraints imposed by the termination order,
the space of equivalences in the Halide expression language is infinitely large. How do we choose
which rules to add? We observe that there is some bias on the distribution of expressions seen by
the compiler on realistic inputs over the full expression space. We take advantage of this bias by
gathering expressions from realistic compilations on which the current TRS is łstuckž and can make
no further progress. We choose candidate left-hand sides for rules from this corpus and synthesize
equivalent right-hand terms that obey the termination order. These expressions frequently contain
constants, so we generalize rules by replacing constants with fresh variables and synthesizing
predicate guards that indicate when it is safe to apply the rule. Our synthesis procedure finds large
numbers of useful rules without human oversight; although the existing compiler is mature and
well-tuned for our suite of benchmarks, we show some performance gains without increases in
compilation time when our newly synthesized suite of rules is added to the TRS.
In the rest of the paper, we first provide some background on term rewriting systems and the

Halide rewriting algorithm (Section 2). We then describe our approach to verifying rule correctness
(Section 3.1) and discuss the relation between LHS and RHS terms that guarantees termination
(Section 3.2). Once semantics and the termination property have been formalized, we present our
synthesis algorithm (Section 4). We demonstrate the effectiveness of our approach through several
experiments and case studies (Section 5), with observations on the ways Halide developers have
been able to integrate our techniques into their workflows. Finally, we close in Sections 6ś8 with a
discussion of our current limitations and a review of related work.

2 TERM REWRITING IN HALIDE

The Halide compiler contains a term rewriting system composed of over a thousand rules, operating
over the space of Halide expressions1. The language of Halide expressions operates over vectors
and scalars of integers, booleans, and real values. However, in this work we concentrate on the TRS
as it applies to integer and boolean values, for both vectors and scalars, because the most important
uses of the TRS within the compiler apply to these types. In this section, we give some background
on term rewriting systems. We then describe how the Halide compiler uses the TRS and the design
decisions that motivate the custom rewriting engine, as well as the scope of our work.

1See Supplemental Material for the full Halide expression grammar
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Fig. 1. We demonstrate the Halide rewriting algorithm using a TRS 𝑅 = {max(𝑥, 𝑥) →𝑅 𝑥, (𝑥 −𝑦) +𝑦 →𝑅 𝑥}

and an expression min(𝑎, 𝑏) − max(𝑐, 𝑐) + max(𝑐, 𝑐). The algorithm attempts to simplify all subtrees bottom up;
here, no rule applies to min(𝑎, 𝑏) so it is not changed. Next (i), rule 1 rewrites max(𝑐, 𝑐) to 𝑐 . No rule applies to
min(𝑎, 𝑏) − 𝑐 , so we move to the rightmost subtree and rewrite again (ii) to obtain 𝑐 from max(𝑐, 𝑐). Finally,
we consider the entire tree min(𝑎, 𝑏) − 𝑐) + 𝑐 (iii) and apply rule 2 to produce min(𝑎, 𝑏). No rules match this
expression, so we are left with min(𝑎, 𝑏) (iv).

2.1 Term Rewriting Systems

Term rewriting systems [Gorn 1967] are sets of rewrite rules used to transform expressions into
a new form. Such systems are widely used in theorem proving [Baader and Nipkow 1999] and
abstract interpretation [Cousot and Cousot 1977, 1979].
Terms are defined inductively over a set of variables 𝑉 and a set of function symbols Σ. Every

variable 𝑣 ∈ 𝑉 is a term, and for any function symbol 𝑓 ∈ Σ with arity 𝑛 and any terms 𝑡1, ..., 𝑡𝑛 ,
the application of the symbol to the terms 𝑓 (𝑡1, ..., 𝑡𝑛) is also a term. (Constants are considered
zero-arity functions.) We refer to the set of terms constructed from the variables𝑉 and the function
symbols Σ as 𝑇 (Σ,𝑉 ).

A rewrite rule is a directed binary relation 𝑙 →𝑅 𝑟 such that 𝑙 is not a variable, and all variables
present in 𝑟 are also present in 𝑙 (i.e., V𝑎𝑟 (𝑙) ⊇ V𝑎𝑟 (𝑟 )). A set of rewrite rules is called a term
rewriting system.

Consider a set of terms 𝑇 (Σ,𝑉 ) such that Σ = {♣, ♦} and 𝑉 is an infinite set of variables. Let the
term rewriting system 𝑅 consist of a single rule:

𝑅 = {𝑥1♣𝑥2 →𝑅 𝑥1♦𝑥2}

We use 𝑅 to rewrite the term

(𝑦1♦𝑦1)♣(𝑦2♣𝑦3)

The first step is matching; we find a substitution that will unify the left-hand side (LHS) of the rule
with the term we are rewriting. Here, one possible substitution is:

{𝑥1 ↦→ (𝑦1♦𝑦1), 𝑥2 ↦→ (𝑦2♣𝑦3)}

We then apply this substitution to the right-hand side (RHS) of the rule to obtain the rewritten
version of the original term:

(𝑦1♦𝑦1)♦(𝑦2♣𝑦3)

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 166. Publication date: November 2020.



Verifying and Improving Halide’s Term Rewriting System with Program Synthesis 166:5

2.2 Uses of the TRS in Halide

While the Halide compiler makes use of the TRS in numerous ways, the most important applications
of the TRS are its uses as a fast simplifier and as a proof engine. In many parts of the compiler,
the TRS is used to rewrite expressions into simpler forms, which are easier for the compiler to
reason about, and result in less code being generated for LLVM to consume at the backend. Most
importantly, the compiler uses the TRS to simplify expressions into constants or expressions that
are monotonic with respect to loop bounds; these simplifications are core to Halide’s ability to
generate drastically different loop nests for different schedules.

For example, consider the simple two-stage imaging pipeline 𝑔(𝑥) = 𝑓 (𝑥 − 1) + 𝑓 (𝑥) + 𝑓 (𝑥 + 1).
Halide enables programmers to fuse the computation of 𝑓 into𝑔 at an arbitrary granularity using the
compute_at scheduling directive. This requires Halide to automatically reason about which region
of 𝑓 is required for a specific sub-region (or tile) of 𝑔, using interval arithmetic over symbolic values
for the size of a tile of 𝑔. For a tile size of 8, a tile of 𝑔 is the region [g.tile_min, g.tile_min+7];
the region of 𝑓 required is [g.tile_min-1, g.tile_min+8]; and the number of values of 𝑓 to
compute is then g.tile_min + 8 + 1 - (g.tile_min - 1). If the TRS can determine this is a
static value of 10, the Halide compiler can then safely perform transformations requested by the
user. In this case, the compiler can use stack memory instead of inserting a dynamic allocation;
or the loop can be completely unrolled; the loop can be vectorized; or 𝑓 can be mapped to GPU
threads (since a single threadblock must have a compile-time-known size). More generally, this
kind of region analysis operates most effectively when the expressions are monotonic in the loop
bounds; otherwise, interval arithmetic can result in vast overestimates of required regions. These
simplifications are essential for the compiler to work, and are usually not as simple as this example.
The rules for simplifying to perform cancellations and ensure monotonicity are incredibly

important for compiler performance.When we disabled all but the constant-folding rules to measure
the importance of the simplifier, it was the absence of these specific rules that caused the (26.4×)
slow-down mentioned in Section 1. Without these rules, Halide is useless for high-performance
image processing.
The use as a proof engine occurs when the compiler must prove properties about the code in

order to guarantee the correctness of specific transformations or the relationships between bounds
of different loops or producer-consumer relationships. In such cases, the compiler constructs an
expression that must be true or false in order to guarantee correctness, then applies the TRS to see
if the expression simplifies to a single boolean value.

For example, Halide uses Euclidean division, which rounds according to the sign of the denomi-
nator. Lowering this to code requires emitting several instructions, which can be slower than native
division. When the compiler can statically prove the signs of the numerator and denominator, in
some cases the code can be replaced by native division or even a different instruction altogether.
For example, for an expression x / max(y, 1) the compiler will try to prove 0 < max(𝑦, 1). The
TRS first invokes a rule to transform this to 0 < 𝑦 | | 0 < 1, which then is transformed to true (since
the second clause is always true). Thus, the compiler is able to replace Euclidean division with
machine division.
TRS failures have adverse results on the compiler, making it unpredictable and difficult for

programmers to use. When the TRS fails to properly simplify an expression or prove a property,
the consequences include:

• Insufficiently tight bounds on loops and allocations, which may result in runtime failures
(e.g. due to memory overallocation) or performance issues;

• Failure of the compiler to apply optimizations, also resulting in slow performance;
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• Dynamic checks in the generated code for properties that could have been proven at compile
time, leading to slower code;

• Compilation failures, when the compiler is unable to correctly produce code even though the
properties required hold, or when the proof engine itself crashes or loops infinitely.

Thus, correctness and generality of the TRS are essential to make the compiler robust and able
to generate fast code.

2.3 Why a Custom Algorithm?

In a term rewriting system, a single rule may be able to match an input expression in multiple ways,
and there may be multiple rules in the ruleset which could be used to rewrite the expression. A term
rewriting algorithm might choose one of many alternatives and later backtrack if it turns out not to
be fruitful; it might make use of heuristics to choose a next step; it might exercise all the alternatives
and keep the results in equivalence classes, as in an egraph. The Halide term rewriting algorithm
keeps only one expression in state and applies rules greedily, in a fixed priority. This is very fast
and requires very little memory; the tradeoff is that the algorithm may pick the łwrongž rule and
have no way of undoing that decision. Since the rewriter is invoked thousands of times with each
call of the compiler, it chooses to sacrifice some solving power in exchange for performance.

2.3.1 Halide’s Custom TRS Algorithm. The Halide term rewriting algorithm simplifies an input
expression in a depth-first, bottom-up traversal of the expression DAG. At each node, it uses the
root node to pick a list of rules, then attempts to match the subtree expression with the rule LHSs in
a fixed priority. Matching is performed purely syntactically, using C++ template metaprogramming.
Halide rewrite rules contain special metavariables, called symbolic constants, that can match only
with constant values; all other variables can match any subterm as usual. When a match is found,
the algorithm rewrites the subtree expression using the RHS of that rule, and then attempts to
simplify the subtree expression again. If no rule matches the subtree, the traversal continues; when
the entire expression cannot be simplified further, the rewritten expression is returned. See Figure 1
for a worked example.

