
CS 294-73  
Software Engineering for

Scientific Computing 
 

Lecture 8: Unstructured grids
and sparse matrices  

 
 

09/19/2017 CS294-73 Lecture 8

Back to Poisson’s equation.

2

09/19/2017 CS294-73 Lecture 8

Some Vector Calculus

•! Green’s theorem (aka integration by parts)

•! If , then

3

!
!

!

 (x)(" á(" !))(x)dx =

!
" á" ! dx

�
!

!

 (x)(r · (r�))(x)dx =

!

!

r ·r�dx+

!

@!
 (x)(r�)(x)dS

 ⌘ 0 on @⌦

Gradient operator: r =

!
@

@x

,

@

@y

"

Divergence operator: r á(Fx , Fy) =
@Fx

@x

+

@Fy

@y

Laplacian: �� = r á(r�) =

@

2

@x

2
+

@

2

@y

2

09/19/2017 CS294-73 Lecture 8

We want to solve Poisson’s equation (note the sign convention)

We want find a weak solution, i.e.

For all continuous piecewise smooth test functions
 .

Applying Green’s Theorem, this is the same as

Weak Form of Poisson’s Equation

4

�! ! = f on "

! =0 on " "

!

!

(�! !)(x)" (x)dx =
!

!

f (x)" (x)dx on #

 (x) with = 0 on @⌦

⌦

09/19/2017 CS294-73 Lecture 8

Finite element discretization

Step 1: we discretize our domain as
a union of triangles.

5

Step 2: We replace by , a
finite-dimensional space of test
functions. For this exercise, we will
use linear combinations of
continuous, piecewise linear
functions, indexed by interior
nodes nodes, linear on each
triangle containing the node. A
basis for this space is given
by . .

Step 3: We also approximate the
solution as a linear combination of
the the elements in .

Interior Nodes = NI

Elements e = 0 , . . . E ! 1

{ ! h
n (x) : n 2 NI }

! h
n (x n !) = ! nn ! , n! 2 N

09/19/2017 CS294-73 Lecture 8

Weak form -> matrix equation.

 We apply the weak form of the equations to the finite-dimensional
subspace

6

09/19/2017 CS294-73 Lecture 8

Elements

Two issues:
•! Computing L.
•! Quadrature for computing b.

7

09/19/2017 CS294-73 Lecture 8

Matrix Assembly

Pseudocode:

8

•! L is a matrix with mostly zero entries. But it is nice: symmetric,
positive-definite, M-matrix.

•! is a constant vector, easily computed.
•! We’re building a matrix dimensioned by nodes by iterating over

elements and building it up incrementally.

Interior Nodes =NI , Elements e= 0, . . . E ! 1

09/19/2017 CS294-73 Lecture 8

Getting the right-hand side

Quadrature for b: midpoint rule on each element.

9

More element magic.

09/19/2017 CS294-73 Lecture 8

Point Jacobi Iteration

 Motivation: to solve La = b, we compute it as a steady-state
solution to an ODE.

 If all of the eigenvalues of L are positive, then

Point Jacobi: use forward Euler to solve ODE.

 Stop when the residual has been reduced by a suitable amount.

10

09/19/2017 CS294-73 Lecture 8

Matrix Properties

Our matrix has the following properties:
•! Symmetric, positive-definite:
•! Positive along diagonal.
•! Rows sum to a non-negative number:
•! For triangles sufficiently close to equilateral, the nonzero off-diagonal

elements are non-negative, i.e. .

11

09/19/2017 CS294-73 Lecture 8

Choosing a Relaxation Parameter

12

This leads to the following choice for our relaxation parameter.

 If your grid is strongly-varying, may want to use a local relaxation
parameter (you will not be doing this in the present assignment).

09/19/2017 CS294-73 Lecture 8

Sparse Matrices.

•! Compact basis function space results in a linear operator (Matrix)
that has mostly zero entries.

13

Typical non-zero
entries in A matrix
from a finite element
problem

09/19/2017 CS294-73 Lecture 8

RectMDArray can hold this matrix, but wasteful

•! Wasteful in several ways
-!You waste memory storing the number 0 in a lot of places
-!You was floating point instructions performing multiplication with 0
-!You waste processor bandwidth to memory
-!You waste hits in your cache

14

09/19/2017 CS294-73 Lecture 8

Sparse Matrix representation using vectors

15

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
=

6.30000000
09.40009.100
004.700000
0008.50000
000993.206.10
000007.300
00004.103.20
00000005.1

.
A

We represent a sparse matrix
as two vectors of vectors:
vector<vector<double> >
to hold the matrix elements,
vector<vector<int> >  
to hold the column indices.

Compressed-sparse-row (CSR) representation.

09/19/2017 CS294-73 Lecture 8

SparseMatrix Class

class SparseMatrix
{

public:

 /// set up an M rows and N columns sparse matrix

 SparseMatrix(int a_M, int a_N);

 /// Matrix Vector multiply. a_v.size()==a_N, returns vector of size a_M
 vector<double> operator*(const vector<double>& a_v) const;

 ///accessor functions for get and set operations of matrix elements

 double& operator[](const array<int,2>&);

private:

 int m_m, m_n;
 float m_zero;

 vector<vector<double> > m_data;

 vector<vector<int> > m_colIndex;

};

Part of your homework 2 will be to implement this class, with a few more functions

16

For each non-zero entry in ‘A’ we keep one float,
and one int indicating which column it is in

If necessary, sparse matrix automatically adds
a new matrix element when you reference that
location, and initializes it to zero.

