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Linear Subspaces and Arrangements
1 Linear subspaces

Subspace structures are widely used for dimension reduction in pattern recognition.
Linear subspaces pass through the origin, contrary to affine subspaces.
The classic solution for estimating a subspace for dimension reduction: PCA
Solution: Singular Value Decomposition (SVD)

UΣV T = svds([z1, z2, · · · , zN ]D×N , d), where U ∈ RD×d , Σ ∈ Rd×d , and V ∈ RN×d .

U(:, i) is the i th principal axis (basis vector).

cij = U(:, i)T zj is the i th principal component of zj .

The projected samples are

[z′1, z′2, · · · , z′N ] = ΣV T ∈ Rd×N
.

2 A subspace arrangement is a collection of linear subspaces in RD , parametized by the number of subspaces
K and their dimensions d1, d2, · · · , dK .
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Description of Subspace Arrangements

1 Given one subspace V ∈ RD , dim(V ) = d , it is defined by d
basis vectors:

V = Span(v1, v2, · · · , vd )

Now {v1, · · · , vd} can be expanded to a complete basis of RD :

{v1, · · · , vd , u1, · · · , ur} where d + r = D.

For any z ∈ V , z ⊥ V⊥ .
= Span(u1, · · · , ur ):

∀z ∈ V , (uT
1 z = 0) ∧ (uT

2 z = 0) ∧ · · · ∧ (uT
r z = 0).

2 With multiple subspaces V1, V2, · · · , VK . The arrangement is:

A = V1 ∪ V2 ∪ · · · ∪ VK .

Then for any z ∈ A, (z ∈ V1) ∨ (z ∈ V2) ∨ · · · ∨ (z ∈ VK ):

∀z ∈ A, (V⊥
1

T
z = 0) ∨ (V⊥

2
T
z = 0) ∨ · · · ∨ (V⊥

r
T
z = 0).

V1

V2

R3x3

x1

x2

Punch line

Subspace arrangements are generalization of single subspaces. They are also more compact representation for
dimention reduction.
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Segmentation of subspace arrangements (subspace-segmentation problem):
Given number of subspaces K and their dimensions d1, · · · , dK known,

A closer look: There are couples of problems

1 Polynomial interpretation:

pj (z)
.
= uT

j zi is a 1st degree homogeneous polynomial with coefficients uj .

For a single V , p1(z) = 0, · · · , pr (z) = 0.

2 Noise issue:

Suppose the measurement z̃ = z + n, where n is (Gaussian) noise.
Then p1(z̃) 6= 0, · · · , pr (z̃) 6= 0.

3 Outlier issue.

Outliers {y} may appear in the data set, leading to:

pj (y)� 0.

4 What to do with affine subspaces?
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Vanishing-Point Detection:

1 Perspective projection of 2 parallel lines in space intersect at
vanishing point in image plane.

2 Geometry of a family of parallel lines:

The co-image of a line L1 is l1 = x1 × x2.

Given pre-images of two parallel lines L1 and L2, (0, v) is on the
intersection of P1 and P2.

⇒ Any co-image li of a line parallel to L1 satisfies: li ⊥ v.

L2

x1
x2

x3

x4

0

l1

l2

P2v

P1

L1

3 Multiple vanishing points:

Multiple families of parallel lines correspond to multiple
vanishing points v1, . . . , vn.

Any co-image of a line in the families must satisfy

(lT v1)(l
T v2) · · · (lT vn) = 0.

⇒ Segmenting parallel line families is equivalent to segmenting 2-D
subspaces in R3.
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Motion Segmentation under 3-D Affine Projection

Affine projection of a single rigid body:

1 Object features p1, . . . , pN ∈ R3 are tracked
in F frames.

parking-lot movie

2 Denote mij ∈ R2 as the image under 3-D
affine projection:

mij = Ajpi+bj ∈ R2
, i = 1, . . . , N; j = 1, . . . , F .

3 For each pi ,

zi =


mi1

.

.

.
miF

 ∈ R2F
, i = 1, . . . , N.

Multibody segmentation:
Given K independent objects, segment z1, . . . , zN that belong to different motions.

⇒


(A1,1, b1,1) · · · (A1,F , b1,F )

.

.

.
.
.
.

.

.

.
(AK,1, bK,1) · · · (AK,F , bK,F )

 .
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Suppose p1, . . . , pN ∈ R3 are from a single object:

Stack corresponding images in F frames: zi =


mi1
mi2

.

.

.
miF

 ∈ R2F , i = 1, · · · , N:

W
.
= [z1 · · · zN ]2F×N =

 A1 b1

.

.

.
.
.
.

AF bF


2F×4

[ p1 ··· pN
1 ··· 1

]
4×N

.

⇒ zi ∈ R2F lives in a subspace of dimension 4.

When all pi ’s are coplanar, there exists a world coordinate system such that pi =
[ xi

yi
0

]
.

