
CS3 (Garcia) ÒShall We Play a Game?Ó project Fall 2001

ÒShall We Play a Game?Ó project, page 1

Overview

This is the last assignment of the semester. Yippee! However do keep in
mind that the project will not be graded face-to-face. Instead, you are to
hand in a 10" x 13" envelope containing your submission. Guidelines
have been specified on what you are to hand in and how you are to do it.
(Refer the handout ÒGeneral Information For ProjectÓ)

Up to 20 points will be awarded for project correctness and
adherence to specified turn-in procedures; up to 20 points (thatÕs half
the grade) will be awarded for displayed correctness (test cases),
readability, and the general case you make that your program works
correctly.

Readability includes comments, indenting, sequence of functions
in your file, appropriate use of Scheme, and choice of names for functions
and their inputs. Some readability guidelines: Functions that deal with
the same kind of data structures should be together in your file, so that
they are easy to find.

You do not need to write comments to explain the purpose of the
functions that are described in the project description beginning on the
next page. For other functions that you write, you should include
comments that explain roughly how your functions work, unless itÕs
obvious how it works at a glance. Each auxiliary function should be
accompanied by a description of the functionÕs purpose, a sample call,
and the types and expected values for its inputs.

 ItÕs very important that you test your component functions in
isolation, to provide evidence that they will work together correctly. It is
critical that you print out the results of all these tests and save them in
a file called isolation.txt . When the grader reads your listing of test
cases, he/she should have no doubt that your program works as
intended.

You should test the overall program (gamesman) too. Print out the
listings for some sample games with different rules (more on that later).
Save the output of your tests of the completed program in a file called
overall.txt . Thus your named disk should have only three files on it:
(one of mkayles.scm, mtoads.scm, mpoison.scm, msnake.scm or
mtactix.scm), overall.txt And isolation.txt .

Do not under any circumstances turn in code that was not written
by one of the members of your partnership. Sharing solutions with other
groups on the project is the same as cheating on an exam.

The description of the program that you are to write begins on the
next page. Good luck!

We’re looking for a few good programmers…

There are many reasons to be excited about this project. The first
is that it will be a whole lot of fun. The second is you get a chance to
stretch your creativity! Several project requirements allow your team to
design a component of the game of your choosing (rules & graphics). The
third is (drum roll, please) Òthe SIGCSE Nifty AssignmentsÓ panel.

ÒHuh!?Ó you ask? This project has been deemed a ÒniftyÓ
assignment and will be presented to the ACMÕs Technical Symposium on
Computer Science Education (SIGCSE) conference to be held in late
February / early March in Kentucky. Professors, instructors and
teachers from around the world will be listening.

Dan and the staff will choose the best project for each of
the five games and present them (with names and photos of the
authors) to the gathered throngs at the conference. These students will
be immortalized; this is one of the highest honors a CS3 student can
receive.

The choice of the best project will primarily be based on the
creativity (and number) of the group-chosen rules and the beauty of the
graphics. These components are discussed in detail in the following page.

CS3 (Garcia) ÒShall We Play a Game?Ó project Fall 2001

ÒShall We Play a Game?Ó project, page 2

Background

Gamesman is a software library for solving and playing two-
person, complete-information (no change or hidden information) board
games started by Dan Garcia in the summer of 1991. This software
works with game modules which describe the rules and winning / losing
conditions of a particular game. The Gamesman system then solves the
game (i.e., plays every game against itself and makes a table of the value
at each position), and provides an interactive platform to play and
analyze it. With this table at hand, Gamesman plays perfectly, and by
doing so provides the ideal opponent for a player wishing to improve
their skill.

The system is quite nice in that there is relatively little work to
implement a game. The programmer just fills in a few required functions
and then sits back while Gamesman does all the work solving it and
controlling the play.

The idea to make this a CS3 final project has been brewing for
some time. To achieve that goal, we brought in expert scheme
programmers David Schultz and Greg Krimer, who have ported the code
to Scheme for us. WeÕve decided to implement much of the (often tricky)
mathematics underneath each game. When you see the phrase Òhash Ó
and Òunhash Ó in your code, feel free to ignore it unless you are truly
curious.

