Inverse Kinematics

Computer Graphics/Animation

Prof. James O'Brien

Simple System: A Two Segment Arm

$$
\begin{aligned}
& p_{z}=l_{1} \cos \left(\theta_{1}\right)+l_{2} \cos \left(\theta_{1}+\theta_{2}\right) \\
& p_{x}=l_{1} \sin \left(\theta_{1}\right)+l_{2} \sin \left(\theta_{1}+\theta_{2}\right)
\end{aligned}
$$

Direct IK: Solve for θ_{1} and θ_{2}

$\theta_{2}=\cos ^{-1}\left(\frac{p_{z}^{2}+p_{x}^{2}-l_{1}^{2}-l_{2}^{2}}{2 l_{1} l_{2}}\right)$
$\theta_{1}=\frac{-p_{z} l_{2} \sin \left(\theta_{2}\right)+p_{x}\left(l_{1}+l_{2} \cos \left(\theta_{2}\right)\right)}{p_{x} l_{2} \sin \left(\theta_{2}\right)+p_{z}\left(l_{1}+l_{2} \cos \left(\theta_{2}\right)\right)}$

Why is this a hard problem?

Multiple solutions separated in configuration space

Why is this a hard problem?

Multiple solutions connected in configuration space

Why is this a hard problem?

Solution may not exist

From Parent, page 185

Numerical Solution

Start in some initial configuration

Define an error (e.g. goal pos - current pos)
Compute Jacobian of error w.r.t inputs
Use some numerical method to eliminate error as if Jacobian were constant

Iterate...

Simple System: A Two Segment Arm

$$
\begin{aligned}
& p_{z}=l_{1} \cos \left(\theta_{1}\right)+l_{2} \cos \left(\theta_{1}+\theta_{2}\right) \\
& p_{x}=l_{1} \sin \left(\theta_{1}\right)+l_{2} \sin \left(\theta_{1}+\theta_{2}\right)
\end{aligned}
$$

Simple System: A Two Segment Arm

Simple System: A Two Segment Arm

Direction in Config. Space

$$
\begin{aligned}
& \theta_{1}=c_{1} \theta_{*} \\
& \theta_{2}=c_{2} \theta_{*}
\end{aligned}
$$

$$
\frac{\partial p_{z}}{\partial \theta_{*}}=c_{1} \frac{\partial p_{z}}{\partial \theta_{1}}+c_{2} \frac{\partial p_{z}}{\partial \theta_{2}}
$$

The Jacobian (of p w.r.t. θ)

$$
J_{i j}=\frac{\partial p_{i}}{\partial \theta_{j}}
$$

Example for two segment arm

$$
J=\left[\begin{array}{ll}
\frac{\partial p_{z}}{\partial \theta_{1}} & \frac{\partial p_{z}}{\partial \theta_{2}} \\
\frac{\partial p_{x}}{\partial \theta_{1}} & \frac{\partial p_{x}}{\partial \theta_{2}}
\end{array}\right]
$$

The Jacobian (of p w.r.t. θ)

$$
\begin{gathered}
J=\left[\begin{array}{ll}
\frac{\partial p_{z}}{\partial \theta_{1}} & \frac{\partial p_{z}}{\partial \theta_{2}} \\
\frac{\partial p_{x}}{\partial \theta_{1}} & \frac{\partial p_{x}}{\partial \theta_{2}}
\end{array}\right] \\
\frac{\partial \boldsymbol{p}}{\partial \theta_{*}}=J \cdot\left[\begin{array}{l}
\frac{\partial \theta_{1}}{\partial \theta_{*}} \\
\frac{\partial \theta_{2}}{\partial \theta_{*}}
\end{array}\right]=J \cdot\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]
\end{gathered}
$$

Solving for c_{1} and c_{2}

$$
\begin{gathered}
\boldsymbol{c}=\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \quad \mathrm{d} \boldsymbol{p}=\left[\begin{array}{l}
\mathrm{d} p_{z} \\
\mathrm{~d} p_{x}
\end{array}\right] \\
\mathrm{d} \boldsymbol{p}=J \cdot \boldsymbol{c} \\
\boldsymbol{c}=J^{-1} \cdot \mathrm{~d} \boldsymbol{p}
\end{gathered}
$$

Solving for c_{1} and c_{2}

Problems...

