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ABSTRACT
The performance benefits of a monolithically stacked 3D-
FPGA, whereby the programming overhead of an FPGA is
stacked on top of a standard CMOS layer containing the
logic blocks and interconnects, are investigated. A Virtex-II
style 2D-FPGA fabric is used as a baseline for quantify-
ing the relative improvements in logic density, delay, and
power consumption achieved by such a 3D-FPGA. It is as-
sumed that only the pass-transistor switches and configu-
ration memory cells can be moved to the top layers and
that the 3D-FPGA employs the same logic block and pro-
grammable interconnect architecture as the baseline 2D-
FPGA. Assuming a configuration memory cell that is ≤ 0.7
the area of an SRAM cell and pass-transistor switches hav-
ing the same characteristics as nMOS devices in the CMOS
layer are used, it is shown that a monolithically stacked 3D-
FPGA can achieve 3.2 times higher logic density, 1.7 times
lower critical path delay, and 1.7 times lower total dynamic
power consumption than the baseline 2D-FPGA fabricated
in the same 65nm technology node.

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]: [Types and Design Styles]

General Terms
Design, Experimentation, Measurement, Performance

Keywords
FPGA, 3D monolithically stacked, performance analysis.

1. INTRODUCTION
Cell-based design technology has dominated ASIC imple-

mentation over the past 20 years by offering an economically
compelling combination of low manufacturing cost and ac-
ceptable design and prototyping costs. With the advent of
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sub-100nm CMOS technologies, the design and prototyping
costs of cell-based implementation have become prohibitive
for most ASICs, making FPGAs increasingly popular. Cur-
rent FPGAs, however, cannot meet the performance require-
ments of many ASICs due to their high programming over-
head. As discussed in [1], as much as 90% of the FPGA
area is occupied by programmable routing resources. In ad-
dition to consuming most of the die area, programmable
routing also contributes significantly to total path delay in
FPGAs. In [2], interconnect delays are estimated for the Al-
tera’s 8K series and the MIT DPGA and found to account
for roughly 80% of total path delay. Programmable routing
also contributes to the high power consumption of FPGAs,
a problem that has recently become a significant impedi-
ment to their adoption in many applications. Power con-
sumption measurements of the Xilinx XC4003A and Virtex-
II FPGAs [3, 4, 5] have shown that programmable routing
contributes over 60% of the total dynamic power consump-
tion. As a result of these performance degradations, FPGA
performance is significantly worse in terms of logic density,
delay, and power than cell-based implementations. Studies
[1, 2] have estimated FPGAs to be over 10 times less efficient
in logic density, 3 times larger in delay, and 3 times higher in
total power consumption than cell-based implementations.

Although CMOS technology scaling has greatly improved
the overall performance of FPGAs, the performance gap be-
tween them and ASICs has remained very wide mainly be-
cause the FPGA programming overhead shares the same
layers as the logic and interconnect. In [6] it is argued that
the performance gap between FPGAs and cell-based is be-
coming even greater in sub-100nm technologies. While the
rate of increase in FPGA logic density has tracked that of
cell-based, the system frequency has scaled at a lower pace
and power consumption has risen to unacceptable levels.

Monolithically Stacked 3D-FPGA
A conceptually appealing approach to closing the perfor-
mance gap between FPGAs and cell-based ASICs is to stack
the programming overhead of an FPGA on top of the logic
blocks and interconnect layers that would be implemented in
a state-of-the-art CMOS technology (see Figure 1). Besides
the obvious benefit of higher logic density, vertical stacking
reduces interconnect length, hence reducing signal path de-
lay and power consumption. However, implementing such
an approach requires the top layers to have comparable ver-
tical interconnect density to that of the CMOS technology
used to implement the logic blocks and interconnects. Sev-
eral approaches to chip and wafer stacked 3D integrated cir-
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cuits (3D-IC) have been recently developed [7, 8]. The ver-
tical via densities achieved by these technologies, however,
are over an order of magnitude lower than in a state-of-the-
art CMOS technology, and they are not expected to scale
much.

A more promising 3D-IC approach for implementing such
a 3D-FPGA is monolithic stacking, whereby active devices
are lithographically built in between metal layers. The main
advantage of such approach is that, in principle, it can achieve
comparable vertical via density and scale at the same rate
as the base CMOS technology. Although this approach
has yet to be developed for the FPGA application, there
is much evidence that forming transistors on a dielectric
with low thermal budget is quite feasible [9]. The process
technology for the added layers can be much simpler than
a full CMOS process. Specifically, the switch layer only
needs one type of MOS transistors, while the memory layer
can be implemented using a 2-T flash technology [10] or a
programmable solid-electrolyte switch [11], both of which
promise to achieve higher densities than SRAM with much
simpler processes.

Note that our proposed approach to 3D-FPGA is signif-
icantly more constrained than the approach investigated in
[12], where 3-D switch boxes that require much more com-
plex 3D technology to implement are proposed and evalu-
ated.
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Figure 1: (a) 2D-FPGA (LB: logic block, CB: con-
nection box, SB: switch box). (b) 3D Monolithically
stacked 3D-FPGA.

