eBPF Verifier <

Using declarative analysis to try to ensure safety

Shreyas Kallingal

What is eBPF? @eBPF

e Extended version of the Berkeley Packet Filter
e Allows sandboxed programs to run in an OS kernel &

e Observability, networking, security (really?)

ce e0d€

= eBPF = eBPF
== Program == Program
P g g §
] Program | Maps [procass J
Development |
[HeBPF Go Library J sendmsg() recvmsg()
|
[Syscall] L Syscall J
G > HeBPF

X Q eBPF A
3 C ﬁeBPF Verifier L= ﬁ(@BPF Sockets
= CILJ JIT Compiler | { TCP/IP J
1 eBPF ompiler
— 7 /

Runtime https://ebpf.io/what-is-ebpf/

eBPF Instruction Set

e Just a (very limited) 64-bit virtual machine!
e JiT compiler converts to native instructions

e Verifier simply needs to check safety before passing off to JiT

eBPF Verifier “API”

e User provides eBPF bytecode to verifier
e Only context, stack space, and packets are available to VM
e \Verifier is conservative (arguably, not enough)

e Loss of high-level source code information

What is safety?

e Number one priority*

e No dead code

e Register readability (no reads before writes)
e Pointer analysis

e Termination

Motivating Example

// r0 is a non-null pointer to a map value.

// rl initially can be any positive value on 64-bits.

0: r6 = r0

1: if rl < 14 goto pc+l // Jump to insn 3 if rl is bounded.
2: rl &= Oxf // If it is not, bound it.

3: r6 +=rl

4: r7 = *(ulé *) (r6 + 0) // Read map value.

Source: https://pchaigno.github.io/ebpf/2023/09/06/prevail-understanding-the-windows-ebpf-verifier.html

https://pchaigno.github.io/ebpf/2023/09/06/prevail-understanding-the-windows-ebpf-verifier.html#accuracy-and-cost-evaluations

Abstract Interpretation for Pointer Analysis

Fixed-point problem!

1. Start with a basic block input state from predecessors
2. Perform abstract interpretation over that block — new output state
3. Update successors

4. Rinse and repeat until you settle on a fixpoint

Crab £

e Fixed point solver
e \Widening as a method for coarsening the interval analysis (overshoots)

e Specialized “CrablR” used for its control flow analysis

[_OO, OO]

o R
PN

[-,0] [-2,2] [0, 0]

/ | A’ - \
[-) 1] /\/\ [1,’ o]
o R

[_2!0] [_1!1] [052]

[_00 ’ _2] \‘* /\/\/\ // [2 : OO]

[-2,-1] [-1,0] 0,11 [1,21°

/
\ /
\ /
\ /
\ ’
\ ’
\ /
\ /
\ !
\

[_2!—2] [_1!_1] [O’O] [1!1] [212]

R N

1

Widening: A key optimization

For intervals:

o([a,b]) = [max{ieB|i<a}, min{ieB|b<i}]
o(l)=1

PREVAIL (2019)

e De-facto Windows verifier built on Crab
e Leverages abstract interpretation to scale analysis to larger programs

e Domain must be relational to fully encompass run-time bounds checks

Numerical domain Representable constraints

Parity XSS R2N==NC

Interval +x; <= C

Zone (txy <= ¢) and (xj - x5 <= c)
Octagon (xx; <= c) and (*x; * xj <= c)

Polyhedra aixX1 + axXp + ... *apXy <= ¢, aj € Z

Performance considerations

PREVAIL is a resource hog; ~5X overhead over standard Linux verifier

[\
o

—_
(=)

Analysis time (secs)

interval
ozone-crab
~zone-elina

oct-elina

1,000

2,000

Instructions

3,000

Memory usage (GB)

[N

[\

interval

| czone-crab

~zone-elina
oct-elina
+ poly-elina

Instructions

Al and eGraphs: Better Together

Conditional
Rewrites Applied

E-graph Abstraction
Grows Refinement [2.8] © [144] 10 [L1]
S. Coward, G. A. Constantinides, and T. Drane, [L4] o [14]

“Combining E-Graphs with Abstract Interpretation.” arXiv, . . .
Aug. 15, 2023. doi: 10.48550/arXiv.2205.14989. :@; :@;

................

Verifier Future (or Demise?)

e Formal verification of the verifier does exist
e Comparison to Wasm security models
e Argument that verification is untenable (Rust alternative)

e Runtime checking is a necessary evil

Questions?

