
eBPF Verifier 🔍
Using declarative analysis to try to ensure safety

Shreyas Kallingal

What is eBPF?

● Extended version of the Berkeley Packet Filter

● Allows sandboxed programs to run in an OS kernel 😨

● Observability, networking, security (really?)

https://ebpf.io/what-is-ebpf/

eBPF Instruction Set

● Just a (very limited) 64-bit virtual machine!

● JiT compiler converts to native instructions

● Verifier simply needs to check safety before passing off to JiT

eBPF Verifier “API”

● User provides eBPF bytecode to verifier

● Only context, stack space, and packets are available to VM

● Verifier is conservative (arguably, not enough)

● Loss of high-level source code information

What is safety?
● Number one priority*

● No dead code

● Register readability (no reads before writes)

● Pointer analysis

● Termination

Motivating Example
 // r0 is a non-null pointer to a map value.

 // r1 initially can be any positive value on 64-bits.

 0: r6 = r0

 1: if r1 < 14 goto pc+1 // Jump to insn 3 if r1 is bounded.

 2: r1 &= 0xf // If it is not, bound it.

 3: r6 += r1

 4: r7 = *(u16 *)(r6 + 0) // Read map value.

Source: https://pchaigno.github.io/ebpf/2023/09/06/prevail-understanding-the-windows-ebpf-verifier.html

https://pchaigno.github.io/ebpf/2023/09/06/prevail-understanding-the-windows-ebpf-verifier.html#accuracy-and-cost-evaluations

Abstract Interpretation for Pointer Analysis
Fixed-point problem!

1. Start with a basic block input state from predecessors

2. Perform abstract interpretation over that block → new output state

3. Update successors

4. Rinse and repeat until you settle on a fixpoint

Crab 🦀

● Fixed point solver

● Widening as a method for coarsening the interval analysis (overshoots)

● Specialized “CrabIR” used for its control flow analysis

Widening: A key optimization

For intervals:

PREVAIL (2019)
● De-facto Windows verifier built on Crab

● Leverages abstract interpretation to scale analysis to larger programs

● Domain must be relational to fully encompass run-time bounds checks

Performance considerations
● PREVAIL is a resource hog; ~5X overhead over standard Linux verifier

AI and eGraphs: Better Together

S. Coward, G. A. Constantinides, and T. Drane,
“Combining E-Graphs with Abstract Interpretation.” arXiv,
Aug. 15, 2023. doi: 10.48550/arXiv.2205.14989.

Verifier Future (or Demise?)
● Formal verification of the verifier does exist

● Comparison to Wasm security models

● Argument that verification is untenable (Rust alternative)

● Runtime checking is a necessary evil

Questions?

