
(Better??) E-graph 
Extraction

Jeremy Ferguson, Sora Kanosue, Jacob Yim



Background: Monte Carlo Tree Search



Background: DAG vs. Tree Cost

● DAG cost accounts for shared nodes while tree cost does not
● But minimizing DAG cost is difficult
● Use stochastic methods to search for minimum cost DAG



Background: Existing Extraction Methods

● Bottom-up: uses tree cost, may not find optimal solution in egraphs 
involving sharing

● Greedy DAG: uses DAG cost but not guaranteed to find optimal solution
● ILP: uses DAG cost and guaranteed to find optimal solution, but may not 

terminate



Algorithm Overview

Key insight: At each node, we pick an eclass, and a node from that eclass.



Improvements: Monte Carlo DAG Search

Certain nodes become redundant

Merge them based on decided eclasses and to-visit eclasses.

Tree becomes a DAG



Improvements: Warmstarting

We can pre-populate the our DAG to waste less rollouts using another 
Extractor

Guarantees that our worst case result is the one returned by another extractor.



Improvements: Solution-Guided Rollouts

● Originally: choose nodes randomly during a rollout
● Key Insight: We can guide it by providing it with some prior solution

○ Can’t always choose the prior solution - then we wouldn’t see any improvements
● Algorithm:

Function randomRolloutChoice(to_visit){
e_class = chooseRandom(to_visit)
p = random(0,1)
If p > α then

e_node = chooseRandom(e_class.nodes)
Else

e_node = greedySolution[e_class]
return e_node, e_class

}



Evaluation

Parameters: 10,000 rollouts, warm-start of 5000, Rollout choice probability: 0.2



Future Work

● Rollout selection improvements
● Leaf node selection improvements
● Future evaluations:

○ Lots of knobs to turn in our solution:
■ Number of rollouts
■ Size of warm-started graph
■ Probability of choosing random rollout node vs guided


