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Abstract

Datalog has proven to be a powerful language for encoding program analy-
ses, but its connection to program transformations remains underexplored.
This paper investigates how ideas from database repair, data provenance,
and symbolic execution can bridge the gap between using Datalog for pro-
gram analysis and leveraging it for program transformations. We survey
existing approaches and present an upcoming perspective on the symbolic
execution of Datalog rules, which simultaneously enables the representa-
tion of a space of potential input database (program) changes and comput-
ing their effect on the analysis results. We posit that bridging Datalog’s
strengths for analysis with an ability to reason about and execute transfor-
mations would significantly expand its utility for program optimization,
repair, and other transformations.

1 Introduction

The use of deductive databases and logic programming languages, such as Datalog (Abite-
boul et al., 1995), for program analysis is far from new (Reps, 1995; Whaley & Lam, 2004;
Lam et al., 2005). The declarativeness of Datalog makes it attractive for specifying complex
analyses (Jordan et al., 2016; Grech et al., 2018). The ability to specify recursive definitions is
particularly exciting, as program analysis is fundamentally a mixture of mutually recursive
tasks (Figure 1).

A Datalog query is a set of Horn clauses such as path(X,Y) :- edge(X,Z), path(Z,Y).
executed against a database of facts referred to as the extensional database (EDB). The result
is a set of derived facts, referred to as the intensional database (IDB).

Naturally, a program to be analyzed is represented as an EDB; e.g., control-flow graph
(CFG) as a set of facts. When a query is executed on this EDB, an optimized Datalog engine
computes all facts that can be inferred using the query’s rules. A big advantage of this setup
is the multitude of optimizations from the classical database systems that come for free to
make these analyses efficient (Bravenboer & Smaragdakis, 2009).

While connecting program analysis to databases (viā Datalog) has proved useful, an open
question is whether program transformations similarly translate to useful aspects of databases.

Program transformations involve changes in a program to improve an objective. Reasoning
about these changes is necessary in many practical applications. For example, while a
program analysis can determine if a program’s behavior violates a certain property, a valid
repair (fix, exception handler, etc.) ensures a program that meets the desired property
Sadowski et al. (2018). Consequently, reflecting on what transformations lead to a desired
property is of great interest.
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Figure 1: A subset of program analyses illustrating a domain of mutual recursion

2 Existing Connections

Starting from a datalog view of programs represented as an EDB, we naturally arrive at
program transformations being transformations to the corresponding facts in the database.
Consequently, we can view the challenges of reflecting on these database transformations
modulo a desired property in two phases. First, is the reflection aspect that answers what is
the origin or derivation of an inferred fact? Second, the transformation aspect answers how a
change to the input affects the truthfulness of the desired property.

There have been various approaches to support both these aspects in traditional database
and datalog frameworks, some of which we explore next.

2.1 Database Repair and Integrity Constraints

One well-studied desired property in traditional database applications is Consistency.
Arenas et al. (1999) define a database instance r as consistent if r satisfies a set of integrity
constraints IC. They then logically characterize “consistent query answers in inconsistent
databases”. The intuitive interpretation here is that an answer to a query posed to a database
that violates integrity constraints should be the same as that obtained from a minimally
repaired version of the original database.

Student

S1 N1 D1
S1 N2 D1

Course

S1 C1 G1
S1 C2 G2

Example. Consider a student database. Student(x, y, z) means that x is the
student number, y is the student’s name, and z is the address. The following
ICs state that the first argument is the relation’s key:

∀(x, y, z, u, v)(Student(x, y, z) ∧ Student(x, u, v) ⊃ y = u),
∀(x, y, z, u, v)(Student(x, y, z) ∧ Student(x, u, v) ⊃ z = v).

The inconsistent database instance r (shown) has two repairs, each re-
moving one of the tuples in Student. Considering all repairs, for a query
∃zCourse(S1, y, z), we obtain C1 and C2 as the consistent answers. However,
for ∃(u, v(Student(u, N1, v) ∧ Course(u, x, y)) we obtain no (consistent) an-
swers.