The rewrite rules optionally contain a compile-time predicate guard. These guards contain only
symbolic constants2; when the LHS of a rule matches an expression, its guard is evaluated and only
if it is true will the rewrite be applied.

Halide rewrite rules are applied in a fixed priority, organized so that the TRS first attempts very
basic rules such as constant folding, then tries more specific rules before more general ones. (We
do not evaluate the current rule priority in this work.)
Associativity and commutativity laws are particularly troublesome for term rewriting systems.

For one expression 𝑒 , the number of semantically equivalent expressions grows exponentially in
terms of the number of AC operations 𝑒 contains. Some term rewriting systems perform a full AC
matching step during rewriting. Halide’s TRS does not perform this matching, but instead includes
multiple AC variations of rules. However, a small number of Halide’s rewrite rules have the effect
of canonicalizing some commutative expressions. (For example, if a commutative expression has a
multiplication as its first operand and a subtraction as its second operand, a rule will switch their
positions.) These rules are all early in the application priority, so later rules can rely on expressions
having a quasi-canonical form.

2.3.2 Why Not Z3? Given that we make use of the Z3 solver [De Moura and Bjùrner 2008] for both
verification and synthesis, it is natural to ask why Halide could not simply call Z3 for simplification.

2Existing rules sometimes have predicates that check if non-constant variables can be shown to have certain properties at

compile time, but these are expensive and used sparingly.
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Table 1. We compare the performance of Z3 and the Halide TRS in proving a set of 4304 expressions gathered
from realistic compiler output. Note that expressions in the łnot provenž column include expressions that are
true but not found to be so by the solvers as well as expressions that are not true.

Tool Runtime Proven expressions Not proven

Z3 7m29s 1125 3179
Halide TRS 2s 885 3419

Z3 is the product of extensive development and is a very powerful, general-purpose solver. However,
the Halide term rewriting system has a few key properties that Z3 does not: deterministic output,
low memory and compute requirements, and domain-specific optimizations.
As discussed above, the Halide compiler must return the same schedule every time the same

pipeline is run. Z3 can fix a random seed, but long-running queries may complete on a more
powerful server while timing out on a different machine.
While the Halide algorithm is less powerful than Z3, its deterministic, greedy rule application

strategy gives it a smooth performance curve, whether it succeeds or fails in simplifying an input
expression. A solver like Z3 tends to give very good performance most of the time but gets bogged
down in difficult cases, requiring the use of timeouts. The Halide algorithm łfails fastž: on an input
expression which does not match any rule, the Halide algorithm will complete in time linear to the
size of the expression, taking on the order of one CPU cycle per term in the expression per rule in
the TRS. To demonstrate this performance tradeoff, we gathered 4304 expressions from queries the
Halide compiler made when compiling realistic pipelines, including provably true expressions and
expressions that are not provably true. Z3 could prove more expressions true (within a 60 second
timeout), but was starkly less performant. As shown in Table 1, Z3 took over 7 minutes to check
the set of expressions while the Halide TRS took just 2 seconds. This set of expressions is much
smaller than the number of calls the compiler makes to the rewriter in compiling a single pipeline.
Because the Halide algorithm at every step chooses one rule to apply to the single expression

it is working on, it scales well in terms of the number of rules in the TRS. See Section 5.3 for an
evaluation of the effects of adding newly synthesized rules on the performance of the compiler.
Finally, although Z3 can simplify expressions, simply reducing the size of an expression is not

necessarily the goal for the compiler. For example, gathering like terms in some cases can actually
prevent Halide or LLVM optimizations from applying. The Halide rewriter uses a domain-specific
strategy to guide expressions into more optimizable forms and can be changed or tuned as needed
if further optimizations are discovered.

2.4 Completeness of the Halide TRS

We know by observation that the current Halide TRS cannot prove certain equalities that are in fact
true, or reduce certain expressions that can be further simplified. Our goal is to learn new rules that
would strengthen the TRS and allow it to make further progress on these łstuckž expressions. This
goal seems similar to that of completion, which constructs a decision procedure through syntatic
rewrites for a set of identities. We do not use completion directly, although our synthesis algorithm
could be considered analogous to completion in some ways.
In the standard Knuth-Bendix completion algorithm [Knuth and Bendix 1983], we take a finite

set of identities 𝐸 and a reduction order > on terms as inputs; if successful, the algorithm will
return a finite, convergent set of rules 𝑅 that is equivalent to 𝐸. The algorithm may also fail, or
fail to terminate. At each step the algorithm maintains a set of identities and a set of rules, both of
which can be updated; the algorithm may transform an identity into a new rule, find a new identity
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as a consequence of the ruleset, or use the present ruleset to refine either an identity or a rule. The
algorithm runs until the ruleset has converged; specific implementations may use some conditions
under which to terminate with a failure.

No finite set of identities exists for the theory of integers. We could fix a set of identities to use
in a completion procedure, but choosing these axioms is a non-trivial task. One issue is that the
theory contains axioms such as commutativity; an identity such as 𝑥 +𝑦 ≡ 𝑦 + 𝑥 cannot be oriented
by any possible reduction order, so our completion algorithm cannot make use of this fact. Another
is that any sufficiently powerful set of identities would almost certainly result in a non-terminating
completion procedure. In addition, even if we use a subset of the Halide TRS for our identities (thus
yielding a confluent Halide TRS), our experience shows that many failures in the compiler’s use of
the TRS are due to missing semantic facts that are not derivable from the current Halide ruleset.
In the absence of a finite set of identities, we treat an SMT solver as a decision procedure to

determine if a suggested identity holds in our theory (of course, the solver itself is also incomplete;
we only make use of the soundness of the solver and cannot derive any information in the case
where the solver cannot show that an identity holds). If the identity holds and can be oriented
using our reduction order, it is added as a rule. It is possible that the newly-synthesized rule may be
a consequence of the existing ruleset and thus could have been found by running completion, but
we know that many synthesized rules contain information that is previously unknown to the TRS.

If we consider our solver as standing in for an infinite set of identities that make up our theory, we
clearly could synthesize an infinite number of rules. Here we make use of the fact that expressions
encountered by the compiler have some bias and are not sampled randomly from the entire
expression space. In a preliminary experiment, we tried generating LHSs at random within a certain
expression size and synthesizing RHSs to serve as new rules. We were able to find an extremely
large number of łmissingž rules not represented in the current TRS, but the new ruleset had no
measurable performance impact on benchmarks. Thus, we only synthesize rules if their LHS could
be applied to at least one expression observed by the compiler under realistic usecases.

2.5 Scope: Robust, Fast, Non-Backtracking Ruleset

In this work, we operate within the scope of Halide’s TRS algorithm and work to make the TRS as
correct, general, and robust as possible. Because the space of expressions we consider constitutes
an undecidable theory, a complete TRS is impossible. Instead, we strive to improve correctness
by ensuring the TRS will always terminate on any expression and that each individual rewrite
preserves semantics; and we improve generality by expanding the ruleset to contain rewrites
that apply to real-world expressions, rather than arbitrary new rules that may not apply to any
expressions the compiler will encounter.
These improvements require overcoming challenging obstacles. First, we must perform a post-

hoc verification of a large body of existing rules; proving a subset of rules correct or that a subset of
rules do not result in infinite rewriting loops is insufficient to guarantee robust behavior. Secondly,
these rewrites operate in an undecidable theory, making automated verification difficult. Finally,
because of this undecidability, we cannot necessarily rely on traditional automated techniques to
discover new rules.

3 SOUNDNESS

We improve the Halide term rewriting system by ensuring its soundness in two ways: first, we
verify that each individual rule is correct, meaning that the rewrite preserves semantics. Then we
verify that the term rewriting system is guaranteed to terminate on all inputs by ensuring that no
sequence of rule applications, on any input expression, can form a cycle.
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3.1 Rule Verification

We verify each individual rule is correct by modeling Halide expressions in SMT2 and using the
SMT solver Z3 [De Moura and Bjùrner 2008] to prove that the rule’s left- and right-hand sides are
equivalent. Most Halide expression semantics map cleanly to SMT2 formulas. The functions max
and min are defined in the usual way, and select in Halide is equivalent to the SMT2 operator ite.
Division and modulo are given the Euclidean definitions in both Halide and SMT2 [Boute 1992],
though division and modulo by zero is handled differently (in Halide both evaluate to zero). Halide’s
TRS uses two vector-constructing operators, broadcast and ramp; all other integer operators can
be coerced to vector operators. broadcast(x, l) projects some value 𝑥 to a vector of length 𝑙 ;
because of the type coercion, we can simply represent broadcast(x, l) as the variable x in SMT2.
ramp(x, s, l) creates a vector of length 𝑙 whose initial entry has the value 𝑥 and all subsequent
entries increase with stride 𝑠 . In SMT2, we represent this term as the symbolic expression 𝑥 + 𝑙 ∗ 𝑠 ,
where 𝑙 must be zero or positive.

Given this modeling, for each rule, we assert any predicate guards are true, then ask Z3 to
search for a variable assignment that makes the LHS and RHS not equivalent. If Z3 indicates no
such assignment exists, the LHS must be equivalent to the RHS and the rule must be correct. We
implemented an SMT2 printer for Halide rewrite rules that automatically constructs an SMT2
verification problem for each rule. Rule verification using Z3 is fully automated and can be run for
the current set of rewrite rules used in the compiler via a script.

However, for 123 rules, Z3 either timed out or returned unknown. Nearly all of these rules used
either division or modulo. We used the proof assistant Coq to manually prove the correctness of
these remaining rules. In the course of these proofs, we discovered we were also able to relax the
predicate guards of 17 rules; for example, in some cases a rule with a guard requiring some constant
to be positive would be equally valid if the constant was non-zero.

