

CHECKMATE!

The World

A Brief Introduction to Game Theory

Dan Garcia UC Berkeley

Kasparov

Game Theory: Economic or Combinatorial?

• Economic

- von Neumann and Morgenstern's 1944
 Theory of Games and Economic Behavior
- ♦ Matrix games
- ♦ Prisoner's dilemma
- Incomplete info, simultaneous moves
- ♦ Goal: Maximize payoff

- Combinatorial
 - Sprague and Grundy's 1939 Mathematics and Games
 - ♦ Board (table) games
 - ♦ Nim, Domineering
 - Complete info, alternating moves
 - ♦ Goal: Last move

Combinatorial Game Theory History

- Early Play
 - Egyptian wall painting of Senat (c. 3000 BC)
- Theory
 - ♦ C. L. Bouton's analysis of Nim [1902]
 - Sprague [1936] and
 Grundy [1939] Impartial games and Nim

- Knuth Surreal Numbers [1974]
- Conway On Numbers and Games [1976]
- Prof. Elwyn Berlekamp (UCB), Conway, & Guy *Winning Ways* [1982]

What is a combinatorial game?

- Two players (Left & Right) move alternately
- No chance, such as dice or shuffled cards
- Both players have perfect information
 ◊ No hidden information, as in Stratego & Magic
- The game is finite it must eventually end
- There are no draws or ties
- Normal Play: Last to move wins!

What games are out, what are in?

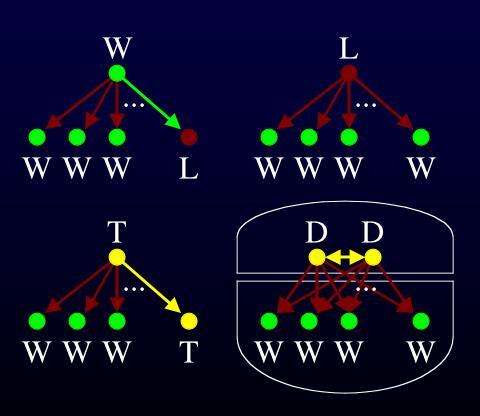
- Out
 - ♦ All card games
 - ♦ All dice games
- In

- ♦ Nim, Domineering, Dots-and-Boxes, Go, etc.
- ◊ 1,2,...,10, Kayles, Toads & Frogs, Snake, Tactix, Poison
- In, but not normal play
 - ♦ Chess, Checkers, Othello, Tic-Tac-Toe, etc.

"Computational" Game Theory (for non-normal play games)

• Large games

Can theorize strategies, build AI systems to play
Can study endgames, smaller version of original


- Examples: Quick Chess, 9x9 Go, 6x6 Checkers, etc.
- Small-to-medium games
 - ♦ Can have computer solve and <u>teach us strategy</u>
 - ♦ GAMESMAN does exactly this
 - It can solve BOTH normal and non-normal play games

Computational Game Theory

• Simplify games / value

- ♦ Store turn in position
- Each position is (for player whose turn it is)
 - <u>Winning</u> (\exists losing child)
 - <u>Losing</u> (All children winning)
 - <u>Tieing</u> (!∃ losing child, but ∃ tieing child)
 - Drawing (can't force a win or be forced to lose)

A Brief Introduction to Game Theory

Exciting Game Theory Research at Berkeley

- Combinatorial Game Theory Workshop
 MSRI July 24-28th, 2000: Son of Games of No Chance
 - ♦ 1994 Workshop book: <u>Games of No Chance</u>
- Prof. Elwyn Berlekamp
 - ♦ Dots & Boxes, Go endgames
 - ♦ Economist's View of Combinatorial Games
- Dr. Dan Garcia
 - Undergraduate Game Theory Research Group http://www.cs.berkeley.edu/~ddgarcia/research/gametheory/current/