This is interesting since a repaired database r′ was transformed to satisfy the desired integrity
constraints IC. Of course, there could be many repairs for an inconsistent database. Arenas
et al. (1999) hence propose a solution to retrieve consistent answers that use only the
original database (despite inconsistency). The idea is to syntactically transform a query Q,
reinforcing residues of ICs locally, to a query Q′. Evaluating Q′ on the original database
returns the set of consistent answers to the query Q. This avoids explicitly computing the
repairs. Here’s an example:

Example. Consider the integrity constraint ∀x(¬P(x) ∨ Q(x)). If Q(x) is false, then
¬P(x) must be true. So, when querying ¬Q(x), we make sure to generate the query
¬Q(x)∧ ¬P(x) where the highlighted part is the residue added.
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new(a, l1)
vpt(a, l1)

assign(b, a)
new(a, l1)
vpt(a, l1)

vpt(b, l1) a ̸= b
alias(a, b)

Figure 2: Full proof tree for alias(a, b) in an alias analysis.

Challenges: There are challenges in extending this directly to Datalog and program
transformations. Mainly, queries and constraints here are limited to a fragment of first-order
logic and rewritten into a new query in the same language. For instance, completeness is
lost when it is applied to disjunctive or existential queries. More work (Arenas et al., 2003;
Bertossi, 2011) along these lines have attempted to extend writing repair strategies in logical
languages like Datalog, which are more expressive than FO logic. However, scalability
issues exist when writing and applying these to large rulesets, as in static analysis.

A bigger challenge in (directly) connecting this to Datalog for program transformation is
that these approaches circumvent computing repairs entirely. This is of little applicability
when the goal is to find a transformation.

2.2 Data Provenance and Debugging Datalog

While connections to database repair are apparent, another way to view transformations
modulo a desired property is to look into Data Provenance for debugging why a property
holds. Despite the numerous advantages, the declarative semantics of Datalog poses a
debugging challenge. Logic specifications lack the notion of state and state transitions. After
evaluation, we can only view relations in their entirety without explaining the origin or
derivation of data.

A standard solution for these explanations is a proof tree (Abiteboul et al., 1995). A proof tree
for a tuple describes the derivation of that tuple from input tuples and rules. A valid proof
tree (all nodes hold) can explain an unexpected tuple when debugging. A failed proof tree
provides insight into why a tuple is not produced. Figure 2 shows an example of a proof
tree for an alias analysis.

Challenges: However, these state-of-the-art techniques do not scale to large program
analysis problems. Firstly, unlike top-down evaluation, scalable bottom-up Datalog evalu-
ation does not have a notion of proof trees. Consequently, techniques propose rewriting
the Datalog specification with provenance information (Deutch et al., 2015; Köhler et al.,
2012; Lee et al., 2017). Here, a common issue is the need for re-evaluation when debugging,
which can be expensive for industrial-scale static analysis problems (think something as
precise as DOOP (Bravenboer & Smaragdakis, 2009), which may take multiple days for
medium-to-large Java programs). Another major challenge is infinitely many proof trees and
their conciseness–brute force search is infeasible, and storing proof trees during evaluation
is memory intensive.

Recently, Zhao et al. (2020) proposed storing proof annotations alongside tuples that include
the height of the minimal proof tree and the rule that generated the tuple. Further, they
extend the standard subset lattice of bottom-up evaluation as follows:

1. Define a provenance instance (I, h) as an instance of tuples I along with a function h
that provides a height annotation for each tuple in the instance.

2. Define a provenance lattice as one that follows the ordering:

(I1, h1) ⊑ (I2, h2) ⇐⇒ I1 ⊆ I2 and ∀t ∈ I1 : h1(t) ≥ h2(t).

3. Define the join of instances (I, h) and (I′, h′) as (I ∪ I′, h′′) where h′′ is the minimum
of h and h′ for each tuple in the join.
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Since bottom-up evaluation is equivalent to applying a monotone function to move “up” a
lattice, this guarantees the minimality of these height annotations. During debugging, one
can reconstruct one level of the minimal proof for a tuple t using a top-down search. While
we omit details here, the example below illustrates it:

Example. Say alias(a, b) is the tuple of interest. From bottom-up evaluation, the height
annotation is h(alias(a, b)) = 4, and the generating rule is alias(X,Y) :- vpt(X,o),
vpt(Y,o). Now, we can search for tuples for the body of this rule such that X = a, Y = b,
h(vpt(a, o)) < 4, and h(vpt(b, o)) < 4. Finding these tuples forms a one-level proof tree.

Zhao et al. (2020) find that this adds minimal overhead to Datalog evaluation while enabling
debugging, even in DOOP-like analysis generating millions of output tuples. This approach
could take us one step further from program analysis to transformations with declarative
approaches. Granularly reflecting on why we inferred a fact is particularly useful; it hints
at potential transformation (repair) strategies. Notably, this has been integrated into state-
of-the-art Datalog engines like Soufflé 1. However, an aspect that remains unanswered is
executing these transformations and viewing their effects.