Under a 3D-IC research program, an interdisciplinary team
of researchers at Stanford University and several other insti-
tutions has been developing the monolithically stacked tech-
nologies needed to implement a 3D-FPGA as well as the
architecture and circuit designs of such an FPGA. In this
paper, we describe the results of a study we have conducted
under this program to quantify the potential improvements
in logic density, delay, and power of a monolithically stacked
3D-FPGA over conventional 2D-FPGAs. To perform the
comparison, we assume a Virtex-II style 2D-FPGA archi-
tecture as a baseline. It is assumed that only the pass-
transistor switches and configuration memory cells can be
moved to the top layers (see Figure 1) and that a Virtex-II
style logic block and switch box designs are used. A technol-
ogy independent FPGA area model is developed and used to
compare the logic density of a stacked FPGA to the baseline
FPGA as a function of configuration memory element size.
RC circuit models for interconnect segments are developed
and used to estimate the improvements in interconnect de-
lay in the 3D-FPGA relative to the baseline FPGA for four
deep submicron CMOS technology nodes. The interconnect
delay results are then used to estimate the relative improve-

ments in the geometric average net delays and critical path
delays achieved by the 3D-FPGA for 20 MCNC benchmark
circuits placed and routed using VPR [13]. Finally a model
for dynamic power consumption is developed and used to
quantify the relative improvement in power consumption.

Summary of Results and Outline of the Paper
Assuming a configuration memory cell that is ≤ 0.7 the area
of an SRAM cell, e.g., a 2-T flash or programmable solid-
electrolyte switch [10, 11], and pass-transistor switches hav-
ing the same characteristics as nMOS devices in the CMOS
layer are used, we show that a monolithically stacked 3D-
FPGA can achieve 3.2 times higher logic density, 1.7 times
lower critical path delay, and 1.7 times lower dynamic power
consumption than the baseline 2D-FPGA implemented in
the same 65nm technology node. Since, the logic density
improvement can be achieved with the addition of only a few
mask layers on top of a standard CMOS technology, a mono-
lithically stacked FPGA is expected to have a lower manu-
facturing cost than an FPGA with the same logic capacity
fabricated using only the standard CMOS technology. It
is also expected that additional performance improvements
can be achieved by re-architecting the 3D-FPGA to take full
advantage of the added layers.

The next section presents the baseline 2D-FPGA archi-
tecture, the FPGA area model we use, and the logic density
improvements achieved using a 3D-FPGA. In Section 3, we
describe the analytical interconnect model and the method-
ology we use to estimate delay. The model is then used to
quantify the delay reduction achieved using a 3D-FPGA for
several submicron CMOS technology nodes. In Section 4,
we quantify the reduction in dynamic power consumption
achieved using a 3D-FPGA.

2. 3D-FPGA LOGIC DENSITY
We choose a Virtex-II island-style FPGA logic fabric as

a baseline architecture for our study (see [14] for more de-
tails on the Virtex-II architecture). The fabric consists of a
2D array of logic blocks (LBs) that can be interconnected
via programmable routing. Each LB contains four slices,
each consisting of two 4-input Lookup Tables (LUTs), two
flip-flops (FFs), and programming overhead. A segmented
programmable routing architecture is used to minimize the
number of transistors and wires that a signal needs to tra-
verse to reach its destination. Specifically, the programmable
routing comprises different length horizontal and vertical in-
terconnect segments that can be connected to the LBs via
connection boxes and to each other via switch boxes. For the
purpose of our study we assume that the FPGA consists
of square tiles of width L as shown in Figure 2. As in the
Virtex-II, we assume sets of one (referred to as Single), two
(Double), three (HEX-3), and six (HEX-6) FPGA tile width
segments in addition to interconnects that span the entire
array width (Global). The longer segments (HEX-3, HEX-6,
and Global) also include pass-transistor switches and buffers
that will be included in delay and power consumption es-
timation. Each connection box comprises pass transistor
switches to connect the LBs’ inputs and outputs to two
neighboring switch boxes through various interconnects. We
assume the MUX-based switch box design described in [15]
(see Figure 2(b)). In addition to logic and programmable in-
terconnect, our study will consider the global resources and
switches used for clocking.
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Figure 2: (a) FPGA architecture. (b) Schematic of
a switch point (SP).

In the next subsection, we introduce the technology in-
dependent model we use to estimate the area breakdown of
the baseline FPGA.

2.1 FPGA Area Model
To estimate an FPGA layout area, one needs to estimate

the area of a tile, i.e., a logic block and associated pro-
grammable routing resources. In previous studies [16, 17,
18, 19], the layout area of the logic block is estimated by
counting the number of equivalent minimum-width transis-
tors required for its implementation and multiplying it by
the layout area occupied by a minimum-width transistor
taking into consideration contact area and spacing to ad-
jacent transistors. The area is computed in terms of λ2,
where λ is half of the minimum feature size of the technol-
ogy. The advantage of this approach is its simplicity and
general applicability. The layout area, however, tends to
be overestimated for two reasons. First, individual transis-
tor areas are added up. This overestimates the area when
multi-finger transistor layouts are used. Second, the area of
a non-minimum width transistor is estimated by multiplying
its sizing ratio by the area of a minimum-width transistor.
This is clearly an overestimate, since increasing the width
of a transistor only increases the device size and the spacing
along its width. The area for the programmable routing per
logic block is estimated as a function of the track pitch and
the dimensions of the logic block. With the availability of
eight or more layers of metal, transistor area must also be
considered.

