
CS 3 (Garcia) Short Problems Fall 2001

Short Problems: Page 1 of 6

General
You may submit solutions for three of the problems described in this
document instead of doing a project. All three are due when the final
project is due. You must also have one of them complete and debugged
to show a TA in your lab section for the first checkoff and another to
demonstrate for the second checkoff.

Grading Guidelines
The 40 points you can earn for these problems constitute 10% of your
course grade, as would the project. (Note that the checkoff points for
your solutions count toward your project grade, not your lab grade.)
The only thing you lose by not doing the Shall We Play a Gameª
project is that your course grade will not be higher than B+.

The problems are intended to prepare you better for the final exam.
Thus time spent working on the problems that you donÕt turn in
solutions for will not be wasted.

There are three groups of problems. You must solve at least one
problem from each of the first two groups.

You may use any construct weÕve covered in Simply Scheme; in
particular, you may use either higher-order functions or recursion for
any of the problems. Efficiency will not be a criterion for grading.
Appropriate use of Scheme will be, however; for instance, you should
generally use a list with assoc rather than a cond with a large number
of conditions, and provide auxiliary functions rather than coding a
single complicated function. You should provide comments for each of
your functions that describe the arguments and the result returned,
and you should use good names for functions and their placeholders.

Test cases on which you are to test your functions are listed with each
problem. These test cases are not guaranteed to reveal all your bugs,
and you are encouraged to test your code more comprehensively. You
will lose fewer points for a bug you point out to the reader than for a
bug that the reader must detect on his or her own.

Group A (do at least one problem from this group)
Problem A1
Write a function called days-in-debt to determine how many days a
bank account contains a negative amount of money. Days-in-debt takes
two arguments, an initial balance (a nonnegative number) and a
transaction list, and returns the number of days in a 31-day month for
which the account balance is less than 0 at the end of the day.

Each element of the transaction listÑa transactionÑis a two-element
list whose first element is a day in a month (1, 2, É, 31) and whose
second element is an amount (negative for withdrawal, positive for
deposit). AÊtransaction list may be empty, and may contain any
number of transactions for a given day. Transactions within a
transaction list are arranged in order of day.

Here are some examples.

initial balance transaction list result to return

anything greater
than or equal to 40

((1 -10) (1 -10)
 (15 -10) (30 -10))

0

anything at least 30
and less than 40

((1 -10) (1 -10)
 (15 -10) (30 -10))

2

anything at least 20
and less than 30

((1 -10) (1 -10)
 (15 -10) (30 -10))

17 (the 15th through
the 31st)

anything at least 10
and less than 20

((1 -10)
 (2 -20) (2 15) (2 5)
 (13 -10)
 (15 10) (20 5) (31 5))

2 (13th and 14th; note
that the 2nd is not
counted)

anything at least 5
and less than 10

((1 -10)
 (2 -20) (2 15) (2 5)
 (13 -10)
 (15 10) (20 5) (31 5))

19 (1st through 19th)

anything less than
5

((1 -10)
 (2 -20) (2 15) (2 5)
 (13 -10)
 (15 10) (20 5) (31 5))

30 (1st through 30th)

anything at least 5
and less than 10

((1 -10)
 (2 -20) (2 15) (2 5)
 (13 -10)
 (15 10) (20 5)
 (31 -2) (31 -3))

20 (1st through 19th,
plus the 31st)

You may assume that the arguments will be a legal balance and
transaction list as just described. Test days-in-debt at least on the
examples given above.

CS 3 (Garcia) Short Problems Fall 2001

Short Problems: Page 2 of 6

Problem A2

Background
Data stored on computers can often be compressed to take less space.
The compression process detects patterns in the data, and codes those
patterns more compactly. (Pack rats like me find this very handy.)

Data representing pictures is especially appropriate for compression.
Conceptually, a black-and-white picture is just a grid of black and
white Òdots.Ó It can be represented by a sequence of 0Õs and 1Õs, with a 0
representing each white dot and a 1 representing each black dot.
Pictures often contain large regions of a single color, however, and
such a region can also be represented just a few values: a number
representing the color, and one or two numbers saying how much of
that color there is in the region.