2.3 Incrementality and Datalog

The incrementality of datalog engines allows for analysis on the fly, on-demand, and online
analysis. Interactive applications using this benefit could provide insights into how to
reason EDB transformations.

Example. As an example, program analysis frameworks like DOOP (Bravenboer & Smarag-
dakis, 2009) evaluate a set of rules defined over the abstract syntax tree of the program.
Integrating this into an IDE requires re-evaluating the rules after every few keystrokes (note,
an ongoing transformation). The evaluation must preserve intermediate results efficiently
to achieve interactive performance.

Datalog dialects such as Differential Datalog (DDLog) (Ryzhyk & Budiu, 2019) have been
proposed to make writing such applications easier. A DDlog programmer writes traditional,
non-incremental Datalog programs. However, DDlog’s execution model is fully incremental:
at runtime, DDlog programs receive streams of changes to the input relations and produce
streams of corresponding changes to derived relations.

This capability significantly benefits tools like Language Server Protocols (LSP) servers and
compilers, providing developers with real-time feedback and suggestions. However, this
solves only part of the problem, where one can reason about the effect of changes. What
remains is the part where we reflect on what change would provide the desired effect.

Elastic incrementalization (Zhao et al., 2021; 2023) extends this by incorporating provenance
annotations for input adjustments in incremental Datalog. They switch between a low-
overhead Bootstrap strategy that targets high-impact updates and an Update strategy that
targets low-impact updates.

3 A Symbolic Execution Perspective

In the previous sections, we cover various viewpoints on the challenge of reflecting on
input transformations modulo a desired property in a Datalog setting. Some solve the
transformation aspect (Database repair), and others the reflection aspect (Data provenance,
Debugging, and Incremental Datalog). However, a unification of the two within standard
Datalog remains to bridge the use of Datalog from pure program analyses to transformations.
Consequently, one must be able to represent changes to the input and then execute them to
view how they affect the output, all in standard Datalog. Hence, the key missing pieces are:

1. How to represent a change ∆(EDB) in standard Datalog?
2. How to execute ∆(EDB) in standard Datalog, s.t., we can reflect on a map

∆(EDB) 7→ ∆(IDB)?
1https://souffle-lang.github.io/provenance
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x = null 1

y = x 2

y.call() 3

flow(1, 2).
flow(2, 3).
assign_null("x", 1).
assign("y", "x", 2).
call("y", 3).

(a) Program’s CFG and EDB

npe(V,L):-
call(V,L),
null(V,L),
!guard(V,L).

null(V,L):-
flow(L1,L),
assign_null(V,L1).

null(V,L):-
flow(L1,L),
null(V,L1),
!assign(V,_,L1),
!assign_obj(V,L1).

null(V,L):-
flow(L1,L),
assign(V,V1,L1),
null(V1,L1).

(b) Datalog query for NPEs

x = null 1

y = x 2

if (y!=null) y.call() 3

flow(1, 2).
flow(2, 3).
assign_null("x", 1).
assign("y", "x", 2).
+ guard("y", 3)
call("y", 3).

(c) Repair and EDB change

Figure 3: A program with a null pointer exception (NPE), an analysis that detects it, and a
repair that fixes it–all visualized in a Datalog setting for program analyses.

Liu et al. (2023) presented one solution. Liu et al. (2023) discuss an instantiation of the
larger problem in program repair (a specific program transformation). Figure 3 illustrates an
example of the setup. With this setup, one can identify bugs (such as null pointer exceptions)
using a datalog query over program facts. The result is an observed fact, say npe("y", 3),
that suggests the presence of the bug. Additionally, as seen in Section 2.2 and Figure 2, one
can derive a proof tree that describes the derivation of the observed fact.

3.1 Motivation: SymEx for Program Repair

Popular research in automated program repair uses symbolic execution and testing. Nguyen
et al. (2013) proposed SEMFIX, where the authors reformulated the requirement on the
repaired code to pass a given set of tests as a constraint. SEMFIX generates repair constraint
via controlled symbolic execution (Boyer et al., 1975) of the program. Such a constraint is
then solved by iterating over a space of repair expressions. Here, the key idea is in modeling
the problem: abstract a given program by injecting symbols and executing the program
symbolically to infer repair constraints. Solving these constraints results in potential repairs.

