A Brief Introduction

to Game Theory

Dan Garcia UC Berkeley

Combinatorial Game Theory History

- Early Play
\checkmark Knuth Surreal Numbers
\checkmark Egyptian wall painting of Senat (c. 3000 BC)
- Theory [1974]
\diamond Conway On Numbers and Games [1976]
\diamond C. L. Bouton's analysis of Nim [1902]
\diamond Prof. Elwyn Berlekamp (UCB), Conway, \& Guy Winning Ways [1982]
\diamond Sprague [1936] and Grundy [1939] Impartial games and Nim

What is a combinatorial game?

- Two players (Left \& Right) move alternately
- No chance, such as dice or shuffled cards
- Both players have perfect information
\diamond No hidden information, as in Stratego \& Magic
- The game is finite - it must eventually end
- There are no draws or ties
- Normal Play: Last to move wins!

What games are out, what are in?

- Out
\checkmark All card games
\diamond All dice games
- In
\diamond Nim, Domineering, Dots-and-Boxes, Go, etc.
$\diamond 1,2, \ldots, 10$, Kayles, Toads \& Frogs, Snake, Tactix, Poison
- In, but not normal play
\diamond Chess, Checkers, Othello, Tic-Tac-Toe, etc.
CR
A Brief Introduction to Game Theory
"Computational" Game Theory (for non-normal play games)
- Large games
\diamond Can theorize strategies, build AI systems to play
\diamond Can study endgames, smaller version of original
- Examples: Quick Chess, 9x9 Go, 6x6 Checkers, etc.
- Small-to-medium games
\diamond Can have computer solve and teach us strategy
\diamond GAMESMAN does exactly this
- It can solve BOTH normal and non-normal play games

Computational Game Theory

- Simplify games / value
\checkmark Store turn in position
\diamond Each position is (for player whose turn it is)
- Winning (\exists losing child)

Losing (All children winning)

- Tieing (! \exists losing child, but \exists tieing child)
- Drawing (can't force a win or be forced to lose)

Exciting Game Theory Research at Berkeley

- Combinatorial Game Theory Workshop
\diamond MSRI July 24-28th, 2000: Son of Games of No Chance
$\diamond 1994$ Workshop book: Games of No Chance
- Prof. Elwyn Berlekamp
\diamond Dots \& Boxes, Go endgames
\diamond Economist's View of Combinatorial Games
- Dr. Dan Garcia
\diamond Undergraduate Game Theory Research Group http://wiww cs.berkeley, edu/~ddgarcia/research/gametheory/current A Brief Introtuction to Game Theory