Compulsory and User-chosen Rules

Another benefit of Gamesman is the ease with which a
programmer can change the rules in a subtle way to create a game with
a quite different strategy. Each of these new Òrule optionsÓ is then
presented to the user to tweak at their whim. For example, letÕs say
weÕre playing the game Ò1,2,É,10Ó and we decide to let each player add
1, 2 or 3 (instead of only 1 or 2) on their move. This would be the game
Ò1,2,3,É,10Ó, and it might have a very different strategy from the
original gameÉor it might be quite similar. Either way, the actual code
that needed to be changed is quite minimal, and it allows us to put Òa
fresh faceÓ on an old standard. Each of the five games listed below has a
set of compulsory rules that each group must implement. In addition,
you must come up with your own rule and implement it (called user-
chosen rules), to create a completely new game. If you wish, you may
implement more than one user-chosen rules Ð be as creative as possible!

Graphics

Very soon you will learn about graphics and fractals. You will use
this knowledge to implement a graphical representation of your gameÕs
ÒboardÓ, or ÒpositionÓ. We will provide you with graphics-lib.scm , a
library of graphics routines youÕll probably find useful. You are
encouraged to be creative when drawing your board. Unfortunately,
there is no graphical input, just output.

Problem

In lecture, we taught you the basics of combinatorial game theory
and introduced you to seven two-person, complete information games:

• 1,2,É,10 [example, full source code m1210.scm provided]

• Tic-tac-toe [example, full source code mttt.scm provided]

• Kayles [template mkayles.scm provided]

• TacTix [template mtactix.scm provided]

• Toads and Frogs [template mtoads.scm provided]

• Snake [template msnake.scm provided]

• Poison [template mpoision.scm provided]

Your job, should you choose to accept it, is the following:

• Play 1,2,É,10 and Tic-tac-toe and look through their source
code (check out m1210.scm first, itÕs the easiest) to figure out the
basics of the control flow and how the game module interacts
with gamesman.scm .

• Choose one of the latter five games: Kayles, TacTix, Toads
and Frogs, Snake or Poison.

• Implement the game in Scheme by filling in several key
procedures in the template Scheme file weÕll give you (the hard
mathematics has already been done!) This will take several
weeks and should be started as soon as possible.

• Test your procedures thoroughly in isolation as well as within
the Gamesman structure. (I.e., play the game quite a lot by
running (gamesman) to make sure you handle all the hard
cases).

• Implement the compulsory alternative rules so that you can
effectively create several games for the cost of one.

• Test thoroughly.

• Choose and implement the user-chosen nifty rule(s).

• Test thoroughly.

• Design a cool graphical front-end for your game.

• Test, test, and test some more. Save your tests in
isolation.txt and in overall.txt .

• Document your code, tie off any loose strings, and submit it.

CS3 (Garcia) ÒShall We Play a Game?Ó project Fall 2001

ÒShall We Play a Game?Ó project, page 3

Definitions

This section serves to clarify some of the terms related to game
theory that are useful to understand. When appropriate, examples from
the games Tic-Tac-Toe and Ò1,2,...,4Ó1 will be supplied to illustrate the
terms.

Position

Another word for this is a Òboard configurationÓ Ð it is a snapshot
of the board with pieces on it and a turn designation. Every game has
positions, regardless of whether or not it is played on a physical board.
Figure 1 shows a sample position for Tic-Tac-Toe. Note that the outcome
of the game would be quite different if it were OÕs turn. Impartial games
do not need to have a turn designation (see the definition of impartial
games below). E.g., for the abstract game Ò1,2,...10Ó, the integers 1
through 10 are positions. As a matter of fact, if we make the assumption
that X always starts, we can determine whose turn it is by counting the
number of Xs and Os. When that number is even, itÕs XÕs turn, otherwise
itÕs OÕs turn. Thus, when we are encoding the position in scheme, we do
not need to store the player whose turn it is.