Evolving Semantics. This mostly-automated approach to verification assists with changing the
language semantics. Our initial work on verification was not on the semantics described above:
division or modulo by zero was originally considered undefined behavior. Since we had already
modeled Halide semantics in SMT2, it was easy to alter the definitions of division and modulo and
re-run the verification scripts. We proved 141 rules manually in Coq after Z3 failed to verify them;
since in the previous round all Coq proofs included the assumption that all divisors were non-zero,
in most cases we had only to add a case to show that the rule was true when the divisor was zero
as well. In the course of reviewing these proofs, we identified 37 rules whose predicates included
the condition that a divisor be non-zero and where that condition could safely be lifted. We found
that the remaining 44 rules were not correct under the new semantics and submitted a patch to
amend them.
Overall results for verifying rule correctness are described in Section 5.2.1.

3.2 Termination

Under the umbrella goal of simplifying expressions, the Halide TRS uses many strategies: it may
attempt to make expressions as short as possible; it may factor out vector operations or more
expensive operations such as division; it may attempt to canonicalize subexpressions so they can
cancel or be shown equivalent. These strategies are not necessarily aligned and may even undo
each other. Crafting new rules can thus require a detailed understanding of the ruleset and its
various applications. In this section we formalize the Halide expression simplification strategy that
was previously only encoded in the ruleset itself. In doing so, we also prove that since each rule
strictly makes progress in accordance to this strategy, the Halide TRS always terminates.
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Consider a term rewriting system containing only one rule: 𝑥 + 𝑦 →𝑅 𝑦 + 𝑥 . The term 3 + 5
matches the LHS of the rule and is rewritten to 5 + 3, which can again be matched to the rule and
rewritten to 3 + 5, and so on. Termination failures in the Halide TRS have occurred in the past3,
causing unbounded recursion and eventually a stack overflow in the compiler. This is tricky to
debug, and may not always be reported by users, since the error is fairly opaque. To show that
this type of error has been eliminated, we must prove that there is no expression in the Halide
expression language that can be infinitely rewritten by some sequence of rules that form a cycle.
Intuitively, we can think of Halide expressions as existing in some multi-dimensional space;

when an expression is rewritten by a rule, it moves from one point in that space to another. If each
rule always rewrites expressions such that they move monotonically in some direction through the
expression space, then no sequence of rules can form a cycle. These directions correspond to our
intuition about why certain rules are useful (like the examples at the beginning of this section). We
can consider each of these directions as a dimension in the expression space. If we formalize this
desirable ordering and show that all rewrites from one expression to another strictly obey it, then
we will have a proof of termination.

We provide this formalism and prove that the Halide term rewriting system must terminate by
constructing a reduction order, a strict order with properties that ensure that, for an order > and a
rule 𝑙 →𝑅 𝑟 , if 𝑙 > 𝑟 , then for any expression 𝑒1 that matches 𝑙 and is rewritten by 𝑙 →𝑅 𝑟 into
𝑒2, it must be true that 𝑒1 > 𝑒2. Crucially, this order is evaluated over rule terms, and not over all
expressions that those terms may match. We take the definition of a reduction order and the next
two theorems from Baader and Nipkow [1999].

Theorem 3.1. A term rewriting system 𝑅 terminates iff there exists a reduction order > that satisfies

𝑙 > 𝑟 for all 𝑙 →𝑅 𝑟 ∈ 𝑅.

A reduction order is a strict order that must be well-founded, meaning that every non-empty set
has a least element with regard to the order, to prevent infinitely descending chains. It must be
compatible with Σ-operations: for all expressions 𝑠1, 𝑠2, all 𝑛 ≥ 0, and all 𝑓 ∈ Σ:

𝑠1 > 𝑠2 =⇒ 𝑓 (𝑡1, ...𝑡𝑖−1, 𝑠1, 𝑡𝑖+1, ..., 𝑡𝑛) > 𝑓 (𝑡1, ...𝑡𝑖−1, 𝑠2, 𝑡𝑖+1, ..., 𝑡𝑛)

for all 𝑖, 1 ≤ 𝑖 ≤ 𝑛 and all expressions 𝑡1, ...𝑡𝑖−1, 𝑡𝑖+1, ..., 𝑡𝑛 . This property means that if a rewrite
rule transforms a subtree in some expression 𝑒 , the > relation is preserved between the original
expression 𝑒 and the rewritten expression 𝑒 ′. Finally, a reduction order is closed under substitution:
for all expressions 𝑠1, 𝑠2 and all substitutions 𝜎 ∈ S𝑢𝑏 (𝑇 (Σ,𝑉 )), 𝑠1 > 𝑠2 =⇒ 𝜎 (𝑠1) > 𝜎 (𝑠2). When
we match some left-hand side term 𝑙 to some expression 𝑒 , we are defining a substitution for each
of the variables in 𝑙 with some subtree in 𝑒; we then use that substitution to rewrite 𝑒 to 𝑒 ′. If our
order is closed under substitutions, we know that for any expression we match to 𝑙 , the resulting
rewritten expression will obey the ordering.

Choosing a single monotonic direction in which to rewrite expressions would be overly restrictive.
The Halide TRS is used both to prove expressions true and to simplify them; when using it as a
prover, we want to put both sides of an equality into some normal form, but it doesn’t particularly
matter what that form is. When using the TRS to simplify expressions, on the other hand, reducing
the size of an expression has important performance benefits. Since we need an ordering that covers
the full Halide simplification strategy, we make use of the following theorem:

Theorem 3.2. The lexicographic product of two terminating relations is again terminating.

Thus, our strategy in finding a reduction order to cover the handwritten ruleset is to pick an
order >𝑎 such that for all rules 𝑙 →𝑅 𝑟 , either 𝑙 >𝑎 𝑟 or 𝑙 =𝑎 𝑟 . Then, we pick another order >𝑏

3See for example https://github.com/halide/Halide/pull/1525
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such that for all rules 𝑙 →𝑅 𝑟 where 𝑙 =𝑎 𝑟 , either 𝑙 >𝑏 𝑟 or 𝑙 =𝑏 𝑟 . We continue in this way until
a sequence of orders has been found such that for their product >×, 𝑙 >× 𝑟 holds for the entire
ruleset. Our final ordering consists of 13 component orders.
Many of our component orders are defined using measure functions that count the number

of particular operations or other features in a term. We say that 𝑠 > 𝑡 when 𝑠 has more vector
operations than 𝑡 , then when 𝑠 has more division, modulo and multiplications operations, and so
on. As a sample proof sketch of this flavor of order, consider an order 𝑠1 >∗ 𝑠2 that holds when
the number of multiplication operations is greater in 𝑠1 than in 𝑠2. We represent this through a
measure function |𝑠1 |∗ that returns the count of multiplication operations in 𝑠1; since this function
maps a term to a natural number, the order is clearly well-founded. The order is also compatible
with Σ-operations; we compute our measure function as follows:

|𝑓 (𝑡1, ..., 𝑡𝑛) |∗ =

𝑛
∑

𝑖

|𝑡𝑖 |∗ +

{

1 if 𝑓 = ∗

0 otherwise

It clearly follows that given |𝑠1 |∗ > |𝑠2 |∗, it must be true that:

|𝑓 (𝑡1, ...𝑡𝑖−1, 𝑠1, 𝑡𝑖+1, ..., 𝑡𝑛) |∗ > |𝑓 (𝑡1, ...𝑡𝑖−1, 𝑠2, 𝑡𝑖+1, ..., 𝑡𝑛) |∗

To ensure the order is closed under substitution, we need to add one more constraint. Imagine a
rule 𝑥 ∗ 2 →𝑅 𝑥 +𝑥 . Although there are fewer ∗ symbols in the righthand term than on the left, that
would not be true for a substitution 𝜎 = {𝑥 ↦→ (𝑧 ∗ 𝑧)}. We add a condition that for every variable
present in 𝑠1, it must occur either fewer or an equal number of times in 𝑠2. With this constraint
there is no possible substitution that increases the value of the measure function in 𝑠2 that would
not result in an increase by an equivalent or greater amount in 𝑠1. This gives us the order:

𝑠1 >∗ 𝑠2 iff |𝑠1 |∗ > |𝑠2 |∗ ∧ ∀𝑥 ∈ V𝑎𝑟 (𝑠1).|𝑠1 |𝑥 ≥ |𝑠2 |𝑥

Most of the component orders in the full reduction order take the form above. These orders
guarantee termination no matter what sequence rewrite rules are applied to an expression. However,
for part of the existing ruleset, we were obliged to take into account the order in which rules are
applied in the Halide TRS algorithm.

For example, one existing rule is the canonicalization (𝑐0 − 𝑥) +𝑦 →𝑅 (𝑦 − 𝑥) + 𝑐0 where 𝑐0 is a
constant. If 𝑦 is also a constant, this rule forms a cycle with itself, and could not possibly obey any
reduction order. Fortunately, the rule immediately before it in the TRS handles that specific case
(((𝑐0 − 𝑥) + 𝑐1 →𝑅 fold(𝑐0 + 𝑐1) − 𝑥)), so by this sort of non-local reasoning we know that 𝑦 is
not a constant, and therefore the rule strictly decreases a measure which counts the number of
constants on the right-hand side of an addition.
Relying on non-local reasoning makes our order more brittle; if the simplifier algorithm were

to be changed, the termination guarantee could be lost. However, we use only a small number of
basic rules in this way, which are unlikely to be changed.

Besides giving a termination guarantee, the reduction order is necessary if we want to synthesize
new rewrite rules. If we do not constrain newly-synthesized rules to obey a consistent reduction
order with the existing human-written ones, they form cycles with the existing rules and cause
infinite recursion in the TRS. Additionally, the reduction order is the formal encoding of the types
of transformations we find desirable, so the reduction order limits synthesis to rules that rewrite
expressions in a useful direction.

In constructing the reduction order, we found 8 rules that contradicted a desirable ordering, and
submitted patches to either delete or modify them. With this amendment, the reduction order can
be shown to hold over the entire Halide ruleset, and the guarantee of termination is complete. To
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ensure this guarantee is preserved, we build a script that automatically checks the full set of rules
in the compiler to ensure they respect the reduction order. A full description of the reduction order
is given in the supplemental material.

4 INCREASING COMPLETENESS: SYNTHESIZING REWRITE RULES

Although the Halide term rewriting system is necessarily incomplete, we can strengthen it by
finding expressions on which the TRS can no longer make progress and creating rules that will
further simplify them. In this section, we describe a workflow for automatically augmenting the
Halide TRS with new rules.