Jacobian may (will) not be invertible
Option \#1: Use pseudo inverse (SVD)
Option \#2: Use iterative method
Jacobian is not constant

$$
J=\left[\begin{array}{ll}
\frac{\partial p_{z}}{\partial \theta_{1}} & \frac{\partial p_{z}}{\partial \theta_{2}} \\
\frac{\partial p_{x}}{\partial \theta_{1}} & \frac{\partial p_{x}}{\partial \theta_{2}}
\end{array}\right]=J(\theta)
$$

Non-linear optimization... but problem is well behaved (mostly)

More Complex Systems

More complex joints (prism and ball)
More links
Other criteria (COM over sup. poly.)
Hard constraints (joint limits)
Multiple chains

Prism Joints

$$
p_{x}=d
$$

$$
p_{z}=l_{1}+d
$$

$$
p_{x}=0
$$

Ball Joints

$$
\begin{aligned}
\boldsymbol{p} & =\hat{\boldsymbol{r}}(\hat{\boldsymbol{r}} \cdot \boldsymbol{x}) \\
& +\sin (\|\boldsymbol{r}\|)(\hat{\boldsymbol{r}} \times \boldsymbol{x}) \\
& -\cos (\|\boldsymbol{r}\|)(\hat{\boldsymbol{r}} \times(\hat{\boldsymbol{r}} \times \boldsymbol{x}))
\end{aligned}
$$

Ball Joints (moving axis)

$$
\begin{aligned}
& {[\boldsymbol{r}]=\left[\begin{array}{ccc}
0 & -r_{3} & r_{2} \\
r_{3} & 0 & -r_{1} \\
-r_{2} & r_{1} & 0
\end{array}\right]} \\
& {[\boldsymbol{r}] \cdot \boldsymbol{x}=\boldsymbol{r} \times \boldsymbol{x}}
\end{aligned}
$$

Ball Joints (fixed axis)

Many Links/Joints

We need a generic method of building Jacobian

Many Links/Joints

$$
\tilde{J}=\left[J_{3} J_{2 \mathrm{~b}} J_{2 \mathrm{a}} J_{1 \mathrm{~b}}\right]
$$

$$
\boldsymbol{d}=\left[\begin{array}{c}
d_{3} \\
d_{2 \mathrm{~b}} \\
d_{2 \mathrm{a}} \\
d_{1 \mathrm{~b}}
\end{array}\right]
$$

$$
\mathrm{d} \boldsymbol{p} \neq \tilde{J} \cdot \mathrm{~d} \boldsymbol{d}
$$

Many Links/Joints

Transformation from body to parent

$$
\begin{gathered}
X_{(i-1) \leftarrow i}=\left[\begin{array}{ccc}
\overbrace{(i-1) \leftarrow i} & \boldsymbol{R}_{(i-1) \leftarrow i} & \boldsymbol{t}_{(i-1}
\end{array}\right] \\
\begin{array}{c}
\text { Rotation Portion } \\
\text { (May include scale as well) }
\end{array} \\
\text { Translation Portion }
\end{gathered}
$$

Many Links/Joints

Transformation from body to world
$X_{0 \leftarrow i}=\prod_{j=1}^{i} X_{(j-1) \leftarrow j}=X_{0 \leftarrow 1} \cdot X_{1 \leftarrow 2} \cdots$

Rotation from body to world

$$
R_{0 \leftarrow i}=\prod_{j=1}^{i} R_{(j-1) \leftarrow j}=R_{0 \leftarrow 1} \cdot R_{1 \leftarrow 2} \cdots
$$

Many Links/Joints

Jacobian is function of theta and error

$$
J(\theta)=J(\theta, \boldsymbol{e})
$$

Many Links/Joints

Jacobian is function of theta and error

Many Links/Joints

Need to transform Jacobians to common coordinate system (WORLD)

Many Links/Joints

$$
\begin{aligned}
& J=\left[\begin{array}{cc}
R_{0 \leftarrow 2 \mathrm{~b}} \cdot & J_{3}\left(\theta_{3}, \boldsymbol{p}_{\mathbf{3}}\right) \\
R_{0 \leftarrow 2 \mathrm{a}} \cdot & J_{2 \mathrm{~b}}\left(\theta_{2 \mathrm{~b}}, X_{2 \mathrm{~b} \leftarrow 3} \cdot \boldsymbol{p}_{\mathbf{3}}\right) \\
R_{0 \leftarrow 1} \cdot & J_{2 \mathrm{a}}\left(\theta_{2 \mathrm{a}}, X_{2 \mathrm{a} \leftarrow 3} \cdot \boldsymbol{p}_{\mathbf{3}}\right) \\
& J_{1}\left(\theta_{1}, X_{1 \leftarrow 3} \cdot \boldsymbol{p}_{\mathbf{3}}\right)
\end{array}\right]_{\substack{\text { Note: Each row in the above } \\
\text { should be transposed... }}}^{\mathrm{T}} \\
& \boldsymbol{d}=\left[\begin{array}{c}
d_{3} \\
d_{2 \mathrm{~b}} \\
d_{2 \mathrm{a}}
\end{array} \quad \begin{array}{c}
\mathrm{d} \boldsymbol{p}=J \cdot \mathrm{~d} \boldsymbol{d}
\end{array}\right.
\end{aligned}
$$

Other criteria (COM over sup. poly.)

Hard constraints (joint limits)
Multiple chains

