
CS294-40 Learning for Robotics and Control Lecture 12 - 10/07/2008

Separation Principle, Dynamics Modeling
Lecturer: Pieter Abbeel Scribe: P̊al From

1 Announcements

• Milestone report: due on Sunday; 1 − 2 pages with the results so far, 1
2 − 1 page of future plans.

2 Separation Principle

Assume we have a linear system

xk = Axk−1 + Buk−1 + wk−1 for k = 1, 2, . . . ,H (1)

with the quadratic cost

E

[
xT

HPHxH +
H−1∑
k=0

(uT
kRkuk + xT

kPkxk)

]
(2)

The input disturbances wk are assumed to be independent, zero mean and have finite variance.
We need to find a rule for the control ut given It. It contains the information available to the controller

at time t, i.e. any (noisy) observations of the states at previous times k = 1 . . . t as well as the previous
controls, uk for k = 1 . . . t − 1.

We start by solving for the optimal policy for time H − 1:

arg min
uH−1

E
[
uT

H−1RH−1uH−1 + xT
HPHxH | IH−1

]
(3)

We start by rewriting the second term, in particular, we will use the following:

E
[
[xH − E [xH | IH−1]]

T
PHE [xH − E [xH | IH−1]] | IH−1

]
= E

[
xT

HPHxH | IH−1

]
+ E

[
E [xH | IH−1]

T
PHE [xH | IH−1] | IH−1

]
− 2E

[
xT

HPHE [xH | IH−1] | IH−1

]
= E

[
xT

HPHxH | IH−1

]
+ E [xH | IH−1]

T
PHE [xH | IH−1] − 2E [xH | IH−1]

T
PHE [xH | IH−1]

= E
[
xT

HPHxH | IH−1

]
− E [xH | IH−1]

T
PHE [xH | IH−1] (4)

Using Eqn. (4) and linearity of expection, we can re-write Eqn. (3) as follows:

arg min
uH−1

(
uT

H−1RH−1uH−1 + E [xH | IH−1]
T

PHE [xH | IH−1] + E
[
[xH − E [xH | IH−1]]

T
PH [xH − E [xH | IH−1]] | IH−1

])
(5)

Interestingly, Eqn. (5) shows that for a quadratic cost, the expected cost-to-go can be split into the cost-to-
go for the expected state E[xH |IH−1], and an additional term E

[
[xH − E [xH | IH−1]]

T
PH [xH − E [xH | IH−1]] | IH−1

]
,

which accounts for the cost incurred by the uncertainty about the state.
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We will now use the second particularly interesting fact about the linear quadratic setting: [xH − E [xH | IH−1]]
is independent of u0:H−1 so that we can exclude this term from the minimization. This property relies on
the linearity of the system.

Intuitively, this property means that the estimation error is not influenced by the control inputs we apply
for a linear system. We do this by showing that the linear terms in u are repeated in xH and E[xH |IH−1]
and thus cancel.

This can be seen by writing out the expressions for xH and E[xH |IH−1]:

xH = AxH−1 + BuH−1 + wH−1

= AHx0 + AH−1w0 + AH−2w1 + AH−3w3 + · · · + wH−1

+ AH−1Bu0 + AH−2Bu1 + · · · + BuH−1 (6)

and

E[xH |IH−1] = AHE[x0|IH−1] + AH−1E[w0|IH−1] + · · · + E[wH−1|IH−1]

+ AH−1BE[u0|IH−1] + · · · + B E[uH−1|IH−1]︸ ︷︷ ︸
uH−1(IH−1)

(7)

By observing the two expressions we see that since the control enter the expressions as linear terms and
we have a linear system, the difference will not be affected by our choice of u0:H−1. We can thus exclude the
term

E
[
[xH − E [xH | IH−1]]

T
PH [xH − E [xH | IH−1]] | IH−1

]
(8)

from (5) and obtain the following certainty equivalent expression:

arg min
uH−1

E
[
uT

H−1RH−1uH−1 + xT
HPHxH | IH−1

]
=arg min

uH−1

(
uT

H−1RH−1uH−1 + E [xH | IH−1]
T

PH [xH | IH−1]
)

(9)

We can now use that xH = AxH−1 + BuH−1 + wH−1 and get

arg min
uH−1

(
uT

H−1RH−1uH−1 + E [AxH−1 + BuH−1 + wH−1]
T

PHE [AxH−1 + BuH−1 + wH−1]
)

(10)

Up to the noise wH−1, we now have the same setting as in Lecture 6 (which covered the linear quadratic
regulator setting). Using a similar derivation, and the fact that wH−1 is assumed to be zero-mean and
independent of the other variables, we obtain:

uH−1 = KH−1E[xH−1|IH−1]

for
KH−1 = −(RH−1 + BT

H−1PHBH−1)−1BT
H−1PHAH−1.