Given an input expression that the TRS failed to simplify, our goal is to find a rule that can rewrite
it. A high-level view of the synthesis pipeline is shown in Figure 2. We begin with an expression
we will attempt to further simplify; first, we synthesize rules that contain concrete constants from
the input expression. Next we generalize those rules by replacing constant values with symbolic
constants and synthesizing compile-time predicate guards that check the validity of the rule on the
values matched by the symbolic constants. If we find such a rule, we know that adding it to the TRS
will enable it to simplify the input expression as well as any similar expressions it may encounter.

The set of input expressions may come from a bug report, or may be gathered from compiler
logs. With logging enabled, the compiler records two kinds of problematic expression for which
new TRS rules may be helpful: non-monotonic expressions, which can result in over-conservative
bounds for loops and memory allocations; and proof failures, which may prevent Halide from
performing certain optimizations (see Section 2.2). Of course, absent an oracle, it is difficult to
know if the TRS has fully simplified some expression or if it lacks the solving power to continue
simplification. When the TRS is used as a proof engine, its goal is to reduce an expression to true.
In this case, we can fuzz-test failed proofs by assigning all variables in an expression random values
and evaluating; if we cannot find an assignment that evaluates to false, the expression may indeed
be reducible to true, so we log it as an input expression.

4.1 Generating LHS Patterns

Our first step is to find LHS terms that could match the input expression, or any portion of it. We
can enumerate all such terms through a kind of inverse matching. When we rewrite an expression
with a rule, we match the expression to the rule’s LHS by finding a substitution for all variables in
the LHS that will unify it with the input expression. Here, we start with an input expression, then
fix a substitution by mapping some of its subterms to fresh variables. We replace those subterms
with the new variables, constructing a term that can be matched with the input term. If we perform
this inverse matching for all sets of subterms, we find all possible LHSs that could match the input
expression. When a subterm occurs more than once in the input expression, we construct a LHS
that uses the same variable to replace it in multiple places and LHSs that replace its occurrences
with different variables. We repeat the procedure on all subterms of the input expression. The result
is the set of all LHSs that match any part of the input expression. See Figure 3 for a worked example.

This number of LHSs is exponential in the size of the input expression, so we use a few heuristics
to narrow our search. We bound the size of candidate LHSs to have seven or fewer leaves, since
longer terms are less likely to result in rules general enough to justify inclusion in the ruleset.
Additionally, since we process input expressions in batches, we remove duplicate LHSs as well as
LHSs that differ only in the values of their constants. Finally, we have found it helpful to keep a
blacklist of LHSs for which we previously failed synthesize rules; for example, 𝑣1 + 𝑣3 cannot form
a rule, so we filter it out as a candidate.
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Input expression

Generated LHS
patterns (Fig. 3)

AC matching

(Sec. 4.2.1)

Superoptimized with

CEGIS (Sec. 4.2.2)

With symbolic

constants (Sec. 4.3)

Substitute concrete
values of 𝑥𝑖

Candidate predicate

Verify or find new
counterexample

Rule with predicate

Add variants (Sec. 4.5)

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(𝑦 + 2) < select(𝑢 < 𝑧,−3, 4) + (𝑦 + 2)

. . .

(𝑥1 + 2) < 𝑥2 + (𝑥1 + 2)

𝑥1 < select(𝑥2,−3, 4) + 𝑥1
select(𝑥1 < 𝑥2,−3, 4)

. . .

No reassociated/commuted variants
match an existing rule.

𝑥1 < select(𝑥2,−3, 4) + 𝑥1 → ¬𝑥2

𝑥1 < select(𝑥2, 𝑐0, 𝑐1) + 𝑥1 →𝑅 ¬𝑥2

0 < select(false, 𝑐0, 𝑐1) + 0 = ¬false ∧

1 < select(false, 𝑐0, 𝑐1) + 1 = ¬false ∧

0 < select(𝑡𝑟𝑢𝑒, 𝑐0, 𝑐1) + 0 = ¬𝑡𝑟𝑢𝑒

0 < 𝑐1 ∧ 𝑐0 ≤ 0

∃ 𝑥1, 𝑥2, 𝑐0, 𝑐1 . (0 < 𝑐1 ∧ 𝑐0 ≤ 0) ∧

(𝑥1 < select(𝑥2, 𝑐0, 𝑐1) + 𝑥1 ≠ ¬𝑥2) ?
No solutions. Predicate is sufficient.

𝑥1 < select(𝑥2, 𝑐0, 𝑐1) + 𝑥1 →𝑅 ¬𝑥2 if 0 < 𝑐1 ∧ 𝑐0 ≤ 0

𝑥1 < select(𝑥2, 𝑐0, 𝑐1) + 𝑥1 →𝑅 ¬𝑥2 if 0 < 𝑐1 ∧ 𝑐0 ≤ 0

𝑥1 < 𝑥1 + select(𝑥2, 𝑐0, 𝑐1) →𝑅 ¬𝑥2 if 0 < 𝑐1 ∧ 𝑐0 ≤ 0

Fig. 2. Overall flow of the synthesis pipeline (in blue) with worked example (in orange). (a) We harvest
expressions from real compilations on which the TRS could make no further progress. (b) We enumerate all
subtrees of these to generate left-hand sides that would match each expression. Our example will focus on
one such pattern. (c) We obtain a right-hand side by first checking if any reassociated or commuted variants
of it match an existing TRS rule. (d) If not, we superoptimize the pattern using CEGIS. (e) This rule is specific
to the particular values of any constants that appear. We then replace any constants with new variables
𝑐0, 𝑐1, 𝑒𝑡𝑐 ., to obtain a more general version of the rule. We must now synthesize a sufficient condition on
these new variables under which the rule still holds. (f) To do this, we treat the rewrite as an equality and
take the conjunction over a set 𝑆 of different values for the non-constant variables 𝑥0, 𝑥1, 𝑒𝑡𝑐 . (g) Simplifying
the result gives a candidate predicate. This is a necessary condition. (h) We then check if it is also sufficient
condition using Z3. (i) If a counterexample is found, we add these new values of 𝑥 to 𝑆 to obtain a new
candidate predicate and repeat until we have a sufficient condition to serve as our predicate. (j) Finally, we
construct variants of the rule in which the LHS has been commuted.
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+

+

z 2

min

x -

y z

(𝑧 + 2) + min(𝑥,𝑦 − 𝑧) min(𝑥,𝑦 − 𝑧) 𝑧 + 2 𝑦 − 𝑧

𝑣1 + min(𝑥,𝑦 − 𝑧) min(𝑥, 𝑣2)
𝑣1 + min(𝑥, 𝑣3)
(𝑧 + 2) + min(𝑥, 𝑣3)
𝑣1 + 𝑣2

Fig. 3. Given the input expression (𝑧+2) +min(𝑥,𝑦−𝑧), we find all possible LHS patterns by substituting fresh
variables for subterms, for all valid combinations. Then, we repeat the process for each individual subterm.
This process yields the list of candidate LHS terms on the right.

4.2 Synthesizing Right-Hand Sides

Given a candidate left-hand side, we attempt to synthesize a right-hand side that is semantically
equivalent and respects the reduction order, namely LHS > RHS. We employ two strategies
for synthesizing right-hand sides: delayed AC matching, and counter-example guided inductive
synthesis (CEGIS) of the RHS followed by synthesis of the rule predicate guard.

4.2.1 Finding Right-Hand Sides through AC Matching. The first strategy reflects the Halide design
decision not to perform any AC matching in the TRS, for efficiency reasons. Instead, AC matching
is effectively performed during rule synthesis, by checking whether the LHS could be rewritten by
the existing TRS after a suitable application of associativity and commutativity laws to the LHS. To
this end, we generate all possible reassociations and commutations of the candidate LHS term and
pass them to the existing TRS. If any of them can be simplified, we create a new rule that rewrites
the original, untransformed LHS term to the result of the simplification. Note that this result may
include applications of more than one rewriting step, so the new rule is not merely an AC-variant
of an existing rule.

For example, assume our TRS includes the rule (𝑥 + 𝑦) − 𝑥 →𝑅 𝑦, and let ((𝑢 + 2) + 𝑣) − 𝑢 be a
candidate LHS term. The rule does not match the candidate but it matches its variant (𝑢+ (𝑣 +2))−𝑢,
rewriting it to the result 𝑣 +2. The candidate and the result give us the rule ((𝑢 +2) +𝑣) −𝑢 →𝑅 𝑣 +2.
We can consider this procedure a kind of lazy offline AC matching, because if the Halide

TRS performed full AC matching while rewriting expressions, it would be able to apply the rule
(𝑥 +𝑦) −𝑥 →𝑅 𝑦 to the candidate expression ((𝑢+2) +𝑣) −𝑢 after reassociating it to (𝑢+ (𝑣 +2)) −𝑢,
obtaining the result 𝑣 +2. Delaying AC matching to synthesis has the effect of restricting the system
to a single, offline round of AC and memoizing the result in the form of a new TRS rule if we are
successful. Note that the synthesis procedure below could have found this rule, but checking for AC
variants of existing rules is far cheaper. About three-quarters of our synthesized rules are generated
by this method.

4.2.2 Finding Right-Hand Sides through CEGIS. If the first method fails, we apply counterexample
guided inductive synthesis (CEGIS) [Solar-Lezama 2009] to superoptimize the left-hand side pattern.
In superoptimization [Massalin 1987], we take a program and search for an equivalent program
within some grammar that is preferable according to some cost function. Here our grammar is that
of the Halide expression language, the method for testing program equivalence is the Z3 solver,
and we use the node count of the programs as a proxy for our full reduction order.
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Table 2. Sample rules synthesized by our process.

