
1

Quadruped Robots and 
Legged Locomotion

J. Zico Kolter
Computer Science Department

Stanford University

Joint work with Pieter Abbeel, Andrew Ng

Why legged robots?
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Why Legged Robots?

“There is a need for vehicles that can 

travel in difficult terrain, where existing 

vehicles cannot go … Only about half of 

the earth’s landmass is accessible to 

existing wheeled and tracked vehicles, 
whereas a much larger fraction can be 

reached by animals on foot.”

– Marc Raibert, Legged Robots that Balance, 1986

Why Legged Robots?
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Why Legged Robots?

… but, we aren’t quite there yet with 
legged robots.

The Potential Versus the Reality
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The Potential Versus the Reality

“… Although we take motivation from the 

need to travel on rough terrain, the 

running experiments reported here have 

not yet ventured beyond our very flat 

laboratory floor.”

– Marc Raibert, Legged Robots that Balance, 1986

Hardware Versus Software

• Although inferior to 
biological animals, 
current legged robot 

hardware is very 

capable

• The challenge is 
designing software to 
realize this potential The LittleDog robot, designed and 

built by Boston Dynamics, Inc.
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The Quadruped 
Locomotion Task

The Quadruped Locomotion Task

• Our goal is to design a software system 

that enables a quadruped robot to climb 

over a wide variety of challenging, 

previously unseen terrain
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The Quadruped Locomotion Task

• Our goal is to design a software system 

that enables a quadruped robot to climb 

over a wide variety of challenging, 

previously unseen terrain

The Quadruped Locomotion Task

Perception

Using vision systems, 
build a model of the 

terrain in front of the 

robot and determine 

position of the robot in 

this model

Control

Generate a sequence 
of control inputs (i.e., 

commands to robot’s 

joints) that move the 

robot over the terrain

• Two distinct subtasks of overall problem:
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The Quadruped Locomotion Task

Perception

Using vision systems, 
build a model of the 

terrain in front of the 

robot and determine 

position of the robot in 

this model

Control

Generate a sequence 
of control inputs (i.e., 

commands to robot’s 

joints) that move the 

robot over the terrain

• Two distinct subtasks of overall problem:

Use motion 

capture system 
and scanned 

models of terrain

Control Task

Control

Generate a sequence of 
control inputs (i.e., 

commands to robot’s 

joints) that move the 

robot over the terrain

18 dimensional state space 

(3-D position, 3-D orientation, 

12-D joint angles)
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Control Task

• How do we apply dynamic programming to 

large, continuous state spaces?

• Simple method: discretize the state space

x

y

Control Task

• How do we apply dynamic programming to 

large, continuous state spaces?

• Simple method: discretize the state space

x

y

“Curse of Dimensionality”

Number of states grows exponentially 

in the number of dimensions
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Control Task

Control

Generate a sequence of 
control inputs (i.e., 

commands to robot’s 

joints) that move the 

robot over the terrain

Footstep Planning

Plan sequence of 
footsteps across the 

terrain.

Low-Level Control

Move joints to achieve 
these footsteps

Control Task

Control

Generate a sequence of 
control inputs (i.e., 

commands to robot’s 

joints) that move the 

robot over the terrain

Footstep Planning

Plan sequence of 
footsteps across the 

terrain.

Low-Level Control

Move joints to achieve 
these footsteps
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Footstep Planning via 
Value Iteration

The Footstep Planning Problem

• Given an initial position, a goal position, 

and a model of the terrain, plan footsteps 

that move the robot to the goal

GoalInitial Position



11

The Footstep Planning Problem

• Given an initial position, a goal position, 

and a model of the terrain, plan footsteps 

that move the robot to the goal

GoalInitial Position

Outline of approach:

Frame footstep planning problem as 

a Markov Decision Process, and use 

Value Iteration to plan footsteps

MDP Review

• Markov Decision Process (MDP):

M = (S,A,T , γ,D,R)
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MDP Review

• Markov Decision Process (MDP):

Set of states

M = (S,A,T , γ,D,R)

MDP Review

• Markov Decision Process (MDP):

Set of states

Set of actions

M = (S,A,T , γ,D,R)
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MDP Review

• Markov Decision Process (MDP):

Set of states

Set of actions

System dynamics

M = (S,A,T , γ,D,R)

MDP Review

• Markov Decision Process (MDP):

Set of states

Set of actions

System dynamics

Discount factor

M = (S,A,T , γ,D,R)
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MDP Review

• Markov Decision Process (MDP):

Set of states

Set of actions

System dynamics

Discount factor

Initial state 

distribution

M = (S,A,T , γ,D,R)

MDP Review

• Markov Decision Process (MDP):

Set of states

Set of actions

System dynamics

Discount factor

Initial state 

distribution

M = (S,A,T , γ,D,R)

Reward function
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State Space

M = (S,A,T , γ,D,R)

Set of states

State Space

• For footstep planning, state is X-Y location 

of the feet on terrain

M = (S,A,T , γ,D,R)

State ∈ R8 =

(front-left-x, front-left-y,

front-right-x, front-right-y,

back-left-x,back-left-y,

back-right-x,back-right-y)
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State Space

• Discretize terrain (e.g. 3cm grid squares)

• For 60cm x 60cm terrain: 

M = (S,A,T , γ,D,R)

|S| = 208 ≈ 2.5× 1010

State Space

M = (S,A,T , γ,D,R)

• But not all footstep combinations possible
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State Space

M = (S,A,T , γ,D,R)

• But not all footstep combinations possible

How do we find 

the “legal” foot 

positions?