Now we plug this into our original objective, as we still have to solve for u0, . . . , uH−2:

arg min
u0,...,uH−2

E

[
E[xH−1|IH−1]>PH−1E[xH−1|IH−1] +

H−2∑
t=0

u>t Rtut + x>t Qtxt

]
for

PH−1 = QH−1 + KT
H−1RH−1KH−1 + (AH−1 + BH−1KH−1)T QH(AH−1 + BH−1KH−1). (11)
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Now, we proceed by solving for uH−2 in a similar fashion. First observe, by using the same derivation as
in Eqn. (4), that:

E
[
E [xH−1 | IH−1]

T
PH−1E [xH−1 | IH−1] |IH−2

]
= E [xH−1 | IH−2]

T
PH−1E [xH−1 | IH−2]

+ E
[
[xH−1 − E [xH−1 | IH−2]]

T
PH−1 [xH−1 − E [xH−1 | IH−2]] | IH−2

]
(12)

We can show similar to earlier when solving for uH−1 that the last term does not contribute to the
minimization, but will of course affect the total cost. We simply cannot affect the uncertainty of the state
by our control inputs.

We repeat the same reasoning for every time step t = H − 1,H − 2, . . . , 0.
Hence, for linear systems with quadratic cost, the following procedure results in optimal control:

• Estimate the states of the system with a Kalman filter, i.e. E [xt | It]

• LQR controller - controller assuming the outputs of the Kalman filter to be true, i.e. using E [xt | It]
in the controller as though it were the true state xt.

This is known as the separation principle for linear systems with quadratic costs: we don’t have to
explicitly account for uncertainty when deciding on our control inputs. We can be optimal by solving the
estimation and the control problem separately. The estimator gives the optimal estimates of the states
assuming no control and the controller is optimal assuming perfect state estimation.

Challenge problem: Can you find other systems for which the separation principle applies?

3 Modeling

We will consider an example dynamics model for a helicopter.

3.1 Helicopter model

We use the following state space to represent the state of the helicopter:

state: (n, e, d, ṅ, ė, ḋ, qx, qy, qz, qw︸ ︷︷ ︸
quaternion

, p, q, r) (13)

where the quaternion represents a rotation θ about the axis ~n = [nx, ny, nz], ‖~n‖ = 1 and can be written as

qx = nx sin
θ

2

qy = ny sin
θ

2

qz = nz sin
θ

2

qw = cos
θ

2

Note: two quaternions with opposite signs represent the same physical rotation, i.e.

q(~n, θ + 2π) = −q(~n, θ). (14)
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We have the following inputs

input: (uaileron︸ ︷︷ ︸
roll rate

, uelevator︸ ︷︷ ︸
pitch rate︸ ︷︷ ︸

cyclic control

, urudder︸ ︷︷ ︸
yaw rate

, ucollective︸ ︷︷ ︸
vertical trust

) (15)

Cyclic control means that the angle of the blade changes throughout the cycle.

3.2 Dynamic model

The dynamics model is given by

nt+1 = nt + ∆t · ṅt

et+1 = et + ∆t · ėt

dt+1 = dt + ∆t · ḋt

and for the quaternion

(qx, qy, qz, qw)t+1 = (qx, qy, qz, qw)t ∗ (sin
θ

2
~n, cos

θ

2
) (16)

where ∗ is the quaternion product and

~n =
(p, q, r)∆t

‖(p, q, r)∆t‖2
, θ = ‖(p, q, r)∆t‖2. (17)

Further, the moments are given by Tx

Ty

Tz

 =

p
q
r

 ×

I ·

p
q
r

 + I ·

ṗ
q̇
ṙ

 (18)

The inertia matrix is given by

I =

Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

 . (19)

Often, approximating I by a constant times the identity matrix works well in practice. This allows (18) to
be simplified: in particular, the first term on the right-hand side is then zero.

We have

pt+1 = pt + ∆t · ṗt

qt+1 = qt + ∆t · q̇t

rt+1 = rt + ∆t · ṙt

The linear accelerations are found from Fn

Fe

Fc

 = m

n̈
ë

d̈

 (20)

This gives us the update for the velocities:

ṅt+1 = ṅt + ∆t · n̈t

ėt+1 = ėt + ∆t · ët

ḋt+1 = ḋt + ∆t · d̈t
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So far we assumed Fn, Fe, Fd, Tx, Ty, Tz were given.
It remains to study how to find the forces as a function of the inputs and the states, i.e., to find the

following functions f·:

Fn = fFn(s, u) Tx = fTx(s, u)
Fe = fFe(s, u) Ty = fTy (s, u)
Fd = fFd

(s, u) Tz = fTz (s, u)

There are two main approaches to this problem. The first is an in-debt study of fluid dynamics. Alter-
natively, we can fly the helicopter and find the function that fits the data the best. We will look into this
second approach in the next lecture.
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