In this study, we estimate the logic block area by first de-
composing it into smaller components similar in granularity
to standard-cell library elements, such as inverters, buffers,
2-MUXs, etc.. A stick diagram for each component and the
Magic-8 rules are then used to estimate its area in λ2. To
estimate the total circuit area we add up the areas of its
components. We found that this approach yields estimates
that are within ±10% of actual layouts. Our approach to
estimating the programmable routing area is also different
from those in previous studies [16, 17, 18, 19]. To obtain
an accurate estimate of the programmable routing area, we
treat the routing resources, including the switch boxes, con-
nection boxes, and buffers as logic resources and estimate
their area in the same way as for the logic block.

The area breakdown of the various components of the
baseline 2D-FPGA architecture estimated using our area
model is illustrated in Figure 3. Note that the configura-

tion memory occupies roughly half the area in both the logic
blocks and the routing resources. The logic blocks occupy
only 22% of the total area (or 14% excluding configuration
memory), which matches with previous studies (e.g., see [1]).

Logic Block (LB) Routing Resources (RR)

14% 8% 43% 35%
MemoryLogic Interconnects + buffers + MUXs Memory

Figure 3: Area breakdown of the baseline 2D-
FPGA.

2.2 Logic Density Improvement
In this section, we quantify the potential logic density

improvement using a monolithically stacked 3D-FPGA over
the baseline architecture described in the previous section.
We assume that the 3D-FPGA employs the same logic block
and general routing architecture as the baseline FPGA. We
also assume that only the pass-transistor switches and the
configuration memory may be stacked on top of a standard
CMOS technology (see Figure 1). We denote the bottom
layer as the CMOS layer, the second layer as the switch
layer, and the top layer as the memory layer. Note that any
element of the FPGA can be implemented in the CMOS
layer. However, only pass-transistor switches can be imple-
mented in the switch layer and configuration memory can
be implemented in the top memory layer. Since the CMOS
layer is by far the most costly in terms of area, it is im-
portant that it be fully utilized in any 3D implementation.
Our goal here is to distribute the FPGA resources among
the three layers under these constraints to maximize logic
density.

Since configuration memory occupies a very large fraction
of the FPGA area, the logic density achieved in any imple-
mentation depends heavily on the size of the memory cell
used. To illustrate this point, consider the three 3D-FPGA
scenarios, whose layer area breakdowns relative to the area
of the baseline 2D-FPGA, denoted by A, are given in Fig-
ure 4. Scenario (a) assumes that an SRAM memory cell is
used and that all switches and configuration memory cells
are moved to the top layers. In this case, the overall 3D-
FPGA area is reduced to 0.43A. Note, however, that the
area in this case is limited by the area of the memory layer
and that the CMOS layer is only 72% utilized. The area can
be reduced by moving some of the switches and their corre-
sponding SRAM cells back to the CMOS layer. Figure 4(b)
shows the results for this scenario. Note that by redistribut-
ing the resources, the 3D-FPGA area is reduced to 0.38A.
The area can be further reduced by using a smaller memory
cell, e.g., [10]. Scenario (c) shows using a memory cell that
is 0.7 the size of an SRAM cell, the 3D-FPGA area can be
reduced to 0.31A, which corresponds to 3.23X increase in
logic density.

The above examples motivate us to quantify the logic den-
sity improvement of a 3D-FPGA in terms of the configura-
tion memory cell area. We define the parameter 0 < η ≤ 1 to
be the memory cell size normalized with respect to the size
of an SRAM cell. Figure 5 plots the logic density improve-
ment of a monolithically stacked 3D-FPGA over the baseline
2D-FPGA as a function of η assuming that the CMOS layer
is fully utilized. Note that using a standard SRAM cell as
configuration memory, 3D monolithically stacking can im-
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Figure 4: Area breakdown for three FPGA stacking
scenarios: (a) SRAM cells are used and all configu-
ration memory cells and pass-transistor switches are
moved to the top layers. (b) The SRAM cells and
pass-transistor switches are distributed among the
three layers to reduce the overall 3D-FPGA area.
(c) Smaller configuration memory cells (≤ 0.7 the
size of an SRAM cell) are used and all configuration
memory cells and pass transistors are moved to the
upper layers. Definitions of terms are as follows: A:
Area of baseline 2D-FPGA, LB: Logic Block, RR:
Routing Resource, LB-SRAM: Configuration Mem-
ory Cells in LB, RR-SRAM: Configuration Memory
Cells in RR, PT: Pass transistor.

prove logic density by over 2X. For η ≤ 0.7, the logic den-
sity improvement stays at around 3.23X because the area
becomes limited by the logic and interconnect that can be
implemented only in the CMOS layer. Smaller memory cells,
however, can be useful. Since the switch layer at η = 0.7
is only 84% full, more programmability can be provided by
having a larger number of smaller memory cells and adding
more switches. To take full advantage of such additional
programmability, the FPGA architecture would need to be
optimized for 3D implementation.

