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Back to Poisson’s equation. 
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Some Vector Calculus 

•! Green’s theorem (aka integration by parts) 

•! If                        , then  
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We want to solve Poisson’s equation (note the sign convention)  

 
 
We want find a weak solution, i.e. 
 
 
 
For all continuous piecewise smooth test functions 
                       . 
 
Applying Green’s Theorem, this is the same as 

Weak Form of Poisson’s Equation 
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Finite element discretization 

Step 1: we discretize our domain as 
a union of triangles. 
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Step 2: We replace      by      , a 
finite-dimensional space of test 
functions. For this exercise, we will 
use linear combinations of  
continuous, piecewise linear 
functions, indexed by interior 
nodes nodes, linear on each 
triangle containing the node. A 
basis for this space is given 
by                   .         .  

Step 3: We also approximate the 
solution as a linear combination of 
the the elements in       .

Interior Nodes = NI

Elements e = 0 , . . . E ! 1

{ ! h
n (x) : n 2 NI }

! h
n (x n ! ) = ! nn ! , n! 2 N
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Weak form -> matrix equation. 

  We apply the weak form of the equations to the finite-dimensional 
subspace  
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Elements 

Two issues: 
•! Computing L. 
•! Quadrature for computing b. 
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Matrix Assembly 

Pseudocode: 
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•! L is a matrix with mostly zero entries. But it is nice: symmetric, 
positive-definite, M-matrix. 

•!           is a constant vector, easily computed. 
•! We’re building a matrix dimensioned by nodes by iterating over 

elements and building it up incrementally.  

Interior Nodes =NI , Elements e= 0, . . . E ! 1
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Getting the right-hand side 

Quadrature for b: midpoint rule on each element. 
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More element magic. 
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Point Jacobi Iteration 

 Motivation: to solve La = b, we compute it as a steady-state 
solution to an ODE.      

 If all of the eigenvalues of L are positive, then   
 
  

Point Jacobi: use forward Euler to solve ODE. 
 
 Stop when the residual has been reduced by a suitable amount. 
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Matrix Properties  

Our matrix has the following properties: 
•! Symmetric, positive-definite: 
•! Positive along diagonal. 
•! Rows sum to a non-negative number: 
•! For triangles sufficiently close to equilateral, the nonzero off-diagonal 

elements are non-negative, i.e.                                      . 
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Choosing a Relaxation Parameter 
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This leads to the following choice for our relaxation parameter. 
 

 

 

 If your grid is strongly-varying, may want to use a local relaxation 
parameter (you will not be doing this in the present assignment). 
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Sparse Matrices. 

•! Compact basis function space results in a linear operator (Matrix) 
that has mostly zero entries. 
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Typical non-zero 
entries in A matrix  
from a finite element 
problem 
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RectMDArray can hold this matrix, but wasteful 

•! Wasteful in several ways 
-!You waste memory storing the number 0 in a lot of places 
-!You was floating point instructions performing multiplication with 0 
-!You waste processor bandwidth to memory 
-!You waste hits in your cache 
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Sparse Matrix representation using vectors 
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We represent a sparse matrix 
as two vectors of vectors: 
vector<vector<double> > 
to hold the matrix elements,  
vector<vector<int> >  
to hold the column indices.

Compressed-sparse-row (CSR) representation.  
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SparseMatrix Class 

class SparseMatrix
{

public:

  /// set up an M rows and N columns sparse matrix

  SparseMatrix(int a_M, int a_N);

  /// Matrix Vector multiply.  a_v.size()==a_N, returns vector of size a_M
  vector<double> operator*(const vector<double>& a_v) const;

  ///accessor functions for get and set operations of matrix elements

  double& operator[](const array<int,2>&);

private:

  int m_m, m_n;
  float m_zero;

  vector<vector<double> > m_data;

  vector<vector<int> >   m_colIndex;

};

Part of your homework 2 will be to implement this class,  with a few more functions 
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For each non-zero entry in ‘A’ we keep one float, 
and one int indicating which column it is in 

If necessary, sparse matrix automatically adds 
a new matrix element when you reference that 
location, and initializes it to zero. 
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Setup for Homework 2 

•! Build an operator corresponding to a triangular element 
discretization of the Poisson equation. 

•! Use an iterative solver to solve the equation. 
•! What we will provide: 

-!Triangular grids, stored in files. 
-!Classes for reading those files, and storing and manipulating 

computing geometric information. 
-!A class for writing out the solution in a form that can be viewed 

by VisIt. 
•! You will write:  

-!A class FEPoissonOperator that generates and stores the 
sparse matrix, and applies the operator to the right-hand side. 

