Woz

405 Soda

306 Soda
2-4 General

4-6 Hodgepodge
2-4 personal tutoring
4-6 Trees ; I/O

-fractal (1)
-fractal (1)
4-6 Car-cdr ; B&P

-tree rec (1)
-tree rec (1)

-car-cdr rec (1) -I/O rec (1)

-B/P (1)

-Quickies (9)

-Quickies (9)

General

;;(1)

(draw-square Cx Cy r) ;; draws a square centered at Cx Cy with sides of length

2r (r is the distance from the center to the nearest

edge)

You want to write a procedure square-corner which takes a center, an r, and a

level, and creates a fractal whose base case (level = 1) is a square. At every

recursive level after that, you want to first draw a square, then place four

1/2-sized reduced recursive-calls to square on the outside corners of your

current square so that the corners line up.

(square-corner 0 0 100 1)

 + - - - - +

 I I

 I I

 I I

 I I

 + - - - - +
(square-corner 0 0 100 2)

+ - - + + - - +

I I I I

I I I I

+ - - + - - - - + - - +

 I I

 I I

 I I

 I I

+ - - + - - - - + - - +

I I I I

I I I I

+ - - + + - - +
(i) Draw the result of calling square-corner w/ level = 3

(ii) How many squares are drawn for level = 4 _____________

(iii) Write square-corner
(define (square-corner Cx Cy r level)

;;(2a) Given the following tree called frog:

 frog --> a

 / \

 b c

 / \

 d g

 / \

 e f

(i) Circle the root node of frog.

(ii) Underline the leaves of frog.

(iii) Give the call using the appropriate tree constructors to make frog.

(iv) Give the call using the appropriate tree selectors to return ‘f’ from frog.

;;(2b) You are to write the function greatest-depth that takes in a tree and returns the greatest depth of the tree. You may NOT use any helper functions.

Example

:(greatest-depth frog)

4

(define (greatest-depth tree)

;;(3)

(define (weird arg)

 (if (or (null? arg) (word? arg))

 arg

 (cons (weird (car arg))

 (weird (cdr arg)))))

(i) Domain of weird ___

(ii) Range of weird ___

(iii) In one sentence, state succinctly what the weird function does for legal arguments (those that satisfy (i))

;;(4)

(define (foo n)

 (if (= n 0)

 (list '())

 (cons (foo (- n 1))

 (foo (- n 1)))))

(i) What does (foo 1) return? __

(ii) Give the Box-and-pointer diagram for (foo 2)

(iii) How many cons pairs will be generated for (foo 5) ? ______________________

;;(5) Quickies

What value is returned when you type each of the following into Scheme?

If it is an error, put ‘error’ and specify what the error would be. If it returns a procedure, just put ‘proc’. Finally, if the call constitutes a DAV, put ‘DAV’ and specify what the DAV would be.
(i)

:(leaf? (list-ref (list (make-node 4 '()) (make-node '+ '(3 4))) 1)) (
(ii)

:((car '((lambda (x) (+ x 10)))) 5) (
(iii)

:((lambda (y) (list y)) (map list '((1 2 3) (4 5 6)))) (
(iv)

:(map (lambda (x) (list-ref '(s d c r k i w h g) x))

 (filter (lambda (x) x) '(2 7 3 5 0))) (

(v)

:(append (cons (list 'cat) (cons nil nil)) '(frog)) (
(vi)

:(list-ref (list - + * /) 2) (
(vii)

:(+ (+) (*)) (
(viii)

:(list-ref (every se '(cat dog fish)) 2) (
(ix)

:(reduce / (append '(4 2) '(list 8 4))) (
Hodgepodge

;;(1)

[image: image1.png]B Pne

The Sybase® Logo Pse

Pw

(draw-lineP P1 P2) ;; Draw a line from P1 to P2

(draw-arcP P1 P2) ;; Draws a 90 degree arc from P1 to Pup centered around Pmid

(get-Pmid P1 P2) ;; Return Pmid, a little more than half-way from P1 to P2

(get-Pup P1 P2) ;; Return Pup, a point "above" the P1-P2 line such that the

 ;; traingle P1-Pmid-Puo is a right triangle

[image: image2.png]P2

Pmid

P

(i) Fill in the blanks to complete the sybase procedure. Use the figures above

to help you understand the temporary variables Pmid and Pup.

(define (sybase P1 P2 n)

 (if (= n 0)

 (draw-lineP P1 P2)

 (let ((Pmid (get-Pmid P1 P2))

 (Pup (get-Pup P1 P2)))

 ___)))

(ii) Provide the call to sybase that generated the fractal in the Sybase logo

at the top. Assume the corner point labels in the diagram are already defined

for us to use.

(sybase ________ ________ _______)

;;(2) Given the following definition of the what function, answer the questions below.

(define (what tree)

 (if (leaf? tree)

 (datum tree)

 (what-forest (children tree))))

(define (what-forest forest)

 (if (null? forest)

 -999999999999999999999999999999999 ;; consider this to be = -(
 (max (what (car forest))

 (what-forest (cdr forest)))))

(i):(what '(3 (10 (4) (2) (76)) (7 (1 (8) (-14)) (45)))) (
(ii) In one sentence, state succinctly what the what function does given number trees.

