

Designing CPS is an ever more complex problem.

Timing $ Networking
(Execution Time, Precision)

\ ependabMty\

Heterogenelt .
Predictability @ .

Multi-core

Memory Footprint

Energy Consumption Debuggability

Deadline Violation Check

=y

A New Coordination Language for CPS

II Lingua Franca is a polyglot, declarative,
coordination language for real-time,

concurrent (and distributed) systems.

/']

=y

O 00 NN Oy T B W N B

R R R R R R R R R R
W 00 NV A WN RO

b o

A Classic CPS Example

reactor Sensor {
output out:int
timer t(©,100 msec)
state cnt:1int(0)

: : SenseloAct
reaction(t) -> out {= /* Imperative C code here */ =}

} Application Logic Sensor Processing Actuator
reactor Processing {

, .. out in out in
input in:int h--'--H_-

output out:int (0, 100 msec)

reaction(in) -> out {= /* Process measurement */ =}
} Application Logic
reactor Actuator {

input in:int

reaction(in) {= /* Drive actuator */ =}
} Application Logic
* Thanks to Erling Jellum for creating this slide.

INnstruction Set

Instruction

Semantics

ADD rs1, rs2, rs3

Add to an integer variable (rs2) by an integer variable (rs3) and store the result in a destination variable (rs1).

ADDI rs1, rs2, rs3

Add to an integer variable (rs2) by an immediate (rs3) and store the result in a destination variable (rs1).

ADV rs1, rs2, rs3

ADVance the logical time of a reactor (rs1) to a base time register (rs2) + an increment register (rs3).

ADVIrs1, rs2, rs3

Advance the logical time of a reactor (rs1) to a base time register (rs2) + an immediate value (rs3).

BEQ rs1, rs2, rs3

Take the branch (rs3) if rs1 is equal to rs2.

BGE rs1, rs2, rs3

Take the branch (rs3) if rs1 is greater than or equal to rs2.

BLT rs1, rs2, rs3

Take the branch (rs3) if rs1 is less than rs2.

BNE rs1, rs2, rs3

Take the branch (rs3) if rs1 is not equal to rs2.

DU rs1, rs2 Delay Until a physical timepoint (rs1) plus an offset (rs2) is reached.
EXE rs1 EXEcute a reaction (rs1)
JAL rs1 Store the return address to rs1 and jump to a label (rs2).

JALR rs1, rs2, rs3

Store the return address in destination (rs1) and jump to baseAddr (rs2) + immediate (rs3)

STP

SToP the execution.

WLT rs1, rs2, rs3

Wait until a variable (rs1) owned by a worker (rs2) to be less than a desired value (rs3).

WU rs1, rs2, rs3

Wait Until a variable (rs1) owned by a worker (rs2) to be greater than or equal to a desired value (rs3).

\

LE

Compiling LF to PretVM Bytecode

SimpleReactionWheel

AngularRateSensor Controller

OF e

(5 sec, 75 usec)

R

in2 t1
Gyroscope LE o

(5 sec, 150 usec)

/1 00 usec /

Lingua Franca Program

Partitioned DAG

m—

Initialization Phase Shutdown Phase
4 SO N SO)
0 LAST TAG

Reactions invoked:

N motor.reaction 1 y

Reactions invoked:
controller.reaction_2
motor.reaction_2
controller.reaction_3
controller.reaction_1

|
I
I
I
true :
' \controller.react10n_4)
: t:=t+ 5sec
: t = LAST TAGT
Y
t+ 75 usec
Reactions invoked:
ars.reaction 1 ;
\controller.reaction_l /;2/ Hsec S N
+75 usec t + 100 usec
Reactions invoked:
e 30 ~N motor.reaction_2

‘\controller.reactionj)

t

Reactions invoked:
controller.reaction 2
ars.reaction 1
controller.reaction 1

\ gyro.reaction 1 y

+50 usec
-150 usec

Periodic Phase

State Space Diagram

Compiling LF to PretVM Bytecode

Partitioned DAG

1)
2)
3)
4)
S)
6)
7)
8)
9)
10)
11)
12)
13)
14)

EXE ¢
ADDI counterppye, counterpye, 1

WU countergreen, 2

BEQ 1nl_1is_present, true

JAL line 9

EXE ¢o

EXE out(O_pre_connection_helper

EXE 1nl_post_connection_helper

ADDI counterpye, counte rpuye, 1

DU time_offset,150us

ADDI offset_inc, 150us

JAL return_addrppe, S YNC_BLOCK

BGE time_offset,timeout, SHUTDOWN.e
JAL return_addrye, PERIODIC e

PretVM Bytecode

Opt. 1: Collective Time Advancement

1. Aadvance reactor 1's time
2. Advance reactor 2's time

3. Advance reactor 3's time ‘ 1. Advance a shared time

1000. Advance reactor 1000’s time

On Raspberry Pi 4B, each line takes ~2 us. 1000 lines
could take ~2 ms, which is a lot of time. The optimized
code have ~2 us of constant overhead.

