Inverse Kinematics

Computer Graphics/Animation

Prof. James O’'Brien

Simple System: A Two Segment Arm

l1 cos(01) + lycos(61 + 69)

pe = l1sin(0]) + losin(6] + 69)

Warning: Z-up Coordinate System

Direct IK: Solve for f1and 67

(7 +ps — 15— 15
20119

\
—p2losin(0y) + pr(ly + lo cos(62))

/

SN
}—'L
|

prlosin(02) + p. (11 + 9 cos(62))

hy Is this a hard problem?

Multiple solutions separated In
configuration space

4
* %
X
.
mmmmEEy
ammmmmm==® -y
ammmm -
- - "‘
- . .
P .*® -
_-'-- .® %

-
-'-- ©

‘
477

Why is this a hard problem?

Multiple solutions connected In
configuration space

Why is this a hard problem?

Solution may not exist

From Parent, page 185

Numerical Solution

Start in some initi al configuration
Define an error (e. g. goal pos — curre nt pos)
Compute Jacobian of error w.r.t inputs

Use some numerical method to eliminate
error as If Jacobia n were constant

lterate...

Simple System: A Two Segment Arm

[1 cos(01) + locos(6] + 69)

pr = lysin(fy) + losin(0y + 69)

Warning: Z-up Coordinate System

Simple System: A Two Segment Arm

= —[ysin(fy) — lgsin(fy + 69)

= [y1cos(f1) + lycos(6y + 62)

—— = — lysin(0 + 69)

—— = + o cos(6] + 69)

Simple System: A Two Segment Arm

Direction in Config. Space

91 — 019*

By = cob,

apz _ . apz P apz
Log, " o8,

The Jacobian (of pw.r.t. 0)

op;
Jij = (9—9;

Example for two segment arm

OJpy Opz
00, 00y

Opz Opz
001 00y

J =

The Jacobian (of pw.r.t. 0)

Op, Ops
001 005

Opz Opy

001 00>

o)
D

D
<>
DD %

:

Solving for ¢1 and ¢

dp =

J - c
J_l-dp

dpz

Solving for ¢1 and ¢

J - c

c — J_l-dp

e

Is the Jacobian invertible?

Problems...

Jacobian may (will) not be invertible

Option #1: Use pseudo inverse (SVD)
Option #2: Use Iterative method

Jacobian Is not constant

O, O,
J_ | o o — J(6)
Opy Opy
001 005 |

Non-linear optimization...
but problem is well behaved (mostly)

More Complex Systems

More complex joints (prism and ball)
More links

Other criteria (COM over sup. poly.)
Hard constraints (joint limits)

Multiple chains

Prism Joints

p

[
d
. i
pr = 0

Ball Joints

p

Ball Joints (moving axis)

dp = [dr-e" @ = [dr]-p = —[p|-dr

—

That is the Jacobian fojm

() —7r3
rj=|r3 O
=y

r-x=rxwx

19 |
O a

Ball Joints (fixed axis)

dp = (d9)|7] - * = —|x| - 7d6

That is the Jacobian for this jon>

Many Links/Joints

We need a generic method of building Jacobian

2b

2a

e

Many Links/Joints

J=1[J

23 2b

2b Y2a
d
day,
d =
an
diy,

Many Links/Joints

Transformation from body to parent

(R(z'—1)<—z'} (t(z'—}

Rotation Portion Translation Portion
(May include scale as well)

Many Links/Joints

Transformation from body to world

Xpei= 1 X(j 1)e—j = X0—1"X12" "

—

Rotation from body to world

Ry = H R(j 1)e—j5 — Roe1-R1e9- -

=

Many Links/Joints

Jacobian is function of theta and error

0, e

2a A

Many Links/Joints
Jacobian is function of theta and error

93 2b

Many Links/Joints

Need to transform Jacobians to common
coordinate system (WORLD)

23 2b
3
3
1
77777 (
' 2b
Ji WORLD = L% (—1) " i

Many Links/Joints

Ry J3(03, p3)
Ro—2a Jop(0ap, Xop—3 - P3)
Ry—1- J2a(024, X253 - P3)
J1(01, X13 - P3)

T Note: Each row in the above
d3 should be transposed....

...

Other criteria (COM over sup. poly.)
Hard constraints (joint limits)

Multiple chains

