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Contractions, Asychronous Value Iteration
Lecturer: Pieter Abbeel Scribe: Zhang Yan

1 Lecture outline

e Review.
e Contractions.

e Asynchronous value iteration.

2 Review

We assume finite state space and finite action space.

2.1 Value of a policy

Va(s) = E[Z Y 'R(st)|s0 = s, 7]
t=0

2.2 Value function
V*(s) = max Vi(s)
2.3 Bellman/Dynamic programming operator

(TV)(5) = maglR(s) +7 3 P(s'ls )V (')

2.4 Theorem
lim (THV)=V*
H—oo

In this lecture (amongst others) we will show that there is a stationary optimal policy #* = (u*, p*,...),
which achieves V;+« = V*, and it satisfies:

W' (s) € argmax[R(s) +7)_ P(s']s,a)V" ()]

s/



2.5 Bellman/Dynamic programming operator for a fixed policy

To compute the value of a specific stationary policy m = (u, 41, .. .), we can use the operator T,:
(T,V)(s) = [R(s) +7 Y P(s'|s, 1(s))V (s)]-

Properties of the operator 1" can be directly translated in properties of the operator T}, by realizing T},
is the “T" operator” for a special MDP, where there is only a single action p(s) available from each state s.
For example, we have:
Theorem

lim (T)'V) =V,

H—o0

2.6 Theorem (Contractions)

T is a maximum norm -~y-contraction, i.e.,

1TV = TV]loo <AV =Vl

3 Contractions

3.1 Theorems

Let F be a a-contraction w.r.t. some norm |-||, i.e.,

IFX = FX|loo < | X - X
Theorem 1. The sequence X, FX,F2X, ... converges for every X.
Cauchy sequences: If for zg,x1, 2, ..., we have that
Ve, 3K : ||lxp —an|| <€ for M,N > K

then we call xg,z1, T2, ... a Cauchy sequence.
Property of Cauchy sequences: If xg,x1,z9,... is a Cauchy sequence, and x; € R", then there exists
z* € R" such that lim;_, . z; = x*.

Proof. Assume N > M.

N-1
|[FMX — FNX|| = (F'X — Fi“X)H
=M
N-1
< HFZ F'L+1X||
=M
N-1
< ) o |X-FX|
=M
N-1
=X -FX[|> o
i=M
M
= X - FX| 7



As | X — FX|| % goes to zero for M going to infnity, we have that for any e > 0 for ||FMX — FNXH <e
to hold for all M, N > K, it suffices to pick K large enough.
Hence X, FX, ... is a Cauchy sequence and converges.

Theorem 2. F' has a unique fixed point.

Proof. Suppose F' has two fixed points. Let’s say

FX, =X,
FXy =X,

this implies,

[FX1 = FXo| = [| X1 — Xaf|.

At the same time we have from the contractive property of F’
[F X1 — FXo| < afl Xy — Xof.

Combining both gives us

[ X1 — Xof| < arf| X7 — Xa|.
Hence,

X1 = Xo.

Therefore, the fixed point of F' is unique. O

Theorem 3. A policy m = (p, i, it, ...) is an optimal policy if and only if TV* =T, V*.

Proof. First suppose,

TV =T,V*
= T,V'=V" (asV*"=TV")
= V™ is the fixed point for T},
= V* = VW:(H,MMW)

Now suppose,

m = (u, i, i, ...) is optimal
= VW:(M»MMN) = V*
= T,V =TV*(as: T,V =V, TV =V")
= T,V =TV*(as: V =V7)

Theorem 2 implies there is always a stationary optimal policy, namely the policy © = (u, p, . . .) such that
T,V*=TV*.



4 Various way of performing the value function updates in prac-
tice
4.1 The value function updates we have covered so far: V «— TV

Iterate

o Vs:V(s) — mgx[R(s) + ’yZP(s'|s, a)V(s")]

o V(s) = V(s)

From our theoretical results we have that no matter with which vector V' we start, this procedure will
converge to V*.

4.2 Gauss-Seidel value iteration (problem set #1, prove this converges)

Iterate

o for s =1,2,3,...
V(s) « mgx[R(s) + Z P(s'|s,a)V(s)].

In most cases, Gauss-Seidel value iteration requires less computational time. It also requires less storage
(only V, rather than both V and V).

4.3 Asynchronous value iteration
Pick an infinite sequence of states,

s s @
such that every state s € S occurs infinitely often. Define the operators T,) as follows:

s if s =3
(TyV)(s) = { (TVV)ES;: ofthefwise

Asynchronous value iteration initializes V' and then applies, in sequence, Ts0), Ts1), - - ..
We now give a proof sketch of the convergence of asynchronous value iteration:
Let I; be a sequence such that all states have appeared at least once in: s(9), s(1) 52 (1)
Let I be a sequence such that all states have appeared at least once in: st g(it2)  g(2)
And so forth for I3,14,.. ..
To prove asynchronous value iteration converges to V*, it suffices to show that for all ¢ we have that the
combined operator T ,,,) ... T, is a contraction, i.e., for any V, V we have that:

HTSUH’l) .. ‘TSWV — Ts(zprl) . TS(li)VHoc S Yy ||V — VHoc .

Proving this contraction property is left as an exercise. (There is a very similar exercise in problem set
#1, namely proving Gauss-Seidel value iteration converges.)



4.4 A back-up schedule that can work very fast in practice

Recall the Bellman back-up:

V(s) — max[R(s) +7 Y P(s'|s, )V (s)]

This update is only useful when V(s’) has changed for some s, a, s.t. P(s'|s,a) # 0.

In practice, the transition matrix is often sparse. In these cases, the following scheduling can substantially
speed up convergence:

Initialize the queue g = (1, 2,3, ..., |s|), while the queue ¢ is not empty:

s = pop first element from the queue ¢

V(s) « mC&LLX[R(s) +7 Z P(s'|s,a)V (s")]

Vs" :P(s|s”,a) # 0, for some a,add s” to the back of the queue ¢, when doing so, avoid duplication