LHS RHS Predicate

(𝑥 ∗ 𝑦) − (𝑧 + (𝑤 ∗ 𝑥)) (𝑥 ∗ (𝑦 −𝑤)) − 𝑧

𝑥 < (𝑦 + 𝑥) + 𝑧 0 < (𝑦 + 𝑧)

max(𝑥 ∗ 𝑥,𝑦) + max(𝑧,𝑤 ∗𝑤) < 𝑐0 false 𝑐0 <= 0

select(𝑥, 𝑐0, 𝑦) < min(select(𝑥, 𝑐1, 𝑦), 𝑐2) false min(𝑐1, 𝑐2) <= 𝑐0
min((𝑥 + ((𝑦 − 𝑥)/𝑐0) ∗ 𝑐0) + 𝑐1, 𝑦) 𝑦 1 <= 𝑐1 ∧ −1 <= (−1/𝑐0) ∗ 𝑐0 + 𝑐1

Similar to prior work in superoptimization [Phothilimthana et al. 2016a; Sasnauskas et al. 2017b],
we search the expression space for an equivalent RHS using a CEGIS loop. This loop alternately
calls Z3 as a verifier, which checks if a candidate RHS is equivalent to the LHS on all inputs, and a
learner, which finds a candidate RHS that is equivalent to the LHS on a limited set of inputs. We
begin by choosing a single-op RHS and ask the verifier if it is equivalent to the LHS. If it is not, we
get back a counterexample of assignments to the variables for which the right- and left-hand side
are not equivalent, which we keep as a set of test inputs. We then ask the learner for a new RHS
that is equivalent to the LHS only on the counterexample assignments we found in the last step. If
we cannot find an equivalent single-op sequence, we iteratively increase the number of operations,
ensuring we find shorter sequences first. If CEGIS returns a sequence semantically equivalent to
the LHS pattern with fewer operations, we use it together with our LHS to form a candidate rule.

The learner portion of the CEGIS loop creates a candidate RHS by creating a sketch [Solar-
Lezama 2009; Torlak and Bodik 2014] that consists of a small bytecode interpreter that encodes
the possible operations and operands the RHS can use, along with a bound on the number of
instructions. The learner uses Z3 to query for a sequence of bytecodes within the bound, that, when
run through the interpreter, is semantically equivalent to the LHS over the test inputs. If a solution
is found, substituting the produced bytecode values into the sketch and applying the TRS reduces
it to a concrete candidate RHS. One complication arising from this approach is that a bytecode
sequence of a fixed number of ops may produce expression trees of a larger size if intermediate
values are reused. We reject any such solutions in a post-pass by checking each synthesized RHS
against the LHS using the full reduction order. An alternative solution would be introducing let
bindings into our search space so that the size of the expression tree could be bounded by the
number of ops in its SSA form. However, we could not identify any significant rewrite rules lost to
this filtering, so we deemed this an unnecessary complication.
While Z3 is a powerful tool for synthesis, there are certain types of expressions containing

division or modulo that Z3 nearly always fails to reason about during the CEGIS process. (We
experimented with the SMT solvers Yices2 [Jovanović 2017] and MathSAT5 [Cimatti et al. 2013],
but were not able to obtain appreciably better results.) Z3 is better able to reason about expressions
containing concrete constants, rather than universally quantified variables, so we synthesize rules
using candidate LHSs with concrete constants from the input expression and generalize them later.
We limit the use of division and modulo in our op-codes to be division or modulo by 2 only, and rely
on the generalization step described next to widen the set of denominators for which a rule applies.
Because of this restriction, our synthesized rules cannot contain non-constants in denominators
or the right-hand side of a modulo. As a result, our synthesis system cannot construct all rules a
human can.

4.3 Generalizing Constants and Finding Predicate Guards

If either AC-matching search (Section 4.2.1) or CEGIS-based synthesis (Section 4.2.2) were successful,
we now have a candidate rewrite rule that contains concrete values originating from the input
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expression. To generalize the rule, we replace such constants with fresh symbolic constants and
synthesize a guard that is true when the rule is valid. Recall that in the Halide TRS, a variable
in the LHS matches any subterm, while a symbolic constant matches only a constant value (see
Section 2.3.1); the guards, which are predicates over symbolic constants, can thus be evaluated at
compile time.
Our goal is to generalize the equality by synthesizing a guard predicate 𝜙 over the symbolic

constants in the LHS and RHS terms such that our rule is valid whenever 𝜙 evaluates to true:

∀®𝑐∀®𝑥 . 𝜙 (®𝑐) =⇒ 𝐿𝐻𝑆 ( ®𝑥, ®𝑐) = 𝑅𝐻𝑆 ( ®𝑥, ®𝑐)

First, we check to see if this condition is satisfied when 𝜙 is always true. If it is, then no
predicate guard is needed. Otherwise, we need to synthesize an expression for 𝜙 . We find candidates
for 𝜙 iteratively by first choosing a small set of values 𝑆 for the variables in ®𝑥 and finding the
candidate guard 𝜙𝑆 . We check to see if 𝜙𝑆 is a sufficient predicate guard for all ®𝑥 ; if it is not, we add
counterexamples to the set 𝑆 and repeat.

∀®𝑐∀®𝑥 ∈ 𝑆 . 𝜙𝑆 (®𝑐) =⇒ 𝐿𝐻𝑆 ( ®𝑥, ®𝑐) = 𝑅𝐻𝑆 ( ®𝑥, ®𝑐)

We initialize 𝑆 with all basis vectors, which are values ®𝑥 = (0, . . . , 0, 1, 0, . . . , 0) that include
exactly one unit value, plus the zero vector. We then unwind the right-hand side of the implication
and substitute in the concrete values from 𝑆 to get:

∀®𝑐∀®𝑥 ∈ 𝑆 . 𝜙𝑆 (®𝑐) =⇒ (𝐿𝐻𝑆 ( ®𝑥1, ®𝑐) = 𝑅𝐻𝑆 ( ®𝑥1, ®𝑐) ∧ . . . ∧ 𝐿𝐻𝑆 ( ®𝑥𝑘 , ®𝑐) = 𝑅𝐻𝑆 ( ®𝑥𝑘 , ®𝑐))

We use the Halide TRS itself to simplify the conjunction on the right-hand side of the implication.
Since all occurrences of ®𝑥 have been replaced with concrete values, we get back an expression that
contains only symbolic constants, which we use as our candidate guard 𝜙𝑆 .

We test whether 𝜙𝑆 is sound on all ®𝑥 .

∃®𝑐 ∃®𝑥 . 𝐿𝐻𝑆 ( ®𝑥, ®𝑐) ≠ 𝑅𝐻𝑆 ( ®𝑥, ®𝑐)

If this query has a solution ®𝑥 , then the guard is unsound. If so, we add the counterexample
®𝑥 to 𝑆 , and construct a new guard 𝜙𝑆 . We repeat this process for several iterations (four, in our
experiments) and if we fail to find a sound guard, we switch to an alternative strategy that converts
the current (unsound) candidate 𝜙𝑆 to disjunctive normal form and tests each clause in turn to
check if it is a sufficient guard. If it is, that clause becomes the guard. If no clause is sound, we
discard the rule. If the loop terminates with Z3 timing out or returning łunknownž, we return the
current 𝜙𝑆 , flagging it as requiring a manual proof. We exclude all such cases from our experiments.
As an example, consider the candidate rule:

𝑥0 < select(𝑥1, 𝑐0, 𝑐1) + 𝑥0 →𝑅 ¬𝑥1

We initialize 𝑆 with three basis vectors {(0, false), (0, true), (1, false)} and construct 𝜙𝑆 :

𝜙𝑆 (®𝑐) ⇐⇒ ∀®𝑥 ∈𝑆 . 𝐿𝐻𝑆 ( ®𝑥, ®𝑐) = 𝑅𝐻𝑆 ( ®𝑥, ®𝑐)

⇐⇒ 0 < select(false, 𝑐0, 𝑐1) + 0 = ¬false ∧

0 < select(true, 𝑐0, 𝑐1) + 0 = ¬true ∧

1 < select(false, 𝑐0, 𝑐1) + 1 = ¬false

Simplifying the RHS with the TRS, we obtain 𝜙𝑆 :

𝜙𝑆 (®𝑐) ⇐⇒ 0 < 𝑐1 ∧ 𝑐0 ≤ 0
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Next we check whether 𝜙𝑆 is sound for all ®𝑥 . It is, so we have a completed rule:

𝑥0 < select(𝑥1, 𝑐0, 𝑐1) + 𝑥0) →𝑅 ¬𝑥1 if 0 < 𝑐1 ∧ 𝑐0 ≤ 0

4.4 Adding Rule Variants

Once we have a generalized rule with a valid predicate, we eagerly compensate for the lack of
AC matching in the Halide TRS by adding AC variants of the rule as well. We find all commuted
variants of the rule’s LHS, with respect to the partial commutative canonicalization as described
in Section 2.3.1. (This is exponential in the size of the number of commutative operators, which
is tractable given our bounds on LHS term size). Then, we find all reassociations of the rule’s
right-hand side. For each variant LHS, we choose a RHS variant by serializing expressions to strings
and finding the RHS that has the shortest edit distance from that LHS.
For example, the LHS of the first rule below has four additions and can be commuted to 16

variants. The RHS of the rule can be reassociated in two different ways. For the commuted variant
of the LHS on the second line, we choose the other means of reassociating the RHS as it has a
smaller edit distance.

(𝑥 + (𝑦 − ((𝑧 + (𝑤 + 𝑥)) + 𝑢))) →𝑅 𝑦 − (𝑧 + (𝑤 + 𝑢)))

(𝑦 − (((𝑤 + 𝑥) + 𝑧) + 𝑢)) + 𝑥 →𝑅 𝑦 − ((𝑧 +𝑤) + 𝑢)

The intuition is that there is no a priori reason to prefer one reassociated variant to another; they
are almost certainly equal in terms of our reduction order. Thus, we choose the RHS that perturbs
the structure of the LHS as little as possible, in order to avoid rewriting common subexpressions in
the hopes of canceling them out later.

4.5 Filtering Rule Output

As a final step, we check each output rule for redundancy with the rule batch found by the synthesis
pipeline. For each new rule, we check that no earlier rule has precisely the same LHS and predicate;
if so, it can be discarded. Then, we check that no earlier rule is more general than the current rule:
a rule is more general than another if they have similar LHSs, but a variable appears in the first
rule in a place where the second rule has a more specific subterm, or if they have the same LHS but
the predicate of the first rule implies the predicate of the second.
Finally, we check that the candidate rule obeys our reduction order in order to preserve our

termination guarantee. If the candidate rule passes these filters, and the predicate has not been
flagged for human review, the rule can be added to the TRS ruleset automatically without any
human auditing.