This technique can also be applied to lists of 0Õs and 1Õs. A sequence of
consecutive identical elements in the list can be replaced by two values:
the number of elements in the sequence, and a single copy of the
repeated element. Non-repeated elements are untouched. HereÕs an
example (the fifth element in the uncompressed list was untouched):

uncompressed list compressed list
(0 0 0 0 1 0 0 0 0
 1 1 1 1 1 1 1 1 1)

(4 0 1 4 0 9 1)

Problem
Write a function called compress that implements the process just
described. The list returned by compress will have several properties.
Its elements are all nonnegative integers.
• Every occurrence of an integer greater than 1 is immediately

followed in the list by a 0 or a 1. For example, compress should never
return the list (2 1 2) or (3 2 1) .

• Consecutive 0Õs or 1Õs will not occur. A sequence of, say, five con-
secutive 0Õs would have been replaced by the values 5 and 0, and a
sequence of two consecutive 1Õs would have been replaced by the
values 2 and 1.

• Consecutive groups of 0Õs or 1Õs will not occur. For example, the
sequence (4 1 5 1) represents a sequence of nine 1Õs that would
have been compressed to (9 1) .

You may assume that the argument to compress is a list that contains
only 0Õs and 1Õs. Test compress on at least one list in each of the
following categories:

a list starting with a group of 1Õs; a list ending with a group of 1Õs;
a list starting with a group of 0Õs; a list ending with a group of 0Õs;
a list starting with 1 0; a list ending with 1 0;
a list starting with 0 1; a list ending with 0 1.

Group B (do at least one problem from this group)
Problem B1
Folders on the Macintosh may contain other folders, which may
contain other folders, and so on. The files in the Macintosh file system
may thus be represented as a nested list, as pictured in the diagram
below. A file thatÕs not a folder is represented as an atom; a folder is
represented as a list whose first element is the atom folder name, and
whose remaining elements are the files and folders contained in the
folder.

a

b c
d

e f

g h i

(an empty
folder)

(a folder)

(a folder)

(a folder)

Scheme
representation:
(a

(b)
c
(d (e g h i) f))

One often wishes to locate a file in the Macintosh file system, that is,
figure out how to get to it through the chain of folders that contain it.
You are to write a function called path-to , which, when given
arguments representing a file system and a file name, returns a list
whose last element is the file name, whose first element is the name of
the ÒrootÓ file or folder, and whose other elements are the names of
folders that must be opened to find the file. If no file with the given
name is anywhere in the file system, your function should return #f . If
a file with the given name appears twice or more in the file system, you
may return the path to any of the files with that name.

Test your function with the above directory, searching for the following
files:

name of file to search for list to return
x #f

b (a b)

a (a)

g (a d e g)

i (a d e i)

e (a d e)

CS 3 (Garcia) Short Problems Fall 2001

Short Problems: Page 3 of 6

Problem B2
Write a function arith-eval that works similar to GambitÕs evaluation
function when applied to expressions containing only arithmetic
operations. Arith-eval will take two arguments: one is an expression,
written in prefix notation as in Scheme, in which only the operators +,
Ð, and * are used; the other is a table of variable-value associations.
Evaluation of a variable in the expressionÑsomething thatÕs not a
numberÑshould return the value associated with the variable. Note
that arithmetic operators may take more than two arguments in
Scheme.

Some examples:

expression returned value
(arith-eval '(+ x) '((x 2) (y 1) (z 0))) 2

(arith-eval '(+ x y z) '((x 2) (y 1) (z 0))) 3

(arith-eval '(+ (* x z) (* 2 y) 13 (- 4 1))

 '((x 2) (y 14) (z 3)))

50

You may assume that the expression argument is a legal Scheme
expression in which the only function calls are to +, Ð, and *, and in
which all variables used also appear in the table argument. Test your
function on the above examples.

Problem B3

Background
Consider a genealogical data base represented as a collection of
nuclear families. Each nuclear family is a list whose first element is
the name of the father (possibly the atom unknown , if the father is not
known), whose second element is the name of the mother (also possibly
the atom unknown), and whose remaining elements are the names of
their children. Given below is a diagram for a family and the
corresponding genealogical data base.