Robot Kinematics

• Problem: “Natural” robot 

foot state is joint positions,

but we want Cartesian

coordinates

• Forward Kinematics: convert from joint 

angles to 3-D coordinates of the foot

• Inverse Kinematics: convert from 3-D 

coordinates of foot to joint angles (or 

indicate that foot location is infeasible) 
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State Space

M = (S,A,T , γ,D,R)

• To determine if footsteps feasible: 

– Pick location for body (e.g., center of feet)

– Inverse kinematics to see if all feet feasible

State Space

M = (S,A,T , γ,D,R)

• To determine if footsteps feasible: 

– Pick location for body (e.g., center of feet)

– Inverse kinematics to see if all feet feasible

With a few additional 

modifications, reduces state 

space to ~1 million, suitable 

for Value Iteration
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Action Space

M = (S,A,T , γ,D,R)

Set of actions

• Move one foot at a time

• For 60cm x 60cm terrain:

Action Space

M = (S,A, T , γ,D,R)

|A| = 4(202) = 1600

Action =

(foot,new-x,new-y)
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System Dynamics

M = (S,A,T , γ,D,R)

System dynamics

• If initial and next states are both feasible, 

then action succeeds, fails otherwise

System Dynamics

M = (S,A, T , γ,D,R)

Valid Action
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• If initial and next states are both feasible, 

then action succeeds, fails otherwise

System Dynamics

M = (S,A, T , γ,D,R)

Invalid Action

System Dynamics

M = (S,A,T , γ,D,R)

Discount factor
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Discount Factor

• No discount factor, corresponds to 

shortest path problem

• Converges for non-positive reward in all 

states, zero reward in goal states

M = (S,A, T , γ,D,R)

γ = 1

Initial State Distribution

M = (S,A,T , γ,D,R)

Initial state 

distribution
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Initial State Distribution

• Initial state distribution contains only the 

initial pose of the robot (no stochasticity)

M = (S,A, T , γ,D,R)

Initial Position

Initial State Distribution

M = (S,A,T , γ,D,R)

Reward function
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Reward Function

• Footsteps must trade off different features

– Slope of terrain, proximity to drop-offs, 
stability of robot’s pose, etc.

• (Negative) reward function specifies 

relative weights for these features

M = (S,A, T , γ,D,R)

GoalInitial Position

Reward Function

M = (S,A, T , γ,D,R)

• Example (cost for a single footstep):
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Value Iteration

• Fully defined MDP

• Run value iteration to plan footsteps

M = (S,A, T , γ,D,R)

V (s)← R(s) + γmaxa
∑
s′ P (s

′|s, a)V (s′)

Performance

System without planned footsteps
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Performance

System after planning footsteps

Another Terrain

System without planned footsteps
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Another Terrain

System after planning footsteps

Extensions and 
Related Topics
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Extensions

• Problem: Number of states grows too 

large with more terrain, finer resolution

• Solution: Plan a general path for the body, 

then plan footsteps along path

Extensions

• Problem: Reward function needs to trade 

off many features, hard to hand-specify

• Solution: Learn reward by demonstrating

good footsteps (“Apprenticeship Learning”)
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Extensions

• Problem: Reward function needs to trade 

off many features, hard to hand-specify

• Solution: Learn reward by demonstrating

good footsteps (“Apprenticeship Learning”)

Demonstrated 

foot positions

Control Task

Control

Generate a sequence of 
control inputs (i.e., 

commands to robot’s 

joints) that move the 

robot over the terrain

Footstep Planning

Plan sequence of 
footsteps across the 

terrain.

Low-Level Control

Move joints to achieve 
these footsteps
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Low-Level Control

Initial setup of the robot

Low-Level Control

Direction 

of Travel

Initial setup of the robot
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Low-Level Control

Back Left Front Left

Front RightBack Right

Direction 

of Travel

Initial setup of the robot

Low-Level Control

Back Left Front Left

Front RightBack Right

Direction 

of Travel

Desired Footstep

Initial setup of the robot
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Low-Level Control

• Supporting triangle: If robot’s center of 

gravity (COG) in this triangle, will not fall

Low-Level Control

• Supporting triangle: If robot’s center of 

gravity (COG) in this triangle, will not fall
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Low-Level Control

• First move COG into supporting triangle

• Then move foot

Fast Movement on Flat Ground

• Switching gears: previously focused on 

slow motion over challenging terrain, now 

looking at fast motion on flat ground

• To achieve faster speed, want to move 

two feet at once (trot gait)

– Primary challenge is balance: when only two 
feet are on the ground, robot is always falling
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Learning to Balance

• Want to move robot’s center of gravity to 

keep it as stable as possible

• But, very hard to hand-specify, a priori, a 

good location for the center of gravity

• Learning: find a good location for the 

center of gravity by adjusting it in response 

to robot performance

Learning to Balance
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Papers and videos available at:

http://cs.stanford.edu/groups/littledog