5 EVALUATION

In evaluating the benefits of the verifier and synthesizer, we answer the following questions:

• Does the synthesizer produce better rules than a human expert? The TRS has been
manually extended five times in response to bug reports pointing out limitations of the
compiler.We synthesized these five rulesets automatically and found that the human-authored
rules were less general and in one case were incorrect. (Section 5.1.1)

• Can verification contribute to theHalide TRS, or is testing alone sufficient?Although
handwritten rules have been extensively fuzz-tested and new rules are peer-reviewed before
inclusion, we were still able to discover 4 unsound rules through verification. In addition,
verificationwas able to identify 44 rules that needed to be changed after a significant semantics
redefinition, which would have been challenging to discover through testing. (Section 5.2.1)
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• What is the best way to use synthesis and verification in development? We survey
several cases from recent Halide development where human experts used the synthesis
machinery as an assistant, finding that this hybrid model is more powerful than either the
human developer or the synthesizer alone. (Section 5.2.2)

• Can synthesis be used for large-scale improvements of the TRS?We gather a corpus
of over 100,000 expressions on which the TRS can make no progress and iteratively synthesize
rules using the corpus as input. We synthesize 4127 rules and add them to the TRS ruleset
without a human audit. We find that the enhanced ruleset reduces peak memory usage in
compiled code, sometimes dramatically, in 197 of our benchmarks. We also find no significant
compile-time slowdown even with this 4.5-fold increase in ruleset size. (Section 5.3.1)

• Could the entire TRS have been synthesized? Encouraged by the large-scale experiment,
we ask how far we are from being able to bootstrap the entire TRS automaticallyÐsomething
that we considered too ambitious originally. First, we find that 69% of the existing ruleset is
accessible to our current synthesizer in principle; the remaining rules contain operators not
yet supported by the tool. We test the synthesizer’s power by removing 321 accessible rules
from the original ruleset one by one and attempting to synthesize a replacement, successfully
finding a replacement rule 58% of the time. We find this encouraging for future applications
of the synthesizer. (Section 5.1.2)

We discuss these findings in more detail below, grouping them into three sections. First we
examine bug reports from Halide’s past and evaluate whether the machinery presented in this paper
could have fixed them automatically. Second, we examine cases where beta versions of our verifier
and synthesizer assisted humans both in fixing bugs and in correctly making larger changes to the
compiler. Third, we fuzz the compiler to mine for issues that could be fixed with new simplifier
rules, and automatically fix them before they ever appear as a bug in a real program. In this way
we demonstrate that this machinery would have been useful in the past, is useful in the present,
and will help avoid entire classes of bugs in the future.

5.1 Comparing the Synthesizer to Human-Authored Rules

5.1.1 Does the Synthesizer Produce Better Rules than aHuman Expert? We searched throughHalide’s
change history and selected the five pull requests that addressed issues by adding new rewrite
rules to Halide’s TRS. These pull requests occurred before the Halide developers started routinely
using the verifier and synthesizer when changing the TRS. These can be found as summarized diffs
A-E in supplemental material, or in their original form on the Halide project website 4. Creating
these rewrite rules as a human is an amount of work disproportionate to the size of the change.
The author of the rules must prove them correct on paper, and a second reviewer must check their
work. As we will see, bugs can slip through despite this review.

In each case we take the test expressions committed as part of the change and feed them to our
synthesizer to see if it would have produced the same rewrite rules as the humans did. In cases
where humans did not check in tests for their new rules, we wrote our own. In total, across these
five cases humans added 24 new rules. The synthesizer generated 42, covering all but one of the
human rules, while correcting and generalizing others. In cases A, C, and E, the rules generated
by the synthesizer are an exact match to the human-generated rules. In case B the synthesizer
matched the human but also crafted 8 commuted variants of the human rules, making them more
widely applicable.

4
A: https://github.com/halide/Halide/pull/3719 B: https://github.com/halide/Halide/pull/3761 C: https://github.com/halide/

Halide/pull/3765 D: https://github.com/halide/Halide/pull/3770 E: https://github.com/halide/Halide/pull/3780
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As an example, for the human-written rule:

max(max(𝑥,𝑦) + 𝑐0, 𝑥) →𝑅 max(𝑥,𝑦 + 𝑐0) if 𝑐0 < 0

The synthesizer produced effectively the same rule, along with a variant:

max((max(𝑥,𝑦) + 𝑐0), 𝑥) →𝑅 max((𝑦 + 𝑐0), 𝑥) if 𝑐0 ≤ 0

max(𝑥, (max(𝑥,𝑦) + 𝑐0)) →𝑅 max(𝑥, (𝑦 + 𝑐0)) if 𝑐0 ≤ 0

Case D is the most interesting. It contains four rules involving comparisons of min and max

operations. What happened for each was identical, so we will only discuss the min rules. The first
rule is:

min(𝑥, 𝑐0) < min(𝑥, 𝑐1) + 𝑐2 →𝑅 false if 𝑐0 ≥ 𝑐1 + 𝑐2)

This rule is incorrect (consider 𝑐0 = 𝑐2 = 1, 𝑥 = 𝑐1 = 0). It can be fixed by adding the term
𝑐2 ≤ 0 to the predicate. The synthesizer produced the correct version of this rule, along with two
generalizations of it:

min(𝑥, 𝑐0) < min(𝑥, 𝑐1) + 𝑐2 →𝑅 false if 𝑐2 ≤ 0 ∧ 𝑐1 + 𝑐2 ≤ 𝑐0

min(𝑥, 𝑐0) < min(𝑥,𝑦) + 𝑐1 →𝑅 𝑐0 − 𝑐1 < min(𝑥,𝑦) if 𝑐1 ≤ 0

min(𝑥, 𝑐0) < min(𝑦, 𝑥) + 𝑐1 →𝑅 𝑐0 − 𝑐1 < min(𝑦, 𝑥) if 𝑐1 ≤ 0

The second human rule was:

min(𝑥, 𝑐0) < min(𝑥, 𝑐1) →𝑅 false if 𝑐0 ≥ 𝑐1

The synthesizer found a more general rule, along with three other commuted variants (elided for
space):

min(𝑥,𝑦) < min(𝑥, 𝑧) →𝑅 𝑦 < min(𝑥, 𝑧)

Any expression which matches the human-written rule would also match the synthesized one. The
synthesized version does not simplify to the constant false in a single step. However, after applying
this rule to the case considered by the human, we get 𝑐0 < min(𝑥, 𝑐1) where 𝑐0 ≥ 𝑐1. The simplifier
then reduces this to false in a second step, so the human-written rule becomes unnecessary. The
synthesizer considered the human-written rule, but discarded it as less general than the one above.
Case D also included the rewrite rule:

𝑥 % 𝑥 →𝑅 0

which was the sole rule the synthesizer could not generate, as we did not include modulo by
non-constants in our CEGIS interpreter.

With this one exception, across these five code changes the synthesizer generated more general,
more correct rules than the humans, and would clearly have been a useful assistant to the Halide
developers if they had had it at the time.

5.1.2 What Fraction of the Halide Rules Could Have Been Synthesized? To bootstrap a TRS, we
could start with a TRS equipped with a basic set of rules and synthesize the remaining rules as the
TRS encounters expressions needing those rules. How far is the synthesizer from supporting this
ambitious vision?
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Given the space of possible rewrites explored by the synthesizer, we believe that it can currently
produce at most 69% of rules that exist in the current TRS. The obstacles to synthesizing all human-
written rules include (i) the inability to automatically verify some rules or preconditions (see
Question 3 above); and (ii) lack of support for some operators in our synthesizer.
We tested the synthesizer’s ability to recreate the original ruleset in the following experiment.

We instrumented the ruleset to associate expressions from compilations of Halide’s correctness
test suite with individual rules invoked when those expressions are rewritten. We gathered a set of
rules for which we had at least three expressions that matched the rule, and filtered out those rules
that are out of scope for the current synthesizer, because their right-hand sides contain operators
we do not support. This gave us a set of 321 rules. For each of these rules, we disabled the rule in
the TRS, then used its matching expressions as input to the synthesizer. The synthesizer was able
to find rules in 186 cases, or about 58% of the rules. Of the other 135 cases, in 43 of them other rules
in the existing TRS happened to combine to rewrite the specific input expression even without the
target rule; for example, this often occurred when the matching expression contained combinations
of constants that could be exploited by other rules. 10 of the 92 failure cases were due to timeouts
in the synthesis process, while 15 specifically failed to synthesize a predicate. Given that it was
difficult to target the desired rule precisely, we find these results to be a promising state of the
technology.

5.2 Practical Uses of the Synthesizer and Verifier

5.2.1 Can Verification Contribute to the Halide TRS, or is Testing Alone Sufficient? The Halide TRS
has a stringent development process: new rules are peer reviewed after they are proven on paper,
and fuzzing has been discovering bugs for months. It is thus reasonable to ask whether mechanized
verification can add any value. Our verification discovered 4 new soundness bugs and 17 instances
of rules whose predicates were overly restrictive. The former bugs eluded the fuzzer; the latter
are deemed too hard so the fuzzer does not look for them. Furthermore, because the verification
infrastructure was in place, it was possible to verify a change of semantics without much additional
effort, identifying 44 rules that were incorrect under the new semantics.
The first use of verification took place when the TRS had not yet been merged into the Halide

master branch. We ran the verification pipeline and discovered 4 incorrect rewrite rules, listed
in Table 3. The rules that could not be checked with Z3 were proved true using the Coq proof
assistant (none of the manually proved rules were found to be incorrect). While these bugs were
found automatically the fixes were performed by hand, as the synthesis pipeline did not yet exist.

