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Contractions, Asychronous Value Iteration
Lecturer: Pieter Abbeel Scribe: Zhang Yan

1 Lecture outline

• Review.

• Contractions.

• Asynchronous value iteration.

2 Review

We assume finite state space and finite action space.

2.1 Value of a policy

Vπ(s) = E[
∞∑

t=0

γtR(st)|s0 = s, π]

2.2 Value function

V ∗(s) = max
π

Vπ(s)

2.3 Bellman/Dynamic programming operator

(TV )(s) = max
a∈A

[R(s) + γ
∑
s′

P (s′|s, a)V (s′)]

2.4 Theorem

lim
H→∞

(THV ) = V ∗

In this lecture (amongst others) we will show that there is a stationary optimal policy π∗ = (µ∗, µ∗, . . .),
which achieves Vπ∗ = V ∗, and it satisfies:

µ∗(s) ∈ arg max
a∈A

[R(s) + γ
∑
s′

P (s′|s, a)V ∗(s′)]
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2.5 Bellman/Dynamic programming operator for a fixed policy

To compute the value of a specific stationary policy π = (µ, µ, . . .), we can use the operator Tµ:

(TµV )(s) = [R(s) + γ
∑
s′

P (s′|s, µ(s))V (s′)].

Properties of the operator T can be directly translated in properties of the operator Tµ by realizing Tµ

is the “T operator” for a special MDP, where there is only a single action µ(s) available from each state s.
For example, we have:

Theorem

lim
H→∞

(TH
µ V ) = Vπ

2.6 Theorem (Contractions)

T is a maximum norm γ-contraction, i.e.,

‖TV − TV ‖∞ ≤ γ‖V − V ‖∞

3 Contractions

3.1 Theorems

Let F be a α-contraction w.r.t. some norm ‖·‖, i.e.,

‖FX − FX‖∞ ≤ α‖X −X‖∞

Theorem 1. The sequence X, FX,F 2X, ... converges for every X.

Cauchy sequences: If for x0, x1, x2, . . ., we have that

∀ε,∃K : ‖xM − xN‖ < ε for M,N > K

then we call x0, x1, x2, ... a Cauchy sequence.
Property of Cauchy sequences: If x0, x1, x2, . . . is a Cauchy sequence, and xi ∈ <n, then there exists

x∗ ∈ <n such that limi→∞ xi = x∗.

Proof. Assume N > M .

∥∥FMX − FNX
∥∥ =

∥∥∥∥∥
N−1∑
i=M

(F iX − F i+1X)

∥∥∥∥∥
≤

N−1∑
i=M

∥∥F iX − F i+1X
∥∥

≤
N−1∑
i=M

αi ‖X − FX‖

= ‖X − FX‖
N−1∑
i=M

αi

= ‖X − FX‖ αM

1− α
.
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As ‖X − FX‖ αM

1−α goes to zero for M going to infnity, we have that for any ε > 0 for
∥∥FMX − FNX

∥∥ ≤ ε
to hold for all M,N > K, it suffices to pick K large enough.

Hence X, FX, . . . is a Cauchy sequence and converges.

Theorem 2. F has a unique fixed point.

Proof. Suppose F has two fixed points. Let’s say

FX1 = X1,

FX2 = X2,

this implies,

‖FX1 − FX2‖ = ‖X1 −X2‖ .

At the same time we have from the contractive property of F

‖FX1 − FX2‖ ≤ α ‖X1 −X2‖ .

Combining both gives us

‖X1 −X2‖ ≤ α ‖X1 −X2‖ .

Hence,

X1 = X2.

Therefore, the fixed point of F is unique.

Theorem 3. A policy π = (µ, µ, µ, ...) is an optimal policy if and only if TV ∗ = TµV ∗.

Proof. First suppose,

TV ∗ = TµV ∗

⇒ TµV ∗ = V ∗ (as V ∗ = TV ∗)
⇒ V ∗ is the fixed point for Tµ

⇒ V ∗ = Vπ=(µ,µ,µ,...)

Now suppose,

π = (µ, µ, µ, ...) is optimal
⇒ Vπ=(µ,µ,µ,...) = V ∗

⇒ TµVπ = TV ∗(as: TµVπ = Vπ, TV ∗ = V ∗)
⇒ TµV ∗ = TV ∗(as: Vπ = V ∗)

Theorem 2 implies there is always a stationary optimal policy, namely the policy π = (µ, µ, . . .) such that
TµV ∗ = TV ∗.
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4 Various way of performing the value function updates in prac-
tice

4.1 The value function updates we have covered so far: V ← TV

Iterate

• ∀s : Ṽ (s)← max
a

[R(s) + γ
∑
s′

P (s′|s, a)V (s′)]

• V (s)← Ṽ (s)

From our theoretical results we have that no matter with which vector V we start, this procedure will
converge to V ∗.

4.2 Gauss-Seidel value iteration (problem set #1, prove this converges)

Iterate

• for s = 1, 2, 3, . . .

V (s)← max
a

[R(s) + γ
∑
s′

P (s′|s, a)V (s′)].

In most cases, Gauss-Seidel value iteration requires less computational time. It also requires less storage
(only V , rather than both Ṽ and V ).

4.3 Asynchronous value iteration

Pick an infinite sequence of states,

s(0), s(1), s(2), ...

such that every state s ∈ S occurs infinitely often. Define the operators Ts(k) as follows:

(Ts(k)V )(s) =
{

(TV )(s), if s(k) = s
V (s), otherwise

Asynchronous value iteration initializes V and then applies, in sequence, Ts(0) , Ts(1) , . . ..
We now give a proof sketch of the convergence of asynchronous value iteration:

Let l1 be a sequence such that all states have appeared at least once in: s(0), s(1), s(2), ...s(l1)

Let l2 be a sequence such that all states have appeared at least once in: s(l1+1), s(l1+2), ...s(l2)

And so forth for l3, l4, . . ..
To prove asynchronous value iteration converges to V ∗, it suffices to show that for all i we have that the

combined operator T
s(li+1) . . . Ts(li) is a contraction, i.e., for any V, V̄ we have that:∥∥T

s(li+1) . . . Ts(li)V − T
s(li+1) . . . Ts(li) V̄

∥∥
∞ ≤ γ

∥∥V − V̄
∥∥
∞ .

Proving this contraction property is left as an exercise. (There is a very similar exercise in problem set
#1, namely proving Gauss-Seidel value iteration converges.)

4



4.4 A back-up schedule that can work very fast in practice

Recall the Bellman back-up:

V (s)← max
a

[R(s) + γ
∑
s′

P (s′|s, a)V (s′)]

This update is only useful when V (s′) has changed for some s′, a, s.t. P (s′|s, a) 6= 0.
In practice, the transition matrix is often sparse. In these cases, the following scheduling can substantially

speed up convergence:
Initialize the queue q = (1, 2, 3, ..., |s|), while the queue q is not empty:

s = pop first element from the queue q

V (s)←max
a

[R(s) + γ
∑
s′

P (s′|s, a)V (s′)]

∀s′′ :P (s|s′′, a) 6= 0, for some a, add s′′ to the back of the queue q, when doing so, avoid duplication
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