Peepnole Optimization

A set of reactors using a
shared time register:

3. Advance reactor 3's time

1000. Advance reactor 1000’s time

Peepnole Optimization

1. A set of reactors using a
2. Advance a shared time shared time register:
3. Advance reactor 3's time - Reactor 1

- Reactor 2

1000. Advance reactor 1000’s time

Peepnole Optimization

1. A set of reactors using a
2. Advance a shared time shared time register:
- Reactor 2

1000. Advance reactor 1000’s time

Peepnole Optimization

1. A set of reactors using a
2. shared time register:

- Reactor 2

1000. Advance reactor 1000's time - Reactor 3

Sc

Sync@0 msec
WCET=0 nsec
index=0
count=0

gduleTest.source2.react?

Worker=0
WCET=3 msec
WCET=500 usec
Instructions:
EXE (worker 0)
ADDI (worker 0)
index=4
count=0

Q

L 2

Dummy=5000000
WCET=5000000 nsec

SchéduleTest.source.reactiog

Worker=0 Worker=0
WCET=3 msec WCET=1 msec
WCET=500 usec WCET=500 usec
Instructions: Instructions:
EXE (worker 0) EXE (worker 0)
ADDI (worker 0) ADDI (worker 0)
index=3 index=1
count=0 count=0

4

A 4

index=2
count=0

SchedWleTest. sink-redtion_3
Worker=0
WCET=1 msec
WCET=500 usec
Instructions:
BEQ (worker 0)
JAL (worker 0)
EXE (worker 0)
EXE (worker 0)
ADDI (worker 0)
index=6
count=0

A
SchedyleTest.sink teaction 4
Worker=0
WCET=1 msec
WCET=500 usec
Instructions:
BEQ (worker 0)
JAL (worker 0)
EXE (worker 0)
EXE (worker 0)
ADDI (worker 0)
index=8
count=0

Sync@5 msec
WCET=0 nsec
index=5
count=0

eduleTest.sink.reactidg 2

Worker=0
WCET=1 msec
WCET=500 usec
Instructions:
ADVI (worker 0)
EXE (worker 0)
ADDI (worker 0)
index=9
count=1

Dummy=5000000
WCET=5000000 nsec
index=7
count=1

WCEF=Unsec
Instructions:
ADDI (worker 0)
JAL (worker 0)
STP (worker 0)
ADD (worker 0)
ADDI (worker 0)
ADVI (worker 0)
ADVI (worker 0)
ADVI (worker 0)
ADVI (worker 0)
ALR (worker 0
aex—1U

Instructions:
ADDI (worker 0)
JAL (worker 0)
STP (worker 0)
ADD (worker 0)
ADDI (worker O
ADVI (worker 0)
ADVI (worker 0)
ADVI (worker 0)
ADVI (worker 0)

Opt. 2: Procedure Extraction

MAIN:

1. <Line A>
2. <Line B>

3. <Lin

Repeat A-C 100 times... '

e C>

298. <Line A>

299. <
300. <

Ine B>

Ine C>

PROCEDURE:
1.<Llinel>

2. <Line2>

3. <Line3>

4. JALR return_addr

Main:
5. JAL PROCEDURE
o. JAL PROCEDURE

104, JAL PROCEDURE

Promoting code reuse!

Opt. 2: Procedure Extraction

=y

2212.04596v1 [cs.PL] 8 Dec 2022

arxiv

BABBLE: Learning Better Abstractions with E-Graphs and
Anti-Unification

DAVID CAO", UC San Diego, USA

ROSE KUNKEL’, UC San Diego, USA
CHANDRAKANA NANDI, Certora, Inc., USA

MAX WILLSEY, University of Washington, USA
ZACHARY TATLOCK, University of Washington, USA
NADIA POLIKARPOVA, UC San Diego, USA

Library learning compresses a given corpus of programs by extracting common structure from the corpus into
reusable library functions. Prior work on library learning suffers from two limitations that prevent it from
scaling to larger, more complex inputs. First, it explores too many candidate library functions that are not
useful for compression. Second, it is not robust to syntactic variation in the input.

We propose library learning modulo theory (LLMT), a new library learning algorithm that additionally
takes as input an equational theory for a given problem domain. LLMT uses e-graphs and equality saturation
to compactly represent the space of programs equivalent modulo the theory, and uses a novel e-graph anti-
unification technique to find common patterns in the corpus more directly and efficiently.

We implemented LLMT in a tool named sassLE. Our evaluation shows that BaBBLE achicves better
compression orders of magnitude faster than the state of the art. We also provide a qualitative evaluation
showing that BABBLE learns reusable functions on inputs previously out of reach for library learning.

CCS Concepts: « Software and its engineering — Functional languages; Automatic programming.
Additional Key Words and Phrases: library learning, e-graphs, anti-unification

1 INTRODUCTION

Abstraction is the key to managing software complexity. Experienced programmers routinely
extract common functionality into libraries of reusable abstractions to express their intent more
clearly and concisely. What if this process of extracting useful abstractions from code could be
automated? Library learning seeks to answer this question with techniques to compress a given
corpus of programs by extracting common structure into reusable library functions. Library learning

has many potential applications from refactoring and decompilation [Jones et al. 2021; Nandi et al.