3. 3D-FPGA DELAY
In the previous section, we quantified the potential im-

provement in logic density of a monolithically stacked 3D-
FPGA over the baseline 2D-FPGA. This improvement is
obtained by stacking the programming overhead, which is
interspersed with the logic blocks in the 2D-FPGA, on top
of the logic blocks. Stacking also makes interconnect lengths
shorter, which in turn results in lower interconnect delay and
dynamic power consumption. In this section we quantify the
improvement in delay of a 3D-FPGA relative to the baseline
2D-FPGA for four CMOS technology generations.

Our methodology for comparing delay is as follows:

1. We derive analytical models for interconnect delays
and use them to determine optimized interconnect pa-
rameter values, i.e., values for the pass-transistors in
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Figure 5: Logic density improvement of 3D-FPGA
as a function of the normalized configuration mem-
ory cell size.

the connection boxes, buffer sizes in the switch boxes,
and the number and sizes of buffers inserted in long
interconnects.

(a) We assume simple RC circuit models for tran-
sistors and interconnects and use the Elmore de-
lay as a measure of circuit delay. This approach
yields simple analytical expressions that can be
easily optimized to determine values for the in-
terconnect parameters.

(b) We check the accuracy of the results by perform-
ing HSPICE simulations in a 65nm CMOS tech-
nology.

2. We quantify the interconnect delay improvement achieved
using the 3D-FPGA relative to the baseline 2D-FPGA
as follows:

(a) We compute the interconnect parameter values
for a 64×64 LB baseline 2D-FPGA implemented
in four deep submicron CMOS technology nodes
(180nm, 130nm, 90nm, and 65nm).

(b) We scale the length of each interconnect type in
the 2D-FPGA by the 3D wire scaling factor 0 <
r < 1 (see Subsection 3.2), and use the Elmore
delay expressions to select optimized interconnect
parameter values for each interconnect and in each
technology.

(c) We compute the interconnect delays for the 2D
and 3D-FPGAs using the optimized interconnect
parameter values for the four technology nodes.

3. We quantify the improvement in the overall system
performance as follows:

(a) We use VPR to place and route the 20 largest
MCNC benchmark circuits in the baseline 2D-
FPGA.

(b) We then modify VPR to take into consideration
the inserted buffers in long interconnects and use
it to compute the net delays assuming the op-
timized transistor and buffer sizes for the 65nm
technology.
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(c) Assuming the same routing as in the 2D-FPGA,
we compute the corresponding net delays in the
3D-FPGA as a function of r for each benchmark
circuit.

(d) Finally, we compute the improvements in the ge-
ometric average of the point-to-point delay and
the critical path delay for each design.

In the following subsections we provide details of the above
methodology and present the results and conclusions.

3.1 Interconnect Delay Modeling and Opti-
mization

In this subsection we develop analytical delay models for
interconnects and use them to obtain optimized interconnect
parameter values.

To develop the analytical delay models, we construct RC-
circuit models for each interconnect type and use Elmore
delay [20] as a measure of circuit delay. As discussed in
[21], this approach yields delay estimates that are accurate
to within 10−20% of true delays. We assume the transistor
and metal wire RC models shown in Figure 6.

Cgate

Cdiff

G
S Dn-MOSS D

G

p-MOS
S D

G

Metal Line
RwLw

CwLw/2CwLw/2

R
Cdiff

Figure 6: RC circuit model for CMOS transistors
and metal wires. Cgate is the equivalent transistor
gate capacitance (in fF/!), Cdiff is the transistor dif-
fusion capacitance (in fF/µm), R! is the transistor
channel resistance (in Ω/!), Cw is the metal wire
capacitance (in fF/mm), Rw is the metal wire resis-
tance (in Ω/mm), and Lw is the length metal wire
length.

To find the values of the equivalent transistor parasitic pa-
rameters Cgate, Cdiff , and R!, we use the calibration circuits
depicted in Figure 7 and HSPICE simulations. For example,
to find Cgate, we perform HSPICE simulations to determine
the value of C1 in the figure such that t1 = t2. The device
models used in HSPICE are based on the Berkeley Predic-
tive Technology Model (BPTM). To quantify the impact of
technology scaling on FPGA performance, we consider four
technology nodes, 180nm, 130nm, 90nm, and 65nm. We
then validate the models by performing HSPICE simula-
tions using a foundry supplied model for a 65nm node. The
BPTM model is also used to determine Rw and Cw for the
metal wires.

