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@ What is a subspace arrangement
o Definition
@ Representation

@ Converting constraints to subspace arrangements
@ Vanishing points
o Affine projections
o Perspective projections
@ Approximate nonlinear structures

© Statistical solutions
o K-Means and K-Subspaces
o EM
@ RANSAC
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Arrangement
[ ]

Linear Subspaces and Arrangements
@ Linear subspaces
o Subspace structures are widely used for dimension reduction in pattern recognition.
o Linear subspaces pass through the origin, contrary to affine subspaces.
e The classic solution for estimating a subspace for dimension reduction: PCA
Solution: Singular Value Decomposition (SVD)

uxvT = svds([z1,22, - - - ,zn]pxw, d), where U € RP*d v € RY¥? and V € RVX4,
o U(:, ) is the ith principal axis (basis vector). "J‘- .
e .
e ¢ = U(, i)sz is the ith principal component of z;. <. :
o The projected samples are R
l2),2}, -,z =TV € RPN, e fr T

@ A subspace arrangement is a collection of linear subspaces in RP, parametized by the number of subspaces
K and their dimensions di, db, - - - , dk.
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Arrangement
[ le]

Description of Subspace Arrangements

@ Given one subspace V € R, dim(V) = d, it is defined by d
basis vectors:

V = Span(vi, vz, -+ ,vq)
Now {vi,--- ,vg} can be expanded to a complete basis of RP:
{vi, + ,Vg,u1,- -+ ,u,} where d +r =D.
Foranyze V,z L V1 = Span(uy, - -+ ,u,):

Vze V,(uz=0)A(ulz=0)A---A(uz=0).

@ With multiple subspaces V;, V5, - -+ | V. The arrangement is:
A=ViUWV,U---U V.
Thenforanyze A, (ze Vi) V(z€ Vo)V ---V (z € Vk):

vze A (Vi z=0)v (Vi Tz=0)v .. v (ViTz=0).

Subspace arrangements are generalization of single subspaces. They are also more compact representation for
dimention reduction.

Allen Y. Yang Segmentation of Subspace Arrangements | — Introduction



Segmentation of subspace arrangements (subspace-segmentation problem):
Given number of subspaces K and their dimensions di, - - - , dx known,

=~

eSS

A closer look: There are couples of problems

@ Polynomial interpretation:
o pi(z) = usz,- is a 1st degree homogeneous polynomial with coefficients u;.
o For asingle V, p1(z) =0, ---,p(z) =0.

@ Noise issue:

Suppose the measurement Z = z + n, where n is (Gaussian) noise.
Then py(2) #0,- -+, p(2) # 0.

© Outlier issue.

Outliers {y} may appear in the data set, leading to:
pi(y) > 0. %

@ What to do with affine subspaces?
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Vanishing-Point Detection:

@ Perspective projection of 2 parallel lines in space intersect at
vanishing point in image plane.

@ Geometry of a family of parallel lines:
o The co-image of a line L; is l; = x1 X x2.

o Given pre-images of two parallel lines Ly and L, (0,v) is on the
intersection of P; and Ps.

= Any co-image |; of a line parallel to L; satisfies: I; L v.

© Multiple vanishing points:

o Multiple families of parallel lines correspond to multiple
vanishing points vi, ..., v,.

o Any co-image of a line in the families must satisfy

(1"v)(1Tv2) - (1Tv,) = 0.

= Segmenting parallel line families is equivalent to segmenting 2-D
subspaces in R>.
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Appl ons

Motion Segmentation under 3-D Affine Projection
@ Affine projection of a single rigid body:

@ Object features py,...,py € R3 are tracked
in F frames.

parking-lot movie

@ Denote mj; € R? as the image under 3-D
affine projection:

— 2 [ — D — o 0oL o
m; = Ajp;+b; €R°, i=1,...,N;j=1,...,F. HBas ,:::u‘;ogong%%ozf
0000 20 00
LR 1Y) 3 e o %
© For each p;, Rog oo oo-te gl
3
o § g% O oSmeiigs
i 0700 2982 oo ©0° o
mj o %0 %" o o0
3
. 2F .
zj = . cR™, i=1,...,N.
mir

@ Multibody segmentation:

Given K independent objects, segment z;, ..., zy that belong to different motions.
(Ai,1,b11) -+ (AF,byF)
= X .
(AK,l;bK,l) (AK,F;bK,F)
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Appl ons

Suppose py,-..,py € R3 are from a single object:
mjp
mj)
@ Stack corresponding images in F frames: z; = . ER¥ i=1,--- ,N:
miF
Ap by
W =z1 - znlorxn = [p114 p{VlexN'

AF bEd 2F x4
=z € R?F lives in a subspace of dimension 4.