Liu et al. (2023) extend this idea to Datalog. They introduce the notion of Symbolic Execu-
tion of Datalog (SEDL) that determines how a change to the EDB affects the output of a
given query, the details of which are described next.

3.2 Symbolic Execution of Datalog

A set of changes to the database can be encoded using symbols. Liu et al. (2023) introduce
three types of symbols: (1) symbolic constants (α’s) that represent unknown constants,
(2) symbolic predicates (rho’s) for unknown predicates, and (3) symbolic signs (ξ’s) for
unknown truthfulness of facts. These symbols can be used to inject and encode a large space
of changes to the EDB, as shown below:

Example. For instance, consider the EDB in Figure 3. Injecting symbolic facts into it could
result in a symbolic EDB as follows:

ξ1 flow(1, 2). assign null("x", 1).
ξ2 flow(2, 3). call("y", 3).
ξ3 flow(α1, α2). ξ5 flow(α4,, 3).
ξ4 flow(α2, α3). ξ6 assign obj(α5, α6).
assign null("x", 1).
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Any valuation of these symbols corresponds to a concrete EDB (including the original one).
Next, these sets of changes (encoded as symbols) are ”executed” using standard Datalog. To
do so, Liu et al. (2023) propose a meta-programming approach. They encode the query and
symbolic EDB into a meta-program using transformation rules. The meta-program uses
auxiliary variables in the relations to capture the bindings for the symbols introduced. An
example is discussed below:

Example. Consider the rule null(V,L):- flow(L1, L), assign null(V, L1). that calcu-
lates when a variable is null. Each predicate in a rule like this is augmented with variables
for each symbol introduced. These auxiliary variables store the assignments to their corre-
sponding symbols:

null(V,L, C1, . . ., Cn):- flow(L1, L, C1, . . ., Cn), assign null(V, L1, C1, . . ., Cn);

As shown, the rules also propagate the values bound to these symbols. Similarly, a symbolic
EDB fact such as flow(α1, 2) is converted to a rule that enumerates values from the domain
of the symbol used:

flow(C1, 2, C1, . . ., Cn) :- dom α1(C1), . . ., dom αn(Cn)

When executed, the values in these binding variables will capture the assignment con-
straints that should hold for the corresponding fact. A similar strategy is used to bind
symbolic predicates that identify which predicate instantiation is needed to infer a fact.
Lastly, bindings for symbolic signs represent whether the output fact can be inferred with
or without relying on a symbolic signed fact.

The overall semantics of symbolically executing a datalog program P can thus be described
as a function SP : 2SEHB → 2SIHB×Φ. That is, each inferred fact in the symbolic intentional
database (SIHB) is accompanied by an Inference Condition Φ that summarizes the values of
auxiliary variables. This condition defines under what constraint the output fact generated
(similar to path conditions in conventional symbolic execution). For instance, the fact
npe(y, 3) could be accompanied by the following condition:

npe(y, 3); Φ =

ξ1 ∧ ξ2 ∧ ¬(ξ5 ∧ α4 = “y”)
∨(ξ2 ∧ ξ3 ∧ α1 = 1 ∧ ξ4 ∧ α3 = 2)

∧¬(ξ6 ∧ α5 = “x” ∧ α6 = α2)
∧¬(ξ5 ∧ α4 = “y”)

∨ · · ·

from aux vars for each nodeover nodes in proof tree

over a subset of programs w/ same proof

Consequently, ¬Φ represents the constraint under which the corresponding fact is not
true. This closes the loop for program repair, since ¬Φ is essentially a repair constraint–any
solution for it is a valid repair or change to the EDB. These perspectives and ideas introduced
to Datalog could potentially be extended beyond program repair.

4 Conclusion

In this paper, we survey existing work to answer the question: Can program transformations
be translated to useful aspects of Datalog? In light of this question, we looked at connections
to databases in two directions. First, we studied the origins or derivation of a fact, found
existing connections to database repair modulo integrity constraints, and unveiled chal-
lenges with them. Further, we find research on data provenance, Datalog augmented with
lattices, and debugging Datalog quite relevant to the question at hand. Finally, we cover
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recent efforts in program repair (an example of a program transformation) that propose a
symbolic execution perspective to this problem. Overall, this survey describes and connects
several related ideas and provides a basis for future research on Datalog-based program
transformations.
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analyzers. In Computer Aided Verification: 28th International Conference, CAV 2016, Toronto,
ON, Canada, July 17-23, 2016, Proceedings, Part II 28, pp. 422–430. Springer, 2016.
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