We classify the interconnects into two groups, short, which
includes Single and Double interconnects, and long, which
includes HEX-3, HEX-6, and Global interconnects. We mea-
sure the interconnect length by the number of tiles it spans,
N . Thus for Single interconnect N = 1, etc. The inter-
connect parameters that we aim to optimize are listed in
Table 1. Figure 8 depicts the circuits we use to determine
the interconnect parameters in the table.

t1

t2

t3
t4

t5

t6

C2
R1

C1

C2 C2

Figure 7: Calibration circuits to determine transis-
tor parasitic values in Figure 6. The left circuit is to
determine Cgate and the right circuit is to determine
Cdiff and R!.

First, we consider the delay for a short interconnect (Sin-
gle or Double) (Figure 8(a)). The Elmore delay is given
by

ds,N = Rin (Cin + 3CMUX) +

 

NRin +
N−1
X

k=0

kRwL

!

CwL
4

+

 

N

„

Rin +
RwL

2

«

+
N−1
X

k=0

kRwL

!

„

CwL
2

+ Cload,int

«

+

 

N (Rin + RwL) +
N−1
X

k=0

kRwL

!

CwL
4

+ (Rin + NRwL + RMUX) (Cout + CMUX)

+ (Rin + NRwL) 3CMUX. (1)

Here Cin = mNCdiffδ(1 + β), where β is the ratio of the
PMOS to NMOS buffer transistor widths, δ is the gate width
of a minimum-size transistor, Rin = R!/mN , RMUX = R!,
CMUX = Cdiffδ, Cload,int = γintCdiffδ, where γint depends on
the number of LB inputs and outputs and the connectivity
parameter Fc [13], and Cout = mNCgateδ(1 + β).

mN SP buffer size for interconnect of length N
x PT size from LB output to CB
y PT size from interconnect to LB input
lN Number of buffers inserted in a long interconnect
nN Size of inserted buffer in long interconnect
γoδ Total PT diffusion width on segment from LB output
γiδ Total PT diffusion width on segment to LB input
γintδ Total PT diffusion width on Short interconnect
Fc Connection box connectivity [13]

Table 1: Definitions of interconnect parameters.

Now, we consider the following dimensionless parameters
that represent the relative values of the transistor parasitics
to the wire parasitics.

α1 =
R!

Rw × 1mm
, α2 =

Cgateδ(1 + β)
Cw × 1mm

, α3 =
Cdiffδ(1 + β)
Cw × 1mm

.

(2)
Substituting from the definitions and (2) for a short in-
terconnect, the Elmore delay, normalized with respect to
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RwCw, can be expressed as

ds,N

RwCw
=

N2L2

2
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„

3α1

4mN
+ mNα2 +

(N − 1)γint + 8
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«
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„

1 +
4

1 + β
+

(4 + N)γint

mN(1 + β)

«

α1α3

+ (1 + mN)α1α2. (3)

Next consider the circuit in Figure 8(b), where an LB output
is connected to a Double interconnect. The Elmore delay for
this circuit is given by

dl,o = RLB,buf (CLB,buf + CPT,diff)

+ (RLB,buf + RPT) (CPT,diff + 3CwL/4 + Cload,o)

+ (RLB,buf + RPT + RwL) (Cload,int + 3CwL/4)

+ (RLB,buf + RPT + 3RwL/2) (3CMUX + CwL/4)

+

„

RLB,buf + RPT +
3RwL

2
+ RMUX

«

(Cout + CMUX)

+ (RLB,buf + RPT) (CwL/2 + 3CMUX) . (4)

Here RLB,buf = R!/b, CLB,buf = bCdiffδ(1 + β), where
b is the LB buffer size, RPT = R!/x, CPT,diff = xCdiffδ,
Cload,o = γoCdiffδ, and m2 is SP buffer size for a Double
interconnect. Substituting from these definitions and (2),
the normalized Elmore delay is given by

dl,o

RwCw
=

9L2

8
+

„

9
4

„

1
b

+
1
x

«

α1 +
3m2α2

2
+

γo + 6
1 + β

«

L

+
2b + bβ + x

b(1 + β)
+

„

1
b

+
1
x

«

x + 2γint + 7
1 + β

α1α3

+m2

„

1 +
1
b

+
1
x

«

α1α2. (5)

Next we consider the circuit in Figure 8(c), where an LB
input is connected to a Double interconnect. The Elmore
delay is given by

dl,i

RwCw
= Rin

„

Cin + 3CMUX +
CwL

4

«

+

„

Rin +
RwL

2

«„

CwL
2

+ Cload,int

«

+ (Rin + RwL)

„

CwL
2

+ CPT,diff

«

+ (Rin + RPT + RwL) (CPT,diff + Cload,i + CLB,MUX)

+ (Rin + RPT + RwL + RLB,MUX) CLB,MUX

+ (Rin + RwL)

„

CwL
4

+ 3CMUX

«

. (6)

Here RLB,MUX = R!, CLB,MUX = Cdiffδ , and Cload,i =
γiCdiffδ. Equation (6) can be rewritten as

dl,i

RwCw
= L2 +

„

3α1

2m2
+

y + 5
1 + β

α3 +
γi + 2x
2(1 + β)

«

L

+

„

1 +
1

1 + β
+

y + 8
m2(1 + β)

+
y + 2

y(1 + β)

«

α1α3

+
γint + x

m2(1 + β)
α1. (7)

The delay Equations (3), (5) and (7) are functions of sev-
eral parameters. We assume given are the number of LB
inputs and outputs, the LB buffer size b, the number of
each type of interconnect in the routing channel, and Fc.