X
@ When all p;’s are coplanar, there exists a world coordinate system such that p; = [Y:} .
0

Ay by P
W=z znlorxn = | @ AN

. 1 .0 1

AF bEd oF s axn

= z; € R¥ lives in a subspace of dimension 3.

Multiple rigid bodies under affine projection

Segmenting multiple rigid bodies under affine camera projection is equivalent to segmenting multiple subspaces
of dimension 3 or 4.
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Perspective projections (bilinear constraints)
@ Consider one epipolar constraint:
p(x1,%2) = x;Fxl =0,
which is a bilinear constraint on (x1, x2).
@ For N epipolar constraints,
(x2TF1x1)(x2TF2x1) S (XZTFNX1) =0.

@ Similar techniques exist to convert bilinear constraints to a subspace-segmentation problem:

x;l-_,-xl S (x1® xz)TF,-s =0.

Multiple rigid bodies under perspective projection

Segmenting multiple rigid bodies under perspective projection (bilinear constraints) can be converted to a
subspace segmentation problem.

Be careful about degenerate structures:
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Approximate nonlinear structures :

@ Image Segmentation

@ Dynamic Texture Segmentation

Heart
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Statistical solutions
°

K-Means and K-Subspaces

@ K-Means for segmenting K Gaussian clusters:

@ K-Subspaces for subspace arrangements [Ho et al., 2003]:

@ Initialization: Set initial values of orthogonal matrices oo e RPXdifori=1,...,N. Let m=0.

i

@ Segmentation: For each sample z, assign it to group )A(/.(m) if
i = arg m,in llzx — U,(m)(lAJ,(m))TZkHZ.

© Estimation: Apply PCA to each subset )A(,.(m) and obtain new estimates for the subspace bases
U(m“).

i
@ Let m «— m+ 1, and repeat step 2 and 3 until the segmentation does not change.

@ Question: What is your estimate of where the local minima are?
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Statistical solutions
L]

Expectation-Maximization
@ Setup:
@ Given {z1, -+ ,zy}, amend a latent membership for each sample (z;, n;) € R® x N and a
probability ; ; = p(ni = j).
@ Assume a Gaussian noise model for each subspace model 6; = (B, oj, 7;):
N 1 ZTB,'BI-TZ
p(zln = i) = o075, P\ "2 |

i

where B; € RP*(P=9) is 3 orthogonal matrix.
@ Algorithm:

@ Initialization: Set initial values for éfo) = {BI.(O), &EO), ‘frgm} fori=1,...,n Setm=0.
@ Expectation: Compute the expected value of wi as

A (m) _; p(m)
m . oA w7 p(zk|ne =i, 0
Wi = pli = ilze, 0™) = — A(rg) A) : (1)
Sk & Pzl = 1, 0(m)
© Maximization: Using the expected values WI.J(."'), compute Hlm+1),
él_(mﬂ) = the eigenvectors associated with the smallest D — d; eigenvalues of
the mat(rb)( DY wls(m)zkz[.
Am EZzanik ) )
(sl )? = Sy N a2
’ =)=y wy”

@ Let m «— m+ 1, and repeat step 2 and 3 until the update in the parameters is small enough.
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Statistical solutions

Random Sample Consensus (RANSAC)
@ Consensus-based algorithms:
Hough: [Ballard 1981, Lowe 1999]

RANSAC: [Fischler & Bolles 1981, Torr 1997]
Least Median Estimate (LME): [Rousseeuw 1984, Steward 1999]

@ Estimating subspace arrangements via RANSAC
© RANSAC-on-Union: Simultaneously estimation multiple subspaces.
Complexity: Subspaces (2, 2, 2) with samples (200, 200, 200). Probability for a good sample set:
(200 - 199)33!
600 - 599 - - - 595

@ RANSAC-on-Subspaces: Estimate one subspace at a time.
Complexity: Subspaces (2, 2, 2) with samples (200, 200, 200). Probability for a good sample set:

3(200 - 199)
600 - 599
@ RANSAC-on-Subspaces with subspace degeneracy detection

= 0.8%.

= 33%.

@ Start with the highest-dimensional model. Find a sample subset with highest consensus.
@ Verify if the subset can be fitted with lower-dimensional models. If so, temporarily discard the
samples, and re-estimate the model from the remaining samples.

3

4
s
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