X's turn

Figure 1: A Tic-Tac-Toe position

Slot

A slot is a coordinate on a board, which in the 2-D case would be
an (X, Y) pair. A board, for some games, is a 2-D collection of slots. Keep
in mind that abstract games such as Ò1,2,...4Ó do not have clear
definitions of slots. In the game Tic-Tac-Toe, there are 9 slots, numbered
in Figure 2.

1 2 3
4 5 6
7 8 9

Figure 2: The 9 Tic-Tac-Toe slots

Move

ÒMove only if there is a clear advantage to be gainedÓ
Ð Sun Tzu

The Art of War [Tzu83, p. 83]

Moves are the action a player performs on his/her turn to change
the board's configuration. In Tic-Tac-Toe, a move is the action of placing

1 A variation on the popular game, Nim, described in Appendix B.

an X or O on an empty slot. Most gamesÕ rules dictate that the available
moves are a function of position; in the game Ò1,2,...,10Ó, however, there
are exactly two possible moves for every position, 1 and 2. Most games
dictate that the players alternate turns every other move.

Value, or Outcome

A - X - Win

1 2 3
4 5 6
7 8 9

C - O - Tie D - O - WinB - O - Lose

F - X - TieE - X - Win G - X - Tie H - X - Lose

J - O - TieI - O - Lose

7 - Win 8 - Tie 9 - Lose

9 - Lose 7 - Tie 7 - Tie 8 - Win

7 - Win 8 - Tie

X's Turn

O's Turn

X's Turn

O's Turn

Slot Reference

9 - Tie

Figure 3: A branch in a Tic-Tac-Toe game-tree

We have simplified the meaning of the value of a game from that
usually discussed in combinatorial game theory circles. Every position
has a value, which we will consider to be one of { Win, Lose or Tie } for
the player whose turn it is to move. This can also be thought as the
outcome of the game if played by perfect opponents. This means that if
the game was played between perfect opponents, the player whose turn
it was would always either win, lose or tie. Any move that leads to a
winning position for the other player is a losing move, and consequently
any move that leads to a losing position for the other player is a winning
move. A tie move is one that leads to a tie position for the other player.
If the first, or initial position in a game has value V, then the game is
said to have value V. For example, if Tic-Tac-Toe began with position A
in Figure 3 rather than a blank board, then Tic-Tac-Toe would be a
winning game, since A is a winning position.

Figure 3 contains a very detailed Tic-Tac-Toe game tree to help us
understand these terms. Note that under every position is a string that

CS3 (Garcia) ÒShall We Play a Game?Ó project Fall 2001

ÒShall We Play a Game?Ó project, page 4

represents the position letter, whose turn it is and what the value of that
position is. For example, the root position contains ÒA - X - WinÓ, which
means that it is position A, XÕs turn and a win for X. The arrows have a
number and a letter beside them that represent which slot was chosen
and what the value of that move was. For example, the upper-left-most
arrow contains Ò7 - WinÓ, which means that player X chose slot 7, and it
was a winning move for player X.

Win

ÒFor nothing can seem foul to those that win.Ó
ÐÊShakespeare

Henry IV, Part I, Act V, Scene 1

In some references this is referred to as an ÒNÓ position, which
means the N ext player can win. This value is recursively defined by the
following rule: A winning position is one in which there exists a losing
child. This is best illustrated by position A in Figure 3, which has a
winning (D), losing (B), and tieing (C) child, and is considered a winning
position due to the existence of B. The move that leads to the losing
child, slot 7, is the winning move. The following positions are all winning
in the above game-tree: A, D and E.

Just because a player has a winning position doesnÕt necessarily
mean the player will win, simply that the player can win. In position A
above, a winning position, if X chooses the lone losing move to slot 9, X
can lose. Sometimes a win is inevitable, since all the children are losing
positions, and in these rare cases a winning position indicates that the
player will win. Position E has one lone slot for X to choose which forces
the win. X has no option but to choose slot 7 and win the game. It is
important to remember that a winning position in general means that
the potential for winning against a perfect opponent exists.