Case H 5 is a change to the semantics of Halide that may not have even been attempted without
the verifier. In this change, Halide defined division or modulo by zero to evaluate to zero, instead
of being undefined behavior, in response to an issue discovered by Alex Reinking [Reinking 2019].
Existing tests and real uses of Halide were useless as a test of this change, as they were all carefully

written to never divide by zero. Within the TRS, this change required rechecking every rewrite rule
that involves the division and modulo operators. Whereas previously each rule assumed that a
denominator on the LHS could not be zero, now it was necessary to either show that the rule was
still correct in the case where a denominator was zero, or constrain the rule to only trigger when
the denominator was known to be non-zero. This was done by encoding the new semantics into
the verifier, and reverifying all rules. Because division and modulo is involved, these rules cannot
always be mechanically verified. 141 rules were reverified with a human in the loop by revisiting
and modifying existing Coq proofs. The mechanical re-verification was all but push-button; the

5
F: https://github.com/halide/Halide/pull/4721 G: https://github.com/halide/Halide/pull/4772 H: https://github.com/halide/

Halide/pull/4439 I: https://github.com/halide/Halide/pull/4850
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Table 3. Rules corrected through the first round of verification.

Rule Counterexample

Wrong 𝑥∗𝑐0
𝑐1

→𝑅
𝑥

(𝑐1/𝑐0)
if 𝑐1 % 𝑐0 = 0 ∧ 𝑐1 > 0 𝑐0 = −1, 𝑐1 = 2, 𝑥 = 1

Fixed 𝑥∗𝑐0
𝑐1

→𝑅
𝑥

(𝑐1/𝑐0)
if 𝑐1 % 𝑐0 = 0 ∧ 𝑐0 > 0 ∧ 𝑐1

𝑐0
≠ 0

Wrong ( 𝑥+𝑐0
𝑐1

) ∗ 𝑐1 − 𝑥 →𝑅 𝑥 % 𝑐1 if 𝑐1 > 0 ∧ 𝑐0 + 1 = 𝑐1 𝑐0 = 2, 𝑐1 = 3, 𝑥 = −5

Fixed ( 𝑥+𝑐0
𝑐1

) ∗ 𝑐1 − 𝑥 →𝑅 −𝑥 % 𝑐1 if 𝑐1 > 0 ∧ 𝑐0 + 1 = 𝑐1

Wrong 𝑥 − ( 𝑥+𝑐0
𝑐1

) ∗ 𝑐1 →𝑅 −(𝑥 % 𝑐1) if 𝑐1 > 0 ∧ 𝑐0 + 1 = 𝑐1 𝑐0 = 2, 𝑐1 = 3, 𝑥 = −5

Fixed 𝑥 − ( 𝑥+𝑐0
𝑐1

) ∗ 𝑐1 →𝑅 ((𝑥 + 𝑐0) % 𝑐1) + −𝑐0 if 𝑐1 > 0 ∧ 𝑐0 + 1 = 𝑐1

manual effort for updating the Coq proofs was non-trivial, but about half of the effort of writing
the original proofs from scratch. In this process, 44 existing rules were found to be incorrect in the
new semantics and fixed. (Two of them were in fact not related to division, but were instead the
first discovery of the bugs injected in case D above.) The remaining 42 rules were modified to only
trigger when the denominator was known to be non-zero, either by adding a predicate to the rule,
or by exploiting the TRS’s ability to track constant bounds and alignment of subexpressions. Three
examples of now-incorrect rules were:

(𝑥/𝑦) ∗ 𝑦 + (𝑥 % 𝑦) →𝑅 𝑥

−1/𝑥 →𝑅 select(𝑥 < 0, 1,−1)

(𝑥 + 𝑦)/𝑥 →𝑅 𝑦/𝑥 + 1

The first was modified to:

(𝑥/𝑐0) ∗ 𝑐0 + (𝑥 % 𝑐0) →𝑅 𝑥 if 𝑐0 ≠ 0

and the other two were constrained to only trigger when the denominator is known to be non-zero
via other means.

The cases discussed in Section 5.1.1 all concern fixing existing problems while not introducing
new ones. By giving a proof of soundness, showing that the ruleset is correct and that the rules
are cycle-free, we also remove two entire classes of future bugs. For reference, over the life of
the Halide project there have been 14 pull requests that fix incorrect rules, and 3 pull requests
that modify rules in order to avoid cycles. Fixing a reduction order also guarantees that no new
cycles can be introduced as long as new rules obey this order; without such a guide, it is possible to
introduce a rule that would close a loop in some sequence of existing rule applications and cause a
cycle, resulting in infinite recursion during compilation.

5.2.2 What is the Best Way to Use Synthesis and Verification in Development? We have found that
human experts can best leverage the strengths of the synthesis tool by using it as an assistant: for
example by synthesizing a rule and then generalizing or simplifying it by hand, or by writing a rule
and asking the tool to synthesize a valid predicate. Most importantly, this avoids committing new
bugs, but it also accelerates rule development. Halide developers report that adding new rules by
hand takes about 30 minutes per rule starting from sample input expressions through final review.
Starting from the same input expressions, the synthesis tool can produce a batch of 10 verified
rules in about 5 minutes.
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Here we survey some cases from recent Halide development where the synthesis machinery was
used in this way. The diffs are available as F through I in supplemental material or on the Halide
project website5.
In case F a Halide developer encountered expressions that seemed like they could be simpler

while working on real code, and rather than inventing a rule from scratch searched the logs of the
synthesizer project for a known-correct synthesized rule that handled the case in question. This
added four new rules that are variants of:

max(𝑦, 𝑧) < min(𝑥,𝑦) →𝑅 false

In case G a developer wrote 24 new rules, proving them on paper, and then checked their work by
resynthesizing the predicates using the synthesizer, ensuring that the synthesized predicates agreed
with the human’s and that those predicates were as broad as possible. Here the synthesis machinery
served as a reviewer of rules rather than an author. Eight of these rules were in fact manual
rederivations of the synthesizer’s output on case D above. The remaining 16 are generalizations
that add constant terms. One example:

min(𝑦 + 𝑐0, 𝑧) < min(𝑦, 𝑥) →𝑅 min(𝑧,𝑦 + 𝑐0) < 𝑥 if 𝑐0 < 0

Halide endeavors to be a safe language, meaning that certain things are checked at compile time
or runtime rather than being undefined behavior. In case I, Halide was changed such that instead of
asserting that no output value has a dependency on any out-of-bounds input values, it now asserts
the stricter condition that no out-of-bounds loads occur on the input, even if those loaded values
cannot possibly affect an output.
This is a harder thing for the compiler to check, and analysis often conservatively found that

it was possible for code to read out of bounds, when in fact it would not. The Halide developers
ameliorate this in part by minimizing the number of non-monotonic expressions using aggressive
simplification. In total 59 new rewrite rules were added as part of this change. Eight of these were
synthesized automatically by copy-pasting a non-monotonic expression from a bug report into the
synthesis machinery. Another 28 came from generalizing those rules by hand and then verifying
the result. Twenty more were written by hand and then verified. Finally, there were three rules
that could not be verified, because they involve the interaction of division and modulus. During
this process a large number of bugs were found in human-written early versions of these rules.
We found that with the verifier and synthesizer in hand, humans work quickly and rely on the
machinery to catch their mistakes.
Generalizing from these four cases, we have found that having the verifier and synthesizer

available as tools reduces the number of bugs committed, uncovers and fixes old bugs, and helps
developers work more quickly by not only mechanizing correctness checking but also by synthesiz-
ing correct code. We also found that the guarantees these tools provide mean that the developers
can make large changes to the compiler with confidence. Anecdotally, developers also report that
eliminating these classes of bug makes triaging new issues simpler, because they could now not
possibly be due to an incorrect rule or an infinite loop in the term rewriting system.

5.3 Using the Synthesizer to Prevent Future Issues

5.3.1 Can Synthesis be Used for Large-scale Improvements of the TRS? Although we now have a
guarantee of soundness, we have no such guarantee of completeness. There are almost certainly
Halide compilations for which the addition of some desirable rule would strengthen the TRS enough
to unlock some optimization or achieve a tighter bound on some region. However, we don’t know
what they are because no human has encountered them yet (or more likely, no human has been
sufficiently motivated to submit a bug report for them yet).
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We attempted to probe for such opportunities for improvement using fuzzing. We selected the
12 most complex example applications in the open source repository, and generated 64 random
schedules for each using the autoscheduler [Adams et al. 2019], which can be configured to generate
random likely-good schedules. This produced 768 separate compilations. We also instrumented
most of the Halide code at Google for an additional 5032 compilations, this time using the original
human-written schedules. Note that this is qualitatively different to randomly-generated schedules:
we do not expect Halide users at Google would check in code that behaves poorly due to an issue
with the compiler.

We instrumented these compilations to log expressions that might represent a TRS failure of
some kind. From each compilation we log all integer expressions found that are non-monotonic
with respect to a containing loop, and all failed proof attempts made during compilation. That is,
we log all boolean expressions passed to the TRS in the hope that they will reduce to the constant
true so that some optimization can correctly be performed. This resulted in a corpus of roughly
one hundred thousand unique expressions.

Using this corpus as input, we synthesize new rewrite rules, add all rules found back to the ruleset,
and rerun all compilations to gather new expressions, repeating this process until convergence. In
total we created 4127 new rewrite rules in this way, more than quadrupling the number of rules in
the TRS. For some examples, refer to Table 2.
We then generate a fresh set of 256 random schedules per application (to avoid testing on our

training set), and compile and run all the generated code, looking for any compilations which
behave significantly differently between the baseline condition (compiled using unmodified Halide)
and the test condition (compiled with the 4127 additional rewrite rules). The interesting findings
are summarized below.

Adding new rules lowers peak memory usage by up to 50%. Halide sizes internal allocations using
symbolic interval arithmetic, which (as described in Section 4.2) is prone to overestimating bounds
when expressions do not either monotonically increase or decrease with respect to some containing
loop. By extending the TRS, we automatically fix 197 cases where this kind of error increases the
peak memory usage of an application at runtime by more than 10%, including one case where
the increase was more than a gigabyte. This represents nearly 6% of all compilations tested. We
believe this captures a widespread problem, as instances of overallocation are a common source of
complaint from users. See Figure 4 for the full distribution.