;;(3)

(define (dog arg)

 (cond ((equal? arg 'end) 'done)

 ((< (count arg) 3)

 (display arg)

 (newline)

 (dog 'end)

 'done)

 (else

 (dog (bf arg))

 (display arg)

 'end)))

(i) Show exactly what is displayed to the screen for (dog 'cat). Underline any side-effects and put a circle around any return values.

(ii) Show exactly what is displayed to the screen for (dog (dog 'end)). Underline any side-effects and put a circle around any return values.

(iii) And for (dog (dog (dog 'end))). Underline any side-effects and put a circle around any return values.

;;(4) More Quickie Action

What value is returned when you type each of the following into Scheme?

If it is an error, put ‘error’ and specify what the error would be. If it returns a procedure, just put ‘proc’. Finally, if the call constitutes a DAV, put ‘DAV’ and specify what the DAV would be.
(i)

:(+ (map - '(-4 -2 4 4)) 7) (
(ii)

:(every (lambda (y) y) '367+5) (
(iii)

:(if (not (word 'f)) (boolean? #f) (boolean? '#f)) (
(iv)

:(map - (filter (lambda (dog) (* dog 2)) (list 1 2 3 4))) (
(v)

:(make-node '(frog cat) (make-leaves (cons 5 (cons 6 nil)))) (
(vi)

:(if (= (count (cons 3 '())) 1) 10 5) (
(vii)

:(map (lambda (x y) (/ y x)) '(2 4 8) '(8 16 32)) (
(viii)

:(bf (car (append (list (list-ref (cons 42 (list 37 51)) 1)) '(68)))) (
(ix)

:(map word (list (word (first (bf (word 'dog))) 'f) '(mice and men))) (
405 Soda (Car-cdr and B&P)
Car-Cdr Recursion
;;(1) Fill in the code below to complete the function deep-all that returns #t if all the words in L satisfy pred, otherwise it returns #f.

(define (deep-all pred L)

 (cond ((null? L) ____________)

 ((list? (car L))

 (__________ (deep-all pred ________________)

 (deep-all pred ________________)))

 (else

 (__))))

;;(2) Given the code for the unknown function, answer the questions below.

(define (unknown L)

 (cond ((null? L) L)

 ((number? L) (list L))

 ((word? L) nil)

 (else (append (unknown (car L))

 (unknown (cdr L))))))

(i) :(unknown '(2 (3 words) (2 3 4) ((4 more)))) (
(ii) In one sentence, state succinctly what the unknwon function does.

;;(3) You are to write deeper-reverse, which takes any list (flat or deep) and reverses the list, all sublists, AND all words. Make sure your code does not crash for procedures, booleans, etc. You may NOT use helper functions.

:(deeper-reverse '((cs3) is #t ly (((the very) best) class)))

--> ((ssalc (tseb (yrev eht))) yl #t si ("3sc"))

;;(4) You are to write the function find which takes an element and a list which is guaranteed to contain at most a single instance of the element, and which returns the depth of the element.

Examples

(find 'q '(dog mouse cat)) --> 0

(find 'q '(dog q cat)) --> 1

(find 'q '(dog (blah q) cat)) --> 2

(find 'q '((((dog)) blah) ((fish (q)) cat))) --> 4

(define (find elm l)

;;(5)

(define (mystery unknown L)

 (cond ((null? L) L)

 ((word? L) L)

 ((not (equal? (car L) unknown))

 (cons (mystery unknown (car L))

 (mystery unknown (cdr L))))

 (else (mystery unknown (cdr L)))))

(i) :(mystery ‘cat ‘((doggy) ate ((1) cat) yum cat)) (
(ii) In one sentence, state succinctly what the mystery function does.

Box-and-Pointer

;;(1)

(define (frog wd)

 (if (empty? wd)

 (cons wd (list wd))

 (list (cons wd (frog (bf wd))))))

(i) :(frog 1) (
(ii) Draw B&P for (frog 'dog)

(iii) How many cons pairs for (frog 'mississippi)

;;(2)

(define (mystery x y)

 (if (= x 1)

 (helper y)

 (cons (mystery (- x 1) y) (helper (- y 1)))))

(define (helper n)

 (if (= n 1)

 (cons nil nil)

 (cons nil (helper (- n 1)))))

A) What does (mystery 2 2) return?

B) Draw the box-and-pointer diagram for (mystery 3 3)

C) Describe what the box-and-pointer diagram would look like for (mystery 100

100)

306 Soda (Trees and I/O)
Trees

;;(1) You are to write the function sum-non-leaves that takes in a number tree and returns the sum of all non-leaf data. You may NOT use any helper functions.

Example

:(sum-non-leaves '(3 (10 (4) (2) (45)) (7 (1 (8) (-14)) (76))))

21

(define (sum-non-leaves tree)

;;(2) You are to write the function smallest-sum-path which takes in a number tree and returns the sum of the shortest path.