W
.
= [z1 · · · zN ]2F×N =

 A1 b1

.

.

.
.
.
.

AF bF


2F×4

[
x1 ··· xN
y1 ··· yN
0 ··· 0
1 ··· 1

]
4×N

.

⇒ zi ∈ R2F lives in a subspace of dimension 3.

Multiple rigid bodies under affine projection

Segmenting multiple rigid bodies under affine camera projection is equivalent to segmenting multiple subspaces
of dimension 3 or 4.
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Perspective projections (bilinear constraints)

Consider one epipolar constraint:

p(x1, x2) = xT
2 Fx1 = 0,

which is a bilinear constraint on (x1, x2).

For N epipolar constraints,

(xT
2 F1x1)(x

T
2 F2x1) · · · (xT

2 FNx1) = 0.

Similar techniques exist to convert bilinear constraints to a subspace-segmentation problem:

xT
2 Fix1 ⇔ (x1 ⊗ x2)

T F s
i = 0.

Multiple rigid bodies under perspective projection

Segmenting multiple rigid bodies under perspective projection (bilinear constraints) can be converted to a
subspace segmentation problem.

Be careful about degenerate structures:
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Approximate nonlinear structures

Processing image and video data: Critical to handle large non-Gaussian noise by nonlinear structures.

Image Segmentation

Dynamic Texture Segmentation

Heart
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K-Means and K-Subspaces

K-Means for segmenting K Gaussian clusters:

K-Subspaces for subspace arrangements [Ho et al., 2003]:

1 Initialization: Set initial values of orthogonal matrices Û
(0)
i ∈ RD×di for i = 1, . . . , N. Let m = 0.

2 Segmentation: For each sample zk , assign it to group X̂
(m)
i if

i = arg min
l
‖zk − Û

(m)
l (Û

(m)
l )T zk‖2.

3 Estimation: Apply PCA to each subset X̂
(m)
i and obtain new estimates for the subspace bases

Û
(m+1)
i .

4 Let m← m + 1, and repeat step 2 and 3 until the segmentation does not change.

⇒

Question: What is your estimate of where the local minima are?
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Expectation-Maximization

Setup:

1 Given {z1, · · · , zN}, amend a latent membership for each sample (zi , ηi ) ∈ RD × N and a
probability πi,j

.
= p(ηi = j).

2 Assume a Gaussian noise model for each subspace model θi = (Bi , σi , πi ):

p(z|η = i)
.
=

1

(2π)(D−di )/2σi

exp

(
−

zT BiB
T
i z

2σ2
i

)
,

where Bi ∈ RD×(D−di ) is a orthogonal matrix.

Algorithm:

1 Initialization: Set initial values for θ̂
(0)
i = {B̂(0)

i , σ̂
(0)
i , π̂

(0)
i } for i = 1, . . . , n. Set m = 0.

2 Expectation: Compute the expected value of wik as

w
(m)
ik

.
= p(ηk = i|zk , θ̂

(m)) =
π̂

(m)
i p(zk |ηk = i, θ̂(m))∑N

l=1 π̂
(m)
l p(zk |ηk = l, θ̂(m))

. (1)

3 Maximization: Using the expected values w
(m)
ij , compute θ̂(m+1).

B̂
(m+1)
i = the eigenvectors associated with the smallest D − di eigenvalues of

the matrix
∑n

k=1 w
(m)
ik zkz

T
k .

π̂
(m+1)
i =

∑n
k=1 w

(m)
ik

n .(
σ̂

(m+1)
i

)2
=

∑n
k=1 w

(m)
ik

‖(B̂
(m+1)
i

)T zk‖
2

(D−di )
∑n

k=1
w

(m)
ik

.

(2)

4 Let m← m + 1, and repeat step 2 and 3 until the update in the parameters is small enough.
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Random Sample Consensus (RANSAC)

Consensus-based algorithms:

Hough: [Ballard 1981, Lowe 1999]
RANSAC: [Fischler & Bolles 1981, Torr 1997]
Least Median Estimate (LME): [Rousseeuw 1984, Steward 1999]

Estimating subspace arrangements via RANSAC

1 RANSAC-on-Union: Simultaneously estimation multiple subspaces.
Complexity: Subspaces (2, 2, 2) with samples (200, 200, 200). Probability for a good sample set:

(200 · 199)33!

600 · 599 · · · 595
= 0.8%.

2 RANSAC-on-Subspaces: Estimate one subspace at a time.
Complexity: Subspaces (2, 2, 2) with samples (200, 200, 200). Probability for a good sample set:

3(200 · 199)

600 · 599
= 33%.

RANSAC-on-Subspaces with subspace degeneracy detection

1 Start with the highest-dimensional model. Find a sample subset with highest consensus.
2 Verify if the subset can be fitted with lower-dimensional models. If so, temporarily discard the

samples, and re-estimate the model from the remaining samples.
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