Declarative Design: High-Level Descriptions and Automated Design-Space Exploration

Jonathan Bachrach and Krste Asanović

EECS UC Berkeley

February 26, 2013
Design Space Exploration

- **complexity**
 - solution space – (e.g., joules / op, area, ...)
 - problem space – (e.g., cache size, number cores, ...)

- **optimization strategies**
 - pareto optimality – dominates
 - blended solution – cost function with constraints

- **evaluation**
 - simulation
 - analytical

- **exploration**
 - basic
 - pruning

from Building ASIPS: The MESCAL Methodology by Gries, Keutzer, Meyr, Martin Springer Book
Solution Space

- primary
 - cost
 - power dissipation
 - speed
 - flexibility

- combined
 - energy-delay product
 - computations-power ratio
 - speed-cost ratio
 - flexibility-related
Problem Space

- continuous
 - linear
 - log
- discrete
 - boolean
 - enum
- implementations
 - named choices
 - functional description that also take parameters
Assume n objectives.

- Pareto dominant solution:
 - Is $>\text{in one objective while being } \geq \text{in others}$

- Pareto optimal solution:
 - If no other solution dominates
 - All elements in set are reasonable solutions

Figure 5.2. Two-dimensional design space with Pareto-optimal designs 1, 4, 5, and 6.
decision making before search
- aggregate different objectives into single objective before search is performed
- convert certain objectives into constraints

search before decision making
- result is pareto optimal solutions
- additional criteria are added to focus result

decision making during search
- iterative combination of above two
- constraints can be determined automatically or interactively by presenting intermediate results
Evaluation

- simulation
 - system-level simulation
 - cycle-accurate simulation
- combined simulation/analytical
 - trace-based performance analysis
 - analytical models with calibrating simulation
- purely analytical
 - static profiling
 - event stream-based analytical models
 - high-level synthesis
Exploration Techniques

- exhaustive
- randomly sampling
 - monte carlo
 - simulated annealing
- guided search
 - hill climbing
 - evolutionary search
- ad hoc techniques
Pruning Techniques

- hierarchical exploration
- subsampling of the design space
- subdividing the design space into independent parts
- sensitivity analysis of design parameters
- constraining the design space
- input energy budget
- simulation for performance
- ASIC workflow for energy usage
- fed back for refinement

from Rethinking Digital Design: Why Design Must Change by Shacham et al in IEEE Micro magazine
Difficult of Automatic Optimization

- no gradients and expensive to evaluate design points
- can’t afford to explore all combinations
 - potentially explore variance independently
- some optimization approaches only work with restricted formulation
read **SPIRAL: Code Generation for DSP Algorithms**

come prepared with

- the good
- the bad
- three questions
Today’s Lecture was based on ...

- “Comprehensively Exploring the Design Space”
- by Matthias Gries and Yujia Jin
- in “Building ASIPS the Mescal Approach”
- edited by Matthias Gries and Kurt Keutzer