Example

:(smallest-sum-path ‘(7 (4 (3) (2 (8 (2))) (1 (8))) (2 (1 (2)) (6 (7) (8)))))

12 (7 + 2 + 1 +2)

(define (smallest-sum-path tree)

;;(3) You are to write the function evens-product that takes in a tree, which may contain datum of any data type, and which returns the product of all the even numbers. Make use of the functions given. You may write up to two helper functions.

Example: (evens-product '(c (2 (3) (4)) (x (5) (y) (6)))) ==> 48 (2 * 4 * 6)

(define (collapse-tree fn tree)

 (fn (datum tree)

 (reduce fn (map (lambda (t) (collapse-tree fn t))

 (children tree)))))

(define (evens-product tree)

 (collapse-tree

 *

 ___________________________)))

I/O

;;(1)

(define (kitty n wd)

 (cond ((<= n 0) (list wd))

 ((even? n)

 (display wd)

 (kitty (- n 1) wd)

 (word wd 'cat))

 (else

 (display (word wd 'fish))

 (newline)

 (kitty (- n 1) wd))))

(i) Show exactly what is displayed to the screen for (kitty 1 'bird). Underline any side-effects and put a circle around any return values.

(ii) Show exactly what will be displayed for (kitty 2 'bird). Underline any side-effects and put a circle around any return values.

(iii) How many times will "bird", "cat", and "fish" appear for (kitty 20 'bird)

bird ______

cat ______

fish ______

(iv) How many lines would be printed one the screen for (kitty 20 'bird)? ______

;;(2)

(define (moose arg)

 (display arg)

 (newline)

 ‘done)

(i) Show exactly what is displayed to the screen for (moose ‘cat). Underline any side-effects and put a circle around any return values.

(ii) And for (moose (moose ‘cat)). Underline any side-effects and put a circle around any return values.
;;(3)

(define (cat arg n)

 (cond ((= n 0) (list n arg))

 ((even? n)

 (newline)

 (display arg)

 5

 (cat arg (- n 1))

 6)

 (else

 (display arg)

 (cat arg (- n 1))

 'head)))

For (i) and (ii) show exactly what would be printed to the screen for each call

Then underline all side-effects and put a circle around any return values.

(i) :(cat 'fish 2)

(ii):(cat 'fish 3)

(iii) How many times do each of the following appear on the screen

(i.e. are displayed) for (cat 'fish 20)

fish______

head______

5 ______

6 ______

(iv) How many numbers are printed to the screen for (cat 'fish 100)

A More Involved Problem

Overview: The game knapsacks is played like this: Imagine that you and some friends are going camping this weekend, and you have to decide how you will divide all of the food that you want to take with you into each of your knapsacks. You are given a list of the carrying capacities of each knapsack, as well as a list of the weights of each of the items that you want to pack. If you can find an arrangement such that each of the items gets packed and no knapsack is overloaded, you win. Otherwise, you lose.

E.g. Alice, Bob and Chet are going camping. Alice's knapsack holds 4 pounds,

Bob's 5 and Chet's 3. They want to pack a bunch of items whose weights are:

(1 3 3 5). Can they do it? Yes, as follows: ((A 1 3) (B 5) (C 3)). We'll step you though writing knapsacks.

(i) First, we need a procedure that simulates putting one item into a particular knapsack. add-item takes as arguments a list of remaining capacities for each of the knapsacks, the weight of the item to be put into the knapsack, and an index number (to tell us which knapsack to remove the capacity from), and returns a new list of remaining capacities for each of the knapsacks.

E.g. (add-item ks-weight-remaining weight-of-this-item ks-to-put-it-in)

(add-item '(4 5 3) 2 3) ==> (4 5 1))

(add-item '(4 5 3) 3 2) ==> (4 2 3))

You may assume that the index will always be less than or equal to the count of the knapsacks.

Finish writing add-item using recursion.

(define (add-item lst-of-packs weight index))

 (if (= index 1)

(ii) Now re-define your add-item procedure, using the template below.

(define (ai2 piles number index)

 (cons (- (car piles) (___)

 ((lambda (x) (___))

 (cdr piles))))

(iii) Now it is time to write knapsacks itself. Define the procedure (knapsacks list-of-knapsack-capacities list-of-item-weights) such that it returns #t if there is a way to fit each of the items into one of the knapsacks such that no knapsack is overloaded and #f otherwise. Note that it is OK if there is excess capacity left over in some or all of the bags.

E.g.

(knapsacks '(1 2 3 4) '(3 1 3 2)) ==> #t

(knapsacks '(4 5 3) '(1 3 3 5)) ==> #t

(knapsacks '(4 5 3) '(1 3 3 5 1)) ==> #f

(knapsacks '() '()) ==> #t

(knapsacks '() '(7)) ==> #f

Hint: Here is an overview of how the procedure should operate: First, use a couple of base cases. Second, imagine yourself at some step in the recursion where you are thinking about maybe putting some item into bag number Y. You have only two options: either put the item into the bag [and then recursively start all over on the next item], OR do not put the item into the bag, and recursively move to the next bag. You may find it helpful to define a helper procedure that takes, as an additional argument, the current bag that you are looking at.

(define (knapsacks list-of-knapsack-capacities list-of-item-weights)

_1069364009

_1069364098