Nguyen Deirdre Arthur Kate Frank Rosa

Suzanne Bruce Charles David Ellen Jose Hillary Andre

Tamara Vincent Wanda Ivan Quentin Julie Marie Nigel

Frederick Zelda Joshua Robert Olivia Peter Erica

DianeYvette

((nguyen deirdre suzanne)

 (arthur kate bruce charles david ellen)
 (frank rosa jose hillary)
 (bruce suzanne tamara vincent)
 (jose ellen ivan julie marie)
 (andre hillary nigel)
 (unknown tamara frederick)
 (vincent wanda zelda)
 (ivan wanda joshua)
 (quentin julie robert)
 (nigel marie olivia peter)
 (robert zelda yvette)
 (peter erica diane))

Some interesting features of this family: Marie has married her first
cousin Nigel. Wanda has had one child with Vincent and another with
Ivan. Zelda and Robert, the parents of Yvette, have two great grand-
parents in common. And only Tamara knows who FrederickÕs father
is, and sheÕs not telling.
Problem
Write a function ancestors that, given a data base and a person in the
data base as arguments, returns a list of ancestors of that person. (A
personÕs ancestors are his or her parents plus the ancestors of his or
her parents.) You may assume that the data base is a legal one, that
the given person is somewhere in the data base, and that no two people
in the data base have the same name. However, as in YvetteÕs case, a
person may be an ancestor of another in more than one way; the list
returned by ancestors should not return duplicate names.

Test your function at least on a person with no ancestors, on Yvette,
and on Frederick using the given data base (online in the file family
db.scm).

CS 3 (Garcia) Short Problems Fall 2001

Short Problems: Page 4 of 6

Group C
Problem C1

Background
First, some vocabulary: This project involves a network, a diagram
with points, some of which may be connected by lines. A sample
network with six points, four of which have lines connecting them,
appears below.

Consider the following game played on a network of six points. Two
players play, one assigned the color red, the other the color blue. Each
player takes turns connecting two unconnected points with a line of the
playerÕs own color. If a player is forced to color a line that makes a
triangle of his or her own colorÑa set of three points, all connected by
lines of that colorÑthat player loses. (There can be no ties in this
game, since one may show that if all the lines are colored, there must
be a triangle of one of the colors.)

HereÕs the start of an example game. Assume that blue moves are the
bold lines.

red move: (1 2)
blue move: (3 4)
red move: (2 4)
blue move: (5 6)
red move: (2 3); note that (1 4)

is a losing move
blue move: (3 6)
red move: (4 5)
blue move: (1 6)

1 2

3

45

6

Problem
Write a function next-blue-move that chooses a move for the blue player.
Next-blue-move will take a single argument that represents the current
board situation. This argument will be a two-element list, whose first
element is a list of two-element lists representing the red moves
already made and whose second element is a list of two-element lists
representing the blue moves already made. The list

(((1 2) (2 4) (2 3) (4 5)) ((3 4) (5 6) (3 6) (1 6)))

thus represents the board above.

Next-blue-move Õs highest priority should be to avoid losing. Next most
desirable is to make a winning move, one that forces the red player to
form a red triangle. If there is neither a threatening loss nor a
winning move, next-blue-move may return any as-yet-uncolored line.

Assume that the argument to next-blue-move will be a legal board
representation as just described. Note, however, that the red moves
may appear in any sequence in the first board element; similarly, the
blue moves may appear in any sequence in the second board element.
Also, a particular move may be specified in either order; for example,
the move (3 1) is the same as the move (1 3).

Problem C2
A matrix is a nonempty list of lists, all the same length. Some
examples:

((a b c)
 (d e f)
 (g h i))

((1 2 3 4)
 (5 6 7 8))

((a b)
 (c d)
 (e f)
 (c d))

The diagonal of a matrix is a list of the elements down the diagonal,
namely the first element of the first list of the matrix, followed by the
second element in the second list of the matrix, and so on. For a matrix
with more columns than rows, the missing rows should be assumed to
be filled with (); the same applies for missing columns in a matrix
with more rows than columns. Thus the diagonals of the matrices
above are the lists (a e i) , (1 6 () ()) , and (a d () ()) .

Write a function diagonal that takes a matrix as argument and returns
its diagonal. Assume that the argument to diagonal is a legal matrix
as just described. Test your function on the matrices above.