(b) Interconnect from the output of an LB to a neighboring switch box,
SP: switch point.
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Figure 8: Logic view and circuit model of various
FPGA interconnects.
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The remaining unknowns, thus, are the switch point buffer
sizes mN for the short interconnects and the pass-transistor
sizes x and y. To determine optimized values for these pa-
rameters, we use the following heuristic, which is motivated
by the fact that in deep submicron technologies the pass
transistor loading on the interconnects is significantly lower
than the metal wire loading. First we assume nominal val-
ues for γint and determine mN , N = 1, 2, from (3). We then
substitute the value of m2 in (4) and (6) and optimize for x
in (4) assuming nominal value of y and for y in (6) assuming
nominal value for x.

Finally we consider the delay of a long interconnect, where
we allow buffer insertion to reduce delay. We assume lN
bi-directional buffers each of size nN inserted at regular in-
tervals along the interconnect of length N as depicted in
Figure 8(d). The total Elmore delay can be derived as for
previous cases. The Elmore delay is then optimized in lN
and nN for each long interconnect type.

3.2 Interconnect Delay Improvement
In the previous subsection, we developed analytical ex-

pressions for interconnect delays and showed how they can
be used to optimize the selection of various interconnect pa-
rameters. In this section, we use these results to compare the
delay of each interconnect type in the monolithically stacked
3D-FPGA to its counterpart in the baseline 2D-FPGA. We
parametrize the results by the wire scaling factor 0 < r < 1,
which is the ratio of the 3D-FPGA tile width to the baseline
2D-FPGA tile width. Since, as we discussed, the area of the
3D-FPGA depends on the size of the configuration memory
cell used, r also depends on the size of the memory cell used.
Figure 9 plots the 3D wire scaling factor as a function of the
normalized memory cell size η. Note that r monotonically
decreases down to 0.56 at η = 0.7 and then stays constant
for η ≤ 0.7.
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Figure 9: Relationship between the 3D wire scaling
factor r and the normalized memory cell size η.

To quantify the interconnect delays, we need to know the
FPGA tile width L, the size of the FPGA (i.e., number
of LBs), and the specific design of routing resource. As
an illustration, we assume L = 8215λ (as estimated in our
study), an array size of 64×64 LBs, LB buffer size b = 4, and
24 Single, 20 Double, 12 HEX-3, 16 HEX-6, and 4 Global
interconnects in each routing channel. Each LB is assumed
to have Ki = 16 input pins and Ko = 4 output pins that
can be connected to routing channel. Let W be the total
number of interconnects in each routing channel, which is

CB Single Double HEX-3 HEX-6 Global

x,y mN mN, lN, nN l64, n64

2D 11,7 21 27 25,1,17 26,2,19 32,18
3D 7,6 15 19 17,0,0 19,1,14 16,12

Table 2: Pass-transistor and buffer sizes for baseline
2D-FPGA and 3D-FPGA with r = 0.56 assuming a
65nm technology node.

76 in our study. We further assume that the connection box
connectivity Fc = 0.5W = 38 and the routing matrix of the
switch box in [22]. Note that our assumptions yields γo =
Fcx, γi = Fcy, and γint = 40Fc

W

`

16x+4y
20

´

= 16x+4y. Table 2
lists the values for the various pass-transistor and buffer size
parameters as determined by the procedure mentioned in the
previous subsection for the baseline 2D-FPGA array and 3D-
FPGA with r = 0.56 assuming a 65nm CMOS technology
node.

Figure 10 is a log-log scale plot of the delay improvement
for each interconnect type in the baseline 2D-FPGA under
these assumptions, i.e., the ratio of each interconnect delay
in the 2D-FPGA to its counterpart in the 3D-FPGA, as a
function of r assuming a 65nm CMOS technology. Note that
the interconnect delays follow an exponential law (linear on
the log-log scale) with exponent ranging from around −0.2
for Single interconnects to −1.1 for Global interconnects. As
expected, long interconnect delays are reduced much more
by 3D than short interconnects. To explore the effect of
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Figure 10: Delay Reduction using 3D at 65nm tech-
nology node.

technology scaling on delay improvement, Figure 11 plots
the interconnect delay improvements for different intercon-
nect types and different technology nodes at r = 0.56. Note
that the improvement in delay increases with technology
scaling mainly due to the degradation in wire performance.
The dips between Double and HEX-3 interconnects is due to
the effect of buffer insertion on delay of long interconnects.

3.3 System Performance Improvement
In the previous subsection, we quantified the reduction in

interconnect delays achieved using a monolithically stacked
3D-FPGA for different technology nodes. In this section we
quantify the impact of these delay reductions on the over-
all performance of application designs implemented in such
FPGA. Our approach is to map the 20 largest MCNC bench-
mark circuits [23] into the baseline 2D-FPGA, determine the
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Figure 11: Interconnect delay improvements for dif-
ferent submicron technology nodes.

pin-to-pin delays for each net, i.e., the delay from the net
output to each of its inputs, then scale the interconnects by
the wire scaling factor r and determine the corresponding
delays for the 3D-FPGA.

