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Afterword

I have avoided some issues in these notes and lectures.  To do the geometry I described
rigorously, one has to be able to describe how to move curves and surfaces into the
configuration I used.  With plane curves, this is easy --- one constructs a coordinate
system with origin at the point of interest, one axis the normal and the other axis the
tangent.  I now construct a parametric form in this coordinate system, where when the
parameter is zero, the curve passes through the origin; I take a Taylor series, and do
whatever rearranging is necessary to get the form
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We actually did this for the circle; while it is a sweat, it is in principle straightforward.  In
practice, it is quite easy to develop equations for the curvature in terms of derivatives of a
parametrisation.  If you use my characterization of curvature, that
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then you will find that, for a parametric curve

x t( ), y t( )( )
the curvature is given by
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where the dashes denote derivatives with respect to the parameter, we don’t care about a
possible missing minus sign, and the ugly typesetting is entirely Microsoft’s fault.

Now two things have happened in this choice of coordinate system: firstly, we got the
curve to pass through the origin with its tangent along the x-axis; and --- what is more
important --- we arranged the parameter to move along the curve at unit speed.  In effect,
this means that the coefficient of t in the first term was one --- if it were 2, then the
coefficient of t^2 wouldn’t be half the curvature, it would be twice the curvature.  In the
equation, this is dealt with by differentiating the normal with respect to arclength.

Now things are more interesting for surfaces.  I moved the surface to a coordinate system
where it looked like
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This can always be done, but involves more interesting problems.  In particular, I may
have to rearrange the parametrisation of the surface so that the parameter curves meet at
right angles at the point that interests me.  Of course, this can always be done, but it is
much more of a nuisance to do.

This is where the first fundamental form comes in.  I didn’t use it, because I didn’t need
it.  In general, however, it is usually easier to correct your calculation for the fact that the
two parameter curves (a) travel across the surface at different speeds and (b) are seldom
orthogonal than it is to rearrange the parametrization.  The first fundamental form is a
record of the speed of the parameter curves and their angle to one another.  The actual
process of correction is given in textbooks, below, as is a series of expressions for
Gaussian curvature, mean curvature, etc.   The one thing that is worth memorizing is the
definition of Gaussian curvature as the limit of a ratio of areas; I will show the correction
for this case.  If you get this definition, then it is actually quite easy to recall a formula for
Gaussian curvature.

In particular, recall that when the parametrisation was orthonormal (i.e. unit speed
parameter curves which are orthogonal) and I have rotated the surface so that the second
fundamental form is diagonal, the Gaussian curvature is the product of the diagonal
values.  Now this is just a product of eigenvalues, so that when the parametrization is
orthonormal, the Gaussian curvature is given by the determinant of the matrix

a b

b c

 
 
  

 
 

from above; write this determinant as det(II).  Now if I move ds along the s parameter
curve and dt along the t parameter curve, and the parameter curves are orthonormal, I
create a little rectangle of area (ds dt) on the surface and of area (det(II)ds dt)  on the
Gauss map, so in this case (det(II)) would be the Gaussian curvature.   Of course, if the
parameter curves are not orthonormal, I need to correct the measurement on the surface.
Now assume that the surface is x(s, t)  --- x is a three vector.
Take the matrix I shall denote by I --- the first fundamental form --- whose entries are

x s • x s x t • xs

xt • xs xt • xt
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Now if I take a step ds along the s parameter curve and dt along the t parameter curve, the
area swept out on the surface is (det(I) ds dt).  This means that, for the case of a general
parametrisation, the Gaussian curvature is
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which simplifies to what we had before in the orthonormal case because there we have
that I is the identity.

There are numerous other formulae for the adventurous.  I’ve never bothered to
memorize them, and just look them up.  My own experience is that one needs a clear
understanding of what these objects mean much more than one needs their equations; of
all these, the Gauss map is the most important, which is why I made such a fuss about it.
While it should be obvious that Gaussian curvature is really significant, I can’t recall any
application in vision or graphics where mean curvature was an important issue.

Good textbooks:

Elementary Differential Geometry
                            by Barrett O'Neill
  I’ve always found this easy to read and informative; apparently the exercises are full of
typos, and some proofs are incomplete, though I’ve never noticed.

Lectures on Classical Differential Geometry
                            by Dirk Jan Struik
  Helpful, but quite hard to read because of a complicated and now old-fashioned
notation.  Can get it very cheap.

Differential Geometry of Curves and Surfaces
                            by  Manfredo P. Do Carmo,
  Many people learned geometry from this; I found it a bit dull.

Schaum's Outline of Differential Geometry (Schaum's)
                            by Lipschutz,
  The cover seems to have changed, but I think this is the Schaum’s book that I used to
use to look up formulae, etc, and whenever I got confused.  Outline books are often very
nice indeed; this one concentrates on curves and surfaces, which annoys mathematicians
but is good for us.