09/19/2017 CS294-73 Lecture 8

Setup for Homework 2

•! Build an operator corresponding to a triangular element
discretization of the Poisson equation.

•! Use an iterative solver to solve the equation.
•! What we will provide:

-!Triangular grids, stored in files.
-!Classes for reading those files, and storing and manipulating

computing geometric information.
-!A class for writing out the solution in a form that can be viewed

by VisIt.
•! You will write:

-!A class FEPoissonOperator that generates and stores the
sparse matrix, and applies the operator to the right-hand side.

-!The SparseMatrix class.
-!An implementation of point Jacobi iteration to solve the resulting

linear system.
We will discuss the details of these in the next few slides.

17

09/19/2017 CS294-73 Lecture 8

Node , Element, and FEGrid

class Node
{

 public:

 Node();

Node(array<double,DIM> a_position,

 const int& a_interiorNodeID,
 const bool& a_isInterior);

 /// Constant access to node Location in space.

 const array<double,DIM>& getPosition() const;

 const int& getInteriorNodeID() const;

 const bool& isInterior() const;
 private:

 array<double,DIM> m_position;

 bool m_isInterior;

 int m_interiorNodeID;

};

18

Three different integer ID’s for nodes:
•! Where they are in the vector of all nodes
making up the triangular grid;
•! Where they are in the vector making up the
interior nodes;
•! Where they are in the vector making up the
nodes on an element (localNodeNumber)

09/19/2017 CS294-73 Lecture 8

Node , Element, and FEGrid

#define VERTICES 3
class Element
{
public:
 Element();

 /// Constructor.
 Element(array<int,VERTICES>& a_tr);
 /// Destructor.
 ~Element();
 /// local indexing to get nodeNumber.
 const int& operator[](const int& a_localNodeNumber) const;

private:
array<int,VERTICES> m_vertices;

};

19

0

2
1

Local node numbers
for element iElt.

iElt

09/19/2017 CS294-73 Lecture 8

Node , Element, and FEGrid

class FEGrid
{
public:
 FEGrid();
 /// Constructor by reading from file.

 FEGrid(char* a_nodeFileName,char* a_elementFileName);
 ///Destructor.
 ~FEGrid();
/// Get number of elements, nodes, interior nodes.
 int getNumElts() const;
 int getNumNodes() const;

 int getNumInteriorNodes() const;

20

Read in the file names from argv.

We’re implementing this one (along with Node and Element)for
you – you just have to use them correctly.

09/19/2017 CS294-73 Lecture 8

Node , Element, and FEGrid

...
 /// Compute gradient of basis function at node
 /// a_localNodeNumber = 0,..,VERTICES-1, on element
a_eltNumber.

 array<double,DIM> gradient(const int& a_eltNumber,
 const int& a_localNodeNumber) const;

 /// Compute centroid of element.
 array<double,DIM> centroid(const int& a_eltNumber) const;
 /// Compute area of element.
 float elementArea(const int& a_eltNumber) const;
 /// Compute value of basis function.

 float elementValue(const array<double,DIM>& a_xVal,
 const array<double,DIM>& a_gradient,
 const int& a_eltNumber,
 const int& a_localNodeNumber) const;

21

Element-centered calculus.

09/19/2017 CS294-73 Lecture 8

Node , Element, and FEGrid

...
 /// get reference to node on an element.
 const Node& getNode(const int& a_eltNumber,
 const int& a_localNodeNumber) const;
/// Get reference to a Node given its global index.

const& Node& getNode(const int& a_nodeNumber) const;

private:
vector<Node > m_nodes;

 vector<Element > m_elements;
 int m_numInteriorNodes;

};

22

Notice what we don’t have: neither an
explicit mapping that gives all of the
elements touching a given node, nor
one that maps interiorNodes into
nodes. The first one we don’t need,
and the second is encoded implicitly in
Node.

09/19/2017 CS294-73 Lecture 8

FEPoissonOperator

class FEPoissonOperator
{
 public:
 FEPoissonOperator();
 FEPoissonOperator(const FEGrid& a_grid);

 void applyOperator(vector<float> & a_LOfPhi, const
vector<double> & a_phi) const;

 void makeRHS(vector<double> & a_rhsAtNodes, const
vector<float> & a_rhsAtCentroids) const;

 const FEGrid& getFEGrid() const;
 const SparseMatrix& getSparseMatrix() const;

 ~FEPoissonOperator();
 private:
 SparseMatrix m_matrix;
 FEGrid m_grid;

};

23

Note that a_phi is defined
only on the interior nodes, as is
a_LOfPhi, a_rhsAtNodes .

09/19/2017 CS294-73 Lecture 8

Building the Sparse Matrix (FEPoisson::FEPoisson(...)

•! Our sparse matrix has dimensions
(getNumInteriorNodes())

•! To compute the inner product on each element,
you need gradient, elementArea.

•! Fill in incrementally, by incrementing
matrix elements corresponding to pairs of
interior nodes in each element, then iterating
over elements
(getNode(...),Node::InteriorNodeID()
).

Sparse matrix automatically
adds new matrix element when
you index that location, and
initializes it to zero.

09/19/2017 CS294-73 Lecture 8

Building the Right-hand Side (makeRHS)

•! Our right-hand side is an -
dimensional vector
(getNumInteriorNodes()),
while our input f a vector of values
evaluated at the centroids of
elements (getNumElements(),
centroid(...)).

•! Fill in b incrementally, by iterating
over elements , then computing
interior nodes in each element
(getNode(...),
Node::InteriorNodeID()).

•! Use elementValue(...),
elementArea(...) to compute
contribution from each node in an
element.

25