Lose

ÒDr. Pulaski: To feel the thrill of victory, there has to be the possibility of failure.
Where's the victory in winning a battle you can't possibly lose?

Data: Are you suggesting there's some value in losing?
Dr. Pulaski: Yes, yes, that's the great teacher. We humans learn more often from a

failure or a mistake than from an easy success.
Ð Dr. Pulaski and Lieutenant Commander Data

in Star Trek : The Next GenerationÕs Elementary, My Dear Data

Similar to a winning position, a losing position is often called ÒPÓ,
which means the P revious player can win. Said another way, it means
that the player whose turn it is will lose against a perfect opponent. This
value is also recursively defined, but by a different rule: A losing position
is one in which there does NOT exist a losing or tieing child. This means
that the children of losing positions are either all winning or it is
primitive (and has no children). The losing positions from Figure 3 (B, I
and N) fulfill the latter case and are all primitive losing positions. We
will describe primitive positions in a moment.

If a player has a losing position and is playing against a perfect
opponent, the player has already lost the game and might as well
concede. This is because a perfect opponent will continue to make
winning moves until either it has reached a primitive winning position
or the other player is left with a primitive losing position. However, if
the opponent is imperfect, then a non-primitive losing position does not
guarantee a loss, just the potential for losing.

Tie

ÒI wish it could have been a tieÓ
Ð Amanda Bonner (Katherine Hepburn),

after defeating her husband in AdamÕs Rib.

A tie position is recursively defined as: A tying position is one in
which there does not exist a losing child, but there does exist a tie child.
Whether or not there are any winning children is irrelevant, as it does
not affect the value. Position C in Figure 3 above is a perfect example of
a tying position, since it has no losing child but does have a tie child,
which is position F. A player with a tie position can either tie2 or lose
against a perfect opponent. Against an imperfect opponent, it is possible
to either tie, lose or win. Positions C, F, G and J are tie positions, yet
only J is a primitive tie. As mentioned before, a tie move is one that
leads to a tie position. If there are no tying terminating criteria (see
below), there can never be a primitive tie position, and by induction, no
non-primitive tie positions.

Primitive positions and terminating criteria

Primitive positions are the leaves in the game tree and are the
positions that fulfill the terminating criteria for the game. These criteria
are what prevent the game from being infinite, as they force the game to
end at some point. In Tic-Tac-Toe, there are two terminating criteria.
The first is that the other player has just achieved three-in-a-row of
his/her piece, which means that the position is a losing primitive
position. The second is that a position has all 9 slots filled, in which case
it is a tying primitive position. Note that for most games the order that
these are checked is crucial, as position I fulfills both, and would be
incorrectly labeled a tying position if the rules were reversed. Positions
that are not primitive are either called non-primitive or recursively-
defined, due to the definitions highlighted above. In Figure 3, the
primitive positions are B, I, J and H.

ÔSafeÕ, or value-equivalent moves.

Safe moves are moves that lead to children of equal value as the
original position. E.g., all winning moves from a winning position are
safe. All tying moves from a tie position are safe. Lastly, all losing moves
from a losing position are safe (and futile!). All five moves available to X

2 Since this is the best that can be hoped for, we suggest that players consider

it a ÒwinÓ to tie a perfect opponent given a tie game, such as TicTacToe.

CS3 (Garcia) ÒShall We Play a Game?Ó project Fall 2001

ÒShall We Play a Game?Ó project, page 5

(slots 2, 4, 5, 7 and 8 in Figure 4) are winning since all five lead to losing
positions. These moves are safe and any may be chosen without risk to
the outcome. This is true even if though 2 leads to an immediate
primitive losing position (for O) and 4, 5, 7 and 8 lead to non-primitive
losing positions (for O).