To map a benchmark circuit into the baseline 2D-FPGA,
we first use T-VPACK [13] to pack its LUTs (lookup ta-
bles) and FFs (flip-flops) into logic clusters that can each
be mapped into an LB. VPR [13] is then used to perform
placement and routing. Using the approach described in
[22], we modified both T-VPACK and VPR to handle the
Virtex-II style LB and to create the correct routing graph
for our baseline 2D-FPGA. To compute net delays from the
placed and routed designs, we modified the timing analysis
code of VPR to take into consideration the inserted buffers
in long interconnects.

To compare the system performance of the 3D-FPGA to
that of the baseline 2D-FPGA, we use two metrics; the im-
provement in the geometric average of the pin-to-pin delays,
and the improvement in critical path delay, which includes
the LB delays along the path. By improvement here we
mean the ratio of the delay in the baseline 2D-FPGA to
that in the 3D-FPGA. Results for the largest 20 MCNC
benchmark circuits are plotted in Figures 12 and 13. Note
that the improvement range between 1.7 and 2.05 for the
geometric average and between 1.31 and 2.14 for the criti-
cal path delay. The reason the improvement in critical path
delay on average is slightly lower is that although a critical
path is more likely to contain more long interconnects than
a point-to-point path delay, the added LB delays, which do
not change from 2D to 3D, reduce the overall critical path
delay improvement. In general the improvement numbers
are quite consistent with the range of interconnect delay
improvements in Figure 11.

4. 3D-FPGA POWER CONSUMPTION
In this section, we quantify the reduction in dynamic

power consumption achieved using the 3D-FPGA relative to
the baseline 2D-FPGA. The power consumed in an FPGA
can be divided into static and dynamic power components.
Static power represents a growing fraction of the total power
consumed in an FPGA [4, 19]. It can be addressed by several
techniques including using multiple supply voltages, multi-
ple transistor threshold voltages, and power gating. Our 3D
approach may help reduce the area overhead required to im-
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Figure 12: Improvement in geometric average pin-
to-pin delay for MCNC benchmark circuits mapped
into a 64×64 LB FPGA implemented in 65nm tech-
nology.
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Figure 13: Critical path delay improvement for
MCNC benchmark circuits mapped into a 64 × 64
LB FPGA implemented in 65nm technology.

plement such techniques. Since this is difficult to quantify
at this point, we focus our discussion on dynamic power.

Dynamic power consumption is due to charging and dis-
charging of circuit parasitics as well as the short-circuit cur-
rents during signal switching. Previous study [4] has shown
that only 10% of the total current in an FPGA interconnect
is due to short-circuit currents. To simplify our analysis we
only consider the dynamic power due to the parasitics and
emulate the contribution of short-circuit currents by appro-
priately increasing the values of the parasitic capacitances.

The dynamic power consumed in an FPGA can be di-
vided into three components, the dynamic power consumed
in the logic blocks PLB, the dynamic power consumed in
the interconnects Pint, and the dynamic power consumed in
the clock networks Pclk. Previous studies [1, 4] have shown
that 15–20% of the total dynamic power is consumed in
the logic blocks, 60–80% is consumed in the interconnects,
and around 15% is consumed in the clock networks. Since in
this study we assume that the 3D-FPGA uses the same logic
block architecture as the baseline 2D-FPGA, the dynamic
power consumed by the logic blocks in the 3D-FPGA is the
same as that in the baseline 2D-FPGA.

Now, let ψ to be the average activity factor of the sig-
nal nets, Cnet be the equivalent capacitance of the signal
net, which includes the capacitances of the wire, side-loads,
switch point, and inserted buffers, Cclk be the equivalent
capacitance of the clock network, which again includes the
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wire and buffer capacitances in the network, fnet be the
interconnect operating frequency, and fclk be the clock fre-
quency. With these definitions, the total dynamic power
consumed in the FPGA can be expressed as

P = PLB + Pint + Pclk

= PLB + ψV 2
DDfnet

X

all nets

Cnet + CclkV
2
DDfclk. (8)

We compare the dynamic power consumption of the 3D-
FPGA to that of the baseline 2D-FPGA as follows.

1. We denote by φLB, φint, and φclk, respectively, the frac-
tion of dynamic power consumed in the logic blocks,
the interconnect, and the clock network of the baseline
2D-FPGA. Thus, φLB + φint + φclk = 1. We choose φ
values that are consistent with recent studies [1, 4].

2. We added code to VPR to extract the equivalent ca-
pacitance, Cnet, of each signal net in the placed and
routed benchmark circuit, for both the baseline 2D-
FPGA and the 3D-FPGA with r = 0.56. The equiv-
alent transistor gate and diffusion capacitances are
obtained using the calibration circuits in Figure 7.
However, instead of matching delays, we match charge
stored on the capacitances over a 1µsec period, which
yields slightly larger capacitances. We then find the
dynamic power consumption improvement factor for
interconnects, ξint ≥ 1, which is the ratio of the dy-
namic power consumed by the interconnects in the
2D-FPGA to that in the 3D-FPGA for a particular
benchmark circuit in MCNC suite.

