
Implementing a Bytecode 
Optimizer for PretVM

Shaokai Jerry Lin



How to have guarantees about the maximum 

latency between the camera capturing a frame 

and a display showing the frame to the surgeons?



3

Designing CPS is an ever more complex problem.

Performance,
Dependability,
Heterogeneity

Multi-core

Networking

Deadline Violation Check

Debuggability

Memory Footprint

Energy Consumption

Timing 
(Execution Time, Precision)

Predictability



4

Lingua Franca is a polyglot, declarative, 

coordination language for real-time, 

concurrent (and distributed) systems.“ “A New Coordination Language for CPS



5

A Classic CPS Example

* Thanks to Erling Jellum for creating this slide.

Application Logic

Application Logic

Application Logic



6

PretVM
Instruction Set
Instruction Semantics

ADD rs1, rs2, rs3 Add to an integer variable (rs2) by an integer variable (rs3) and store the result in a destination variable (rs1).

ADDI rs1, rs2, rs3 Add to an integer variable (rs2) by an immediate (rs3) and store the result in a destination variable (rs1).

ADV rs1, rs2, rs3 ADVance the logical time of a reactor (rs1) to a base time register (rs2) + an increment register (rs3).

ADVI rs1, rs2, rs3 Advance the logical time of a reactor (rs1) to a base time register (rs2) + an immediate value (rs3).

BEQ rs1, rs2, rs3 Take the branch (rs3) if rs1 is equal to rs2.

BGE rs1, rs2, rs3 Take the branch (rs3) if rs1 is greater than or equal to rs2.

BLT rs1, rs2, rs3 Take the branch (rs3) if rs1 is less than rs2.

BNE rs1, rs2, rs3 Take the branch (rs3) if rs1 is not equal to rs2.

DU rs1, rs2 Delay Until a physical timepoint (rs1) plus an offset (rs2) is reached.

EXE rs1 EXEcute a reaction (rs1)

JAL rs1 Store the return address to rs1 and jump to a label (rs2).

JALR rs1, rs2, rs3 Store the return address in destination (rs1) and jump to baseAddr (rs2) + immediate (rs3)

STP SToP the execution.

WLT rs1, rs2, rs3 Wait until a variable (rs1) owned by a worker (rs2) to be less than a desired value (rs3).

WU rs1, rs2, rs3 Wait Until a variable (rs1) owned by a worker (rs2) to be greater than or equal to a desired value (rs3).



7

Compiling LF to PretVM Bytecode

Lingua Franca Program

State Space Diagram
Partitioned DAG



8

Compiling LF to PretVM Bytecode

Partitioned DAG

PretVM Bytecode



9

Opt. 1: Collective Time Advancement

1. Advance reactor 1’s time
2. Advance reactor 2’s time
3. Advance reactor 3’s time
…
1000. Advance reactor 1000’s time

1. Advance a shared time

On Raspberry Pi 4B, each line takes ~2 us. 1000 lines 
could take ~2 ms, which is a lot of time. The optimized 
code have ~2 us of constant overhead.



10

Peephole Optimization

1. Advance reactor 1’s time
2. Advance reactor 2’s time
3. Advance reactor 3’s time
…
1000. Advance reactor 1000’s time

A set of reactors using a 
shared time register:



11

Peephole Optimization

1.
2. Advance a shared time
3. Advance reactor 3’s time
…
1000. Advance reactor 1000’s time

A set of reactors using a 
shared time register:
- Reactor 1
- Reactor 2



12

Peephole Optimization

1.
2. Advance a shared time
3. Advance reactor 3’s time
…
1000. Advance reactor 1000’s time

A set of reactors using a 
shared time register:
- Reactor 1
- Reactor 2



13

Peephole Optimization

1.
2.
3. Advance a shared time
…
1000. Advance reactor 1000’s time

A set of reactors using a 
shared time register:
- Reactor 1
- Reactor 2
- Reactor 3



14



15

Opt. 2: Procedure Extraction

MAIN:
1. <Line A>
2. <Line B>
3. <Line C>
Repeat A-C 100 times…
298. <Line A>
299. <Line B>
300. <Line C>

PROCEDURE:
1. <Line1>
2. <Line2>
3. <Line3>
4. JALR return_addr

Main:
5. JAL PROCEDURE
6. JAL PROCEDURE
…
104. JAL PROCEDURE

Promoting code reuse!



16

Opt. 2: Procedure Extraction

MAIN:
1. <Line A>
2. <Line B>
3. <Line C>
Repeat A-C 100 times…
298. <Line A>
299. <Line B>
300. <Line C>

PROCEDURE:
1. <Line1>
2. <Line2>
3. <Line3>
4. JALR return_addr

Main:
5. JAL PROCEDURE
6. JAL PROCEDURE
…
104. JAL PROCEDURE



17



18

Current Progress
Toward Opt. 1:
- Set up the code base for optimization passes ✅
- Refactoring: a stronger notion of registers ✅
- (Wrestling with a concurrency bug) ⏳ (80%)
- ADV => ADD ⏳ (30%)
- Peephole optimizer ⏳ (50%)

Toward Opt. 2:
- Finding a procedure extraction strategy: finding 

identical nodes in DAGs ✅
- Generate procedures and jumps 💤

I am trying to get both done by the end of the week.



19

Future work: optimizing w.r.t. multiple objectives

Performance,
Dependability,
Heterogeneity

Multi-core

Networking

Deadline Violation Check

Debuggability

Memory Footprint

Energy Consumption

Timing 
(Execution Time, Precision)

Predictability



Thank You! 
It’s been a great semester with you all. 

J