X's turn

2
4 5
7 8

Figure 4: A winning Tic-Tac-Toe position with three safe winning moves 2, 4, 5, 7 & 8

Perfect opponents

ÒHe wins his battles by making no mistakes. Making no mistakes is what establishes
the certainty of victory, for it means conquering an enemy that is already defeated.Ó

Ð Sun Tzu
The Art of War [Tzu83, p. 20]

Perfect opponents are opponents who always choose winning
moves given winning positions and always choose tying moves given
tying positions. It doesnÕt matter what perfect opponents choose given
losing positions, since if they are primitive there are no moves available
and the game is over (and if they are non-primitive all moves are value-
equivalent ÔsafeÕ losing ones). It is tempting to define perfect opponents
as computers and imperfect opponents as humans, but that would
incorrectly label bad programs and very knowledgeable humans.

The mis�re game vs. the standard game

Every game has terminating criteria that constitute the rules of
the game. These are called, for convenience, the standard rules, and
must include winning or losing conditions. Every single game has a
mis�re game, which is the game with the words ÒlosingÓ and ÒwinningÓ
swapped into the terminating criteria for the standard game. For
example, whereas the standard game in Tic-Tac-Toe is be explained as:
ÒA player wins if he/she achieves three-in-a-row firstÓ, the mis�re game is
explained as: ÒA player loses if he/she achieves three-in-a-row firstÓ.

Interestingly enough, sometimes perfect strategies for the
standard game and the mis�re game differ by only the primitive
positions and perhaps a few others. Conversely, some games have
completely different strategies for the two games. Everyone must
implement both standard and mis�re rules for the game they choose.

What you must implement

There are only five key procedures you will need to implement for
each game: do-move , primitive , print-position , print-help and
generate-moves . These are described below with Degree of Difficulty
(DoD listed, from 1-10) and when they are due:

print-position (DoD 2) Ð Due at Checkoff 1
;;; PRINT-POSITION takes a position and prints it pretty as well
;;; as calls the graphics routines to render the position.

print-help (DoD 2) Ð Due at Checkoff 1
;;; PRINT-HELP takes a position and prints the rules and objective.

do-move (DoD 4) Ð Due at Checkoff 1
;;; DO-MOVE takes a position POS and a move MOVE and returns the position
;;; that results from making that move from that position.

primitive (DoD 6) Ð Due at Checkoff 2
;;; PRIMITIVE takes a POSITION and returns WIN, LOSE or TIE if the game is over.
;;; Otherwise, it returns UNDECIDED.

generate-moves (DoD 10) Ð Due at Checkoff 2
;;; GENERATE-MOVES takes a position and returns all the possible moves
;;; from that position. In 1,2,...,10, you technically can't move two
;;; spaces from the position (- board-size 1), but we pretend that you
;;; can by adding an imaginary spot to the board!

Running Gamesman from MacGambit

If you are using MacGambit, you need to have four files on your
computer (downloadable from the main Gamesman site below):
gamesman.scm , graphics-lib.scm , m1210.scm and mttt.scm . First load
graphics-lib.scm and then load the module (which loads gamesman.scm
and graphics-lib.scm). Then type (gamesman) to start the game.

Running Gamesman from Dr. Scheme (any platform)

If you are using Dr. Scheme, you need to first download and install the
graphics-teachpack from the CS3 page. Then youÕll need the same four
files on your computer as described above. Open m1210.scm or mttt.scm
and click ÒExecuteÓ. Then type (gamesman) to start the game.

ÒShall We Play a GameÓ main www site

This document should be enough to get you started through Checkoff 0.
The rest of the details youÕll need for your project, FAQ (frequently asked
questions), updates, etc., can be found at the following www page:

http://www-inst.eecs.berkeley.edu/~cs3/gamesman/

If you have questions or bugs, please email:
cs3-gamesman@nim.cs.berkeley.edu

Éwhich will be read by the main project architects who will answer all
questions and place them on the FAQ page on the gamesman site above.

Enjoy! -- Dan, Greg and Dave [and the rest of the CS3 staff]