Term rewriting systems written without verification have bugs. On our initial run of this experiment,
55 compilations (1.6%) crashed at runtime with memory corruption errors in the baseline condition
(no new rules added). We traced this to an incorrect transformation in a separate, unverified TRS
in the Halide compiler (the łsolverž). This bug had existed for four years, but had only recently
become an important code path due to change I mentioned above. The incorrect transformation
was min(𝑥 −𝑦, 𝑥 −𝑧) →𝑅 𝑥 −min(𝑦, 𝑧), which should be min(𝑥 −𝑦, 𝑥 −𝑧) →𝑅 𝑥 −max(𝑦, 𝑧). If this
secondary TRS had been written using verification, this bug would never have been introduced. We
intend to formalize and verify this secondary TRS next to flush out any other bugs lurking therein.

The TRS scales well with the number of rules. Remarkably, more than quadrupling the size of
the TRS increased total compile times by only 0.3%. On further examination we found that the
additional rules increased the amount of time spent inside the TRS by 30%, and that only 1% of the
the total compile time of the average Halide program is spent inside the TRS.

We did not find significant effects on runtime of the generated code or code size. We also found no
significant differences on any metrics within the Google corpus. This may be because the random
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Reduction in peak memory usage
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Fig. 4. Reduction in runtime peak memory usage of 3072 pieces of compiled code when 4127 synthesized rules

are added to the TRS. The x-axis shows
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, so below 1.0 means the synthesized rules reduced memory

consumption. In 197 cases, peak memory usage drops by more than 10%.

schedules we generate are especially complex compared to human-written ones, or simply because
humans don’t commit code that causes the compiler to misbehave.
While adding this many new rules does not come at any significant cost we could measure to

users of Halide, it increases the compile-time and code size of the compiler itself, so we do not
propose adding all of these rules to the TRS permanently. Prior to proposing inclusion, we plan
to triage the rules to select only those that are necessary to gain the peak memory reductions
described above.

These results show that having verification and synthesis available as a tool for compiler authors
fixes existing bugs, prevents entire classes of new bugs, and even helps compiler writers change
the semantics of their language with confidence. We intend to continue to use verification and
synthesis to maintain the TRS, and based on this experience plan to expand its use elsewhere in
the compiler.

6 LIMITATIONS & FUTURE WORK

For this work, we considered only the subset of the term rewriting system that is used to prove
properties over infinite integers; the full TRS includes rules for simplifying expressions with floating
point values as well as rules for fixed-bitwidth integers. As a result, we do not consider cases where
the TRS must also reason about whether overflow can occur. Extending our improvements and
automation to such rules could be done in future work.

One major limitation of the synthesis process we use is that our solver, Z3, often cannot reason
about expressions with divisions or modulo where the right operand is a variable. Though we work
around this to synthesize rules with generalized predicates on right hand side constants, the overall
synthesis machinery cannot generalize these to non-constants. Extending the synthesizer may be
more tractable for rules that operate on integers with finite bitwidths.
The Halide TRS is used both to prove expressions true or false and to simplify expressions to

more easily optimizable forms, but these two use cases are not always aligned. One could imagine
two separate rewriters with different rulesets and reduction orders. One interesting direction for
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future work might be to use the synthesizer to create these two rulesets, which would otherwise
be a very human-effort intensive task.
Although we do not currently synthesize rules that contain vector operators, they are not

incompatible with our approach. Since our reduction of Halide expressions to SMT2 formulas
models vector expressions as integers, we would need to add a typechecking step to ensure
correctness in the synthesis process, which we leave as future work.
The priority in which rules are considered for matching clearly can have performance implica-

tions, but evaluation and tuning is left as future work, and may require modifying our ordering or
creating different orderings for different uses of the term rewriting system.

Finally, while enhancing the Halide TRS was not able to improve the performance of the mature
Halide compiler, we suspect this may not be the case for other, less well-exercised compiler
backends. In future work we plan to use this technique to enhance the ruleset used to compile
Halide applications to GPU code or to the Hexagon ISA.

7 RELATED WORK

Perhaps the closest related work is the Alive project [Lopes et al. 2015; Menendez and Nagarakatte
2017]. The fundamental difference between Alive and this work is that Alive works within the decid-
able theory of bitvectors, while (because of Halide semantics) we must use the undecidable theory
of integers; this constraint is the major reason for many of our design choices. In addition: Alive
verifies optimizations (and Alive-Infer synthesizes preconditions), while we synthesize rewrites
and predicates, as well as verify them; Alive must contend with more types of undefined behavior,
which the Halide expression language need not consider; and Alive uses a simple reduction order
in which all optimizations reduce program size, while our termination proof is more complex. We
originally tried synthesizing rule predicates with the approach used by Alive-Infer but were not
successful: using Z3 to generate positive and negative examples did not scale for us, requiring
seconds to minutes per query due to the underlying theory of integers. Moreover, queries with
division/modulo over the integers often did not work at all, simply returning łunknown.ž
Most recently, leveraging a TRS along with synthesized rules has been applied to optimizing

fully-homomorphic encryption (FHE) circuits [Lee et al. 2020]. This system synthesizes equivalent
circuits with lower cost from small example circuits, then applies the equivalences in a divide-and-
conquer manner; the rewrites do not contain preconditions. In further contrast to our work, the
domain of FHE yields a simple cost function (the depth of nested multiplications in the circuit),
and the underlying theory of boolean circuits is decidable.
An equivalence graph or egraph, as introduced by Nelson [1980], is a data structure used to

compute applications of the rules of a term rewriting system. The algorithm builds up equivalence
classes by successively applying all rules to all expressions within those classes, then queries to
see if two expressions are equivalent by checking if they are present in the same class. Like our
algorithm, it does not backtrack, but the egraph can require significant amounts of memory, which
our algorithm avoids.
Herbie [Panchekha et al. 2015], a tool for improving the accuracy of floating point arithmetic,

uses an egraph term rewriting system made up of a small library of axioms to find repairs once
a fault has been localized. Herbie assures termination by bounding the number of rewrites their
system may apply, and achieves good performance by pruning the expression search space and
applying rewrites only to particular expression nodes.

Besides the closely-related projects described above, program synthesis has been applied to term
rewriting systems in several domains. Swapper [Singh and Solar-Lezama 2016] synthesizes a set
of rewrite rules to transform SMT formulas into forms that can be more easily solved by theory
solvers, similar to the use of the Halide TRS as a simplifier, using the SKETCH tool. Butler et al.
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[2017] learns human-interpretable strategies (essentially rewrite rules) for puzzle games such as
Sudoku or Nonograms and Butler et al. [2018] finds tactics for solving K-12 algebra problems, both
using a CEGIS loop similar to our synthesis process. None of these address termination, although
Swapper likely screens out non-terminating rulesets through its autotuning step. The Butler works
both focus on synthesizing small, highly general rulesets that are similar to human rewriting
strategies, unlike the Halide TRS which tolerates very large rulesets. The 𝜆2 tool [Feser et al. 2015]
for example-guided synthesis performs inductive synthesis from examples, using a combination of
inductive and deductive reasoning combined with enumerative search. While our rewrite rules
do not have the benefit of examples, it may be possible to apply this technique to obtain more
sophisticated predicate synthesis for our rewrites.

Superoptimization, a process of finding a shorter or more desirable program that is semantically
equivalent to a larger one, is similar to our work synthesizing right-hand side terms for candidate
LHSs. STOKE [Schkufza et al. 2013] usesMonte CarloMarkov Chain sampling to explore the space of
x86 assembly programs, while Phothilimthana et al. [2016b] describes a cooperative superoptimizer
that searches for better programs using multiple techniques in a way that allows them to learn
from each other. Souper [Sasnauskas et al. 2017a] is a recent synthesis-based superoptimizer for
LLVM, which was used in evaluating the effectiveness of Alive-Infer’s precondition synthesis.

PSyCO [Lopes and Monteiro 2014] synthesizes preconditions that guarantee a compiler optimiza-
tion is semantics-preserving, using a counterexample-driven algorithm similar to our rule CEGIS
loop (although not like our predicate synthesis algorithm). PSyCO finds the weakest precondition
from a finite language of constraints, while the space of our predicate search is theoretically inifinite
but in practice bounded by our iteration limit. PSyCO must reason about side effects by tracking
read and write behavior in optimization templates, while our expression language is side effectśfree.
More recently, Proviso [Astorga et al. 2019] finds preconditions for C# programs using an active
learning framework composed of a machine learning algorithm for decision trees as a black-box
learner and a test generator that acts as a teacher providing counterexamples. Like this work, the
logic of preconditions they synthesize is in an undecidable domain.

SMT solvers seek to achieve practical results in theoretically challenging problems, such as the
theory of non-linear integer arithmetic. For example, Jovanović [2017] describes a satisfiability
procedure for NLIA that is effective in practice and implements it in the Yices2 solver. In this work
we leverage Z3’s NLIA solving abilities and extend synthesis to include certain types of non-linear
expressions by using constants as operands and later generalizing.
A different use of term rewriting systems in pipeline scheduling language compilers is demon-

strated in [Hagedorn et al. 2020], in which an algorithm and a schedule are rewritten using a TRS
to low-level code, which can be then compiled for high performance.

8 CONCLUSION

In this work, we improved the Halide term rewriting system by applying formal techniques to verify
rewrite rules and to ensure termination. In this process, we discovered 4 incorrect rules (which is
remarkable, given that the TRS has been extensively fuzz tested) and 17 cases where we could make
rules more general, as well as 8 rules that could potentially cause termination problems. We built
an automated synthesis-based pipeline for constructing new rewrite rules and demonstrated that it
can produce better rewrite rules than hand-authored ones in five historical bug fixes. We further
described four case studies in which the synthesizer has served as an assistant to a human compiler
engineer. Finally, we showed that applying the synthesizer can proactively improve weaknesses in
the Halide compiler by bulk-synthesizing a large number of rules automatically and showing this
ruleset lowers peak memory usage of compiled code with nearly no increase in compilation time.
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Our improvements guarantee the soundness of the term rewriting system and increase its robust-
ness and coverage, with no significant costs or downsides we could identify. Indeed, augmenting
this part of the Halide compiler using verification and synthesis seems to constitute a free lunch,
and so we intend to formalize other parts of the compiler as verified term rewriting systems as well.
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