Inverse Kinematics

Computer Graphics/Animation Prof. James O'Brien

Warning: Z-up Coordinate System

Direct IK: Solve for θ_1 and θ_2

Why is this a hard problem?

Multiple solutions separated in configuration space

Why is this a hard problem?

Multiple solutions connected in configuration space

Why is this a hard problem?

Solution may not exist

Numerical Solution

Start in some initial configuration

Define an error (e.g. goal pos – current pos)

Compute Jacobian of error w.r.t inputs

Use some numerical method to eliminate error as if Jacobian were constant

Iterate...

Warning: Z-up Coordinate System

 $rac{\partial p_z}{\partial heta_2}$:

 ∂p_x

 $-l_2\sin(\theta_1+\theta_2)$

 $+ l_2 \cos(\theta_1 + \theta_2)$

Direction in Config. Space

$$\theta_1 = c_1 \theta_*$$

$$\theta_2 = c_2 \theta_*$$

 $\frac{\partial p_z}{\partial \theta_*} = c_1 \frac{\partial p_z}{\partial \theta_1} + c_2 \frac{\partial p_z}{\partial \theta_2}$

The Jacobian (of p w.r.t. θ)

$$J_{ij} = \frac{\partial p_i}{\partial \theta_j}$$

Example for two segment arm

$$J = \begin{bmatrix} \frac{\partial p_z}{\partial \theta_1} & \frac{\partial p_z}{\partial \theta_2} \\ \frac{\partial p_x}{\partial \theta_1} & \frac{\partial p_x}{\partial \theta_2} \end{bmatrix}$$

The Jacobian (of p w.r.t. θ)

$$J = \begin{bmatrix} \frac{\partial p_z}{\partial \theta_1} & \frac{\partial p_z}{\partial \theta_2} \\ \frac{\partial p_x}{\partial \theta_1} & \frac{\partial p_x}{\partial \theta_2} \end{bmatrix}$$

$$\frac{\partial \boldsymbol{p}}{\partial \theta_*} = J \cdot \begin{bmatrix} \frac{\partial \theta_1}{\partial \theta_*} \\ \frac{\partial \theta_2}{\partial \theta_*} \end{bmatrix} = J \cdot \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$

Solving for c_1 and c_2

$$d\boldsymbol{p} = J \cdot \boldsymbol{c}$$
$$\boldsymbol{c} = J^{-1} \cdot d\boldsymbol{p}$$

Solving for c_1 and c_2

Problems...

Jacobian may (will) not be invertible

Option #1: Use pseudo inverse (SVD) Option #2: Use iterative method

Jacobian is not constant

Non–linear optimization... but problem is well behaved (mostly)

More Complex Systems

More complex joints (prism and ball)

More links

Other criteria (COM over sup. poly.)

Hard constraints (joint limits)

Multiple chains

Ball Joints

Ball Joints (moving axis)

$$d\boldsymbol{p} = [d\boldsymbol{r}] \cdot e^{[\boldsymbol{r}]} \cdot \boldsymbol{x} = [d\boldsymbol{r}] \cdot \boldsymbol{p} = -[\boldsymbol{p}] \cdot d\boldsymbol{r}$$

$$\begin{bmatrix} \mathbf{r} \end{bmatrix} = \begin{bmatrix} 0 & -r_3 & r_2 \\ r_3 & 0 & -r_1 \\ -r_2 & r_1 & 0 \end{bmatrix}$$

$$[m{r}]\cdotm{x}=m{r} imesm{x}$$

Ball Joints (fixed axis)

We need a generic method of building Jacobian

 $\tilde{J} = [J_3 J_{2b} J_{2a} J_{1b}]$

 $oldsymbol{d} = egin{bmatrix} d_3 \ d_{2\mathrm{b}} \ d_{2\mathrm{a}} \ d_{2\mathrm{a}} \ d_{1\mathrm{b}} \end{bmatrix}$

 $\mathrm{d} \boldsymbol{p} \neq \tilde{J} \cdot \mathrm{d} \boldsymbol{d}$

Transformation from body to parent

Transformation from body to world

$$X_{0\leftarrow i} = \prod_{j=1}^{i} X_{(j-1)\leftarrow j} = X_{0\leftarrow 1} \cdot X_{1\leftarrow 2} \cdots$$

Rotation from body to world

$$R_{0 \leftarrow i} = \prod_{j=1}^{i} R_{(j-1) \leftarrow j} = R_{0 \leftarrow 1} \cdot R_{1 \leftarrow 2} \cdots$$

Jacobian is function of theta and error

$$J(\boldsymbol{\theta}) = J(\boldsymbol{\theta}, \boldsymbol{e})$$

Jacobian is function of theta and error

Need to transform Jacobians to common coordinate system (WORLD)

Other criteria (COM over sup. poly.)

Hard constraints (joint limits)

Multiple chains