3. We repeat the same procedure for the clock network
to find the dynamic power improvement factor for the
clock network, ξclk ≥ 1.

4. The results are combined to find the improvement in
the total dynamic power consumption, ξ, given by

ξ = 1
.

„

φLB +
φint

ξint
+

φclk

ξclk

«

. (9)

5. The above procedure is repeated for each of the 20
MCNC benchmark circuits and ξ is computed for each
circuit. Finally, the geometric average of each ξ for dif-
ferent designs, Ξ, is determined and used as an overall
measure of power saving.

To find the equivalent capacitance for the global clock net-
work, we assume, as has been done in previous studies (e.g.,
[19]), that an H-tree distribution network is employed in
both the baseline 2D-FPGA and the 3D-FPGA. We assume
a distributed buffer scheme, since it achieves lower delay and
lower skew. Each LB is served by a clock buffer. The size
of the chip in tiles determines the depth of the clock tree.

The equivalent capacitance of the clock distribution net-
work is obtained by adding the total wire capacitance Cclk,wire,
buffer capacitance Cclk,driver, and load capacitances Cclk,load

for the network. To obtain numerical values for the equiva-
lent capacitance in the baseline 2D-FPGA, we assume a 64
× 64 LB array and optimize the buffer sizes for each of the
four technology nodes. To estimate the equivalent capac-
itance for the 3D-FPGA, we scale the wire lengths of the
network in the 2D-FPGA by the 3D wire scaling factor r
and re-optimize the buffer sizes as for long interconnects.

Since the clock network load capacitance is primarily due to
the input capacitance of the flip-flops residing in the LBs,
we assume that Cclk,load remains the same for 3D-FPGA
independent of the value of r.

Now, we are ready to compute the improvements in dy-
namic power savings achieved by the 3D-FPGA. We assume
that φLB = 0.15, φint = 0.65, and φclk = 0.2 and compute
ξint and ξclk for different values of r and for each of the four
technology nodes (180nm, 130nm, 90nm, and 65nm) and
then compute ξtotal using (9). The results are plotted in
Figure 14. As expected, the total improvement in dynamic
power, however, depends strongly on r. Note, however, that
the improvement in dynamic power consumption does not
change much with technology. This is mainly due to the
fact that the results are normalized with respect to wire
length, supply voltage, and operating frequency. Addition-
ally, Cgate, Cdiff , and Cw do not change much with scaling
from 180nm down to 65nm.
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Figure 14: Relative power saving of 3D-FPGA for
different technologies.

5. CONCLUSION
The paper discussed the performance benefits of a mono-

lithically stacked 3D-FPGA. A Virtex-II style 2D-FPGA
fabric is used as a baseline for comparison. A technology
independent FPGA area model is used to compare the logic
density of the 3D-FPGA to the baseline 2D-FPGA as a func-
tion of programming memory element size. An analytical
model for interconnect is used to estimate the delay and
dynamic power consumption of the 3D-FPGA compared to
the baseline FPGA implemented in several deep submicron
CMOS technology nodes and the results are corroborated
with HSPICE simulations.

It is shown that the size of the configuration memory cell
plays a key role in the degree of performance improvement
achieved by a monolithically stacked 3D-FPGA. For a mem-
ory cell that is ≤ 0.7 the area of an SRAM cell, we showed
that a 3D-FPGA can achieve 3.2 times higher logic density,
1.7 times lower critical path delay, and 1.7 times lower total
dynamic power consumption than the baseline 2D-FPGA
at the 65nm technology node. Since the 3.2X improvement
in logic density requires the addition of only a few mask
layers to a standard CMOS technology, a monolithically
stacked 3D-FPGA should have significantly lower manufac-
turing cost than a conventional 2D-FPGA for the same logic
capacity.

The improvement results reported are based on several
assumptions and approximations that warrant further in-
vestigation.
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• The 3D-FPGA area results we reported need to be
verified by performing some detailed layouts in a 3D
technology.

• The delay and power improvements assumed that the
pass-transistor switches have the same characteristics
as the nMOS devices in the CMOS layer. The accuracy
of this assumption depends on the technology used to
build these devices. The analytical models we used for
delay and dynamic power consumption, however, can
be readily used to quantify the improvements for any
given pass-transistor switch characteristics.

• The RC models for the interconnects ignored the par-
asitics of the 3D via. Depending on the 3D technology
used, this may need to be taken into consideration.

• The delay and power results assumed that all transis-
tors have the same threshold voltage and that a single
supply voltage is used. In the most advanced tech-
nologies, devices with different threshold voltages are
available.

Finally, our analysis did not assume any optimization of
the 3D-FPGA architecture to take better advantage of the
added layers. It is expected that significant additional im-
provements in interconnect delays and dynamic power con-
sumption can be obtained by optimizing the programmable
routing architecture beyond merely optimizing buffer inser-
tion and device sizes.
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