-!The SparseMatrix class. 
-!An implementation of point Jacobi iteration to solve the resulting 

linear system. 
We will discuss the details of these in the next few slides. 
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Node , Element, and FEGrid

class Node
{

 public:

  Node();

Node(array<double,DIM> a_position,

       const int&  a_interiorNodeID, 
       const bool& a_isInterior);

  /// Constant access to node Location in space.

  const array<double,DIM>& getPosition() const;

  const int& getInteriorNodeID() const;

  const bool& isInterior() const;
 private:

  array<double,DIM>  m_position;

  bool  m_isInterior;

  int m_interiorNodeID;

};
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Three different integer ID’s for nodes:  
•! Where they are in the vector of all nodes 
making up the triangular grid; 
•! Where they are in the vector making up the 
interior nodes; 
•! Where they are in the vector making up the 
nodes on an element (localNodeNumber) 
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Node , Element, and FEGrid

#define VERTICES 3
class Element
{
public: 
  Element();

  /// Constructor. 
  Element(array<int,VERTICES>& a_tr);
  /// Destructor.
  ~Element();
  /// local indexing to get nodeNumber.
  const int& operator[](const int& a_localNodeNumber) const;

private:
array<int,VERTICES> m_vertices;

};
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Local node numbers 
for element iElt. 

iElt 
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Node , Element, and FEGrid

class FEGrid
{
public:
  FEGrid();
  /// Constructor by reading from file.

  FEGrid(char* a_nodeFileName,char* a_elementFileName);
  ///Destructor.
  ~FEGrid();
/// Get number of elements, nodes, interior nodes.
  int getNumElts() const;
  int getNumNodes() const;

  int getNumInteriorNodes() const;
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Read in the file names from argv. 

We’re implementing this one (along with Node and Element)for 
you – you just have to use them correctly. 
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Node , Element, and FEGrid

...
 /// Compute gradient of basis function at node 
 /// a_localNodeNumber = 0,..,VERTICES-1, on element 
a_eltNumber. 

  array<double,DIM> gradient(const int& a_eltNumber,
                         const int& a_localNodeNumber) const;

  /// Compute centroid of element.                                
  array<double,DIM> centroid(const int& a_eltNumber) const;
  /// Compute area of element.
  float elementArea(const int& a_eltNumber) const;
  /// Compute value of basis function.              

  float elementValue(const array<double,DIM>& a_xVal,
                     const array<double,DIM>& a_gradient,
                     const int& a_eltNumber,
                     const int& a_localNodeNumber) const;
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Element-centered calculus.    
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Node , Element, and FEGrid

...
  /// get reference to node on an element.                    
  const Node& getNode(const int& a_eltNumber,
                      const int& a_localNodeNumber) const; 
/// Get reference to a Node given its global index.

const& Node& getNode(const int& a_nodeNumber) const;
  
private:
vector<Node > m_nodes;

  vector<Element > m_elements;
  int m_numInteriorNodes;

};
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Notice what we don’t have: neither an 
explicit mapping that gives all of the 
elements touching a given node, nor 
one that maps interiorNodes into 
nodes.  The first one we don’t need, 
and the second is encoded implicitly in 
Node.  
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FEPoissonOperator

class FEPoissonOperator
{
 public:
  FEPoissonOperator();
  FEPoissonOperator(const FEGrid& a_grid);

  void applyOperator(vector<float> & a_LOfPhi, const 
vector<double> & a_phi) const;

  void makeRHS(vector<double> & a_rhsAtNodes, const 
vector<float> & a_rhsAtCentroids) const;

  const FEGrid& getFEGrid() const;
 const SparseMatrix& getSparseMatrix() const;

  ~FEPoissonOperator();
 private:
  SparseMatrix m_matrix;
  FEGrid m_grid;

};
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Note that a_phi is defined   
only on the interior nodes, as is 
a_LOfPhi, a_rhsAtNodes . 
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Building the Sparse Matrix ( FEPoisson::FEPoisson( ... ) 

•! Our sparse matrix has dimensions                 
(getNumInteriorNodes())

•! To compute the inner product on each element, 
you need gradient, elementArea.

•! Fill in           incrementally, by incrementing 
matrix elements corresponding to pairs of 
interior nodes in each element, then iterating 
over elements 
(getNode(...),Node::InteriorNodeID()
).

Sparse matrix automatically 
adds new matrix element when 
you index that location, and 
initializes it to zero. 
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Building the Right-hand Side (makeRHS) 

•! Our right-hand side is an       - 
dimensional vector                 
(getNumInteriorNodes()), 
while our input f a vector of values 
evaluated at the centroids of 
elements (getNumElements(), 
centroid(...) ).

•! Fill in b incrementally, by iterating 
over elements , then computing 
interior nodes in each element 
(getNode(...), 
Node::InteriorNodeID()). 

•! Use elementValue(...), 
elementArea(...) to compute 
contribution from each node in an 
element. 
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