2020], to modeling human cognition [Wang et al. 2021; Wong et al. 2022], and speeding up program
synthesis by specializing the target language to a chosen problem domain [Ellis et al. 2021].
Consider the simple library learning task in Fig. 1. On the left, Fig. 1a shows a corpus of three
programs in a 2p cAp DSL from Wong et al. [2022]. Each program corresponds to a picture composed
of regular polygons, each of which is made of multiple rotated line segments. On the right, Fig. 1b
shows a learned library with a single function (named fe) that abstracts away the construction
of scaled regular polygons. The three input programs can then be refactored into a more concise
form using the learned fo. Whether fo is the “best” abstraction for this corpus is generally hard to
quantify. For this paper, we follow DrReEamMCoper [Ellis et al. 2021] and use compression as a metric
for library learning, ie., the goal is to reduce the total size of the corpus in AST nodes (from 208 to
72 Fig. 1). Importantly, the total size of the corpus includes the size of the library: this prevents

*Equal contribution

Authors' addresses: David Cao, UC San Diego, USA, dmcao(@ucsd.edu; Rose Kunkel, UC San Diego, USA, rkunkel@
eng ucsd.edu; Chandrakana Nandi, Certora, Inc., USA, chandra@certora.com; Max Willsey, University of Washington,
USA, mwillsey@cs.washington.edu; Zachary Tatlock, University of Washington, USA, ztatlock@cs washington edu; Nadia
Polikarpova, UC San Diego, USA, npolikarpova@eng.ucsd.edu.

PROCEDURE:
1.<Llinel>

2. <Line2>

3. <Line3>

4. JALR return_addr

Main:
5. JAL PROCEDURE
o. JAL PROCEDURE

104, JAL PROCEDURE

Sync@0 msec
WCET=0 nsec
index=0
count=0

Worker=0
WCET=3 msec
WCET=500 usec
Instructions:
EXE (worker 0)
ADDI (worker 0)
index=4
count=0

SchéduleTest.source.reactiog

Worker=0
WCET=3 msec
WCET=500 usec
Instructions:
EXE (worker 0)
ADDI (worker 0)
index=3
count=0

Dummy=5000000 Sync@5 msec

o WCET=5000000 nsec o WCET=0 nsec
o index=2 o index=5
count=0 count=0

SchedWleTest. sink-redtion_3
Worker=0
WCET=1 msec
WCET=500 usec
Instructions:
BEQ (worker 0)
JAL (worker 0)
EXE (worker 0)
EXE (worker 0)
ADDI (worker 0)
index=6
count=0

y
SchedyleTest.sink-teaction 4
Worker=0
WCET=1 msec
WCET=500 usec
Instructions:
BEQ (worker 0)
JAL (worker 0)
EXE (worker 0)
EXE (worker 0)
ADDI (worker 0)
index=8
count=0

eduleTest.sink.reactio;
Worker=0
WCET=1 msec
WCET=500 usec
Instructions:
EXE (worker 0)
ADDI (worker 0)
index=1
count=0

!;I duleTest.sink.reactiog
Worker=0

WCET=1 msec
WCET=500 usec
Instructions:
ADVI (worker 0)
EXE (worker 0)
ADDI (worker 0)
index=9
count=1

Dummy=5000000
WCET=5000000 nsec

index=7
count=1

4

WCEF=Unsec
Instructions:
ADDI (worker 0)
JAL (worker 0)
STP (worker 0)
ADD (worker 0)
ADDI (worker 0)
ADVI (worker 0)
ADVI (worker 0)
ADVI (worker 0)
ADVI (worker 0)
ALR (worker 0

aex—1U
count=0

eduleTest.sink.reactiom 2
Worker=0
WCET=1 msec
WCET=500 usec
Instructions:
EXE (worker 0)
ADDI (worker 0)
index=1
count=0

Sc

<duleTest.sink.reactio
Worker=0
WCET=1 msec
WCET=500 usec
Instructions:
ADVI (worker 0)
EXE (worker 0)
ADDI (worker 0)
index=9
count=1

Current Progress

Toward Opt. 1:
- Set up the code base for optimization passes
- Refactoring: a stronger notion of registers

- (Wrestling with a concurrency bug) Z (80%)
- ADV =>ADD I (30%)
- Peephole optimizer I (50%)

Toward Opt. 2:

- Finding a procedure extraction strategy: finding
identical nodes in DAGs
- Generate procedures and jumps 22

| am trying to get both done by the end of the week.

L=

Future work: optimizing w.r.t. multiple objectives

Timing ﬁ:z
(Execution Time, Precision)

Performance
Dependability,
Heterogenelty

. Debuggability

Predictability @ . Deadline Violation Check

Networking

Memory Footprint Multi-core

Energy Consumption

=)