Problem C3
Write a function to execute commands to move blocks on a table.
AÊtable configuration is a list of lists of names of blocks; each element
of the configuration represents a stack of blocks. A block may be moved
atop another if both blocks are at the top of their respective stacks.
Your function should be called move, and take three arguments. The
first two arguments are names of blocks; the third argument is a table
configuration. If the named blocks do not exist in the configuration, or
if they are not both at the top of their respective stacks, or if they name
the same block, move should print CANT MOVE and return the given table
configuration. If the move is legal, move should return the
configuration that results from moving the first block atop the second.

Test your function using the following additional code:
(define (execute-commands table)

(display table)
(newline)
(newline)

CS 3 (Garcia) Short Problems Fall 2001

Short Problems: Page 5 of 6

(let ((cmd (read)))
(if (equal? (first cmd) 'move)

(execute-commands
(move (second cmd) (third cmd) table)))))

The execute-commands function will successively execute commands
until a command that isnÕt a move is typed. (A command that isnÕt a
move should terminate the program.) Here is a sample interaction,
with user input in boldface:

: (execute-commands '((a) (b) (c) (d)))

((A) (B) (C) (D))

(move a e)

(CANT MOVE)

((A) (B) (C) (D))

(move d e)

(CANT MOVE)

((A) (B) (C) (D))

(move e a)

(CANT MOVE)

((A) (B) (C) (D))

(move e d)

(CANT MOVE)

((A) (B) (C) (D))

(move a a)

(CANT MOVE)

((A) (B) (C) (D))

(move a b)

((A B) (C) (D))

(move b d)

(CANT MOVE)

((A B) (C) (D))

(move b a)

(CANT MOVE)

((A B) (C) (D))

(move d b)

(CANT MOVE)

((A B) (C) (D))

(move a d)

((B) (C) (A D))

(move a c)

((B) (A C) (D))

(move b d)

((A C) (B D))

(move c d)

(CANT MOVE)

((A C) (B D))

(move c b)

(CANT MOVE)

((A C) (B D))

(move a d)

(CANT MOVE)

((A C) (B D))

(move a b)

((C) (A B D))

(move c a)

((C A B D))

(qu i t)

Test your function using the commands given above.

Problem C4

Background
To determine whether or not a merger of two corporations would
violate antitrust regulations, the Justice Department uses the
Herfindahl index, a mathematical formula developed by a Washington
economist. The index is calculated by adding together the sum of the
squares of every companyÕs market share in a particular industry or
business.

For example, if five companies each have 20% of a market, the
Herfindahl index for that market would be 2000, which is 5 times the
square of 20. A merger of two of those companies would result in a
market distribution of 20% for three of the companies and 40% for the
new company, and would push the Herfindahl index to 2800 (3 times
the square of 20, plus the square of 40), an 800-point increase. By
contrast, the index for a market in which twenty companies each have
5% of the business would total 500. A merger between two of them
would increase the index by only 50.

In general, the Justice Department considers an increase of over 500 in
the Herfindahl index to be excessive, and thus grounds for not allowing
two companies to merge. [Source: TIME Magazine, June 28, 1982, p.
49.]

Problem
Write and test a function called ok-to-merge? . This function will take
three arguments:
• an Òindustry listÓ of two-element lists, where each list contains a

company name and that companyÕs market share;
• the names (two atoms) of two companies intending to merge.

Ok-to-merge? should return true if the two given companies could
merge with a Herfindahl index increase of 500 points or less; it should
return false if the merger would increase the Herfindahl index by
more than 500 points.
Example
Suppose we have the following list of companies:

company market share

IBM 45
Honeywell 20
DEC 15
UNISYS 5
Apple 15

The Herfindahl index for this group of companies is 2900. An industry
list representing these companies would then be

((IBM 45) (Honeywell 20) (DEC 15) (UNISYS 5) (Apple 15))
Given below is a table of all possible mergers of two of these companies,
the change in Herfindahl index that results, and the desired result of
ok-to-merge? .

merger Herfindahl
index change

ok-to-
merge?
result

IBM + Honeywell 1800 #f

IBM + DEC 1350 #f

IBM + UNISYS 450 true

IBM + Apple 1350 #f

Honeywell + DEC 600 #f

Honeywell +
UNISYS

200 true

Honeywell + Apple 600 #f

DEC + UNISYS 150 true

DEC + Apple 450 true

CS 3 (Garcia) Short Problems Fall 2001

Short Problems: Page 6 of 6

UNISYS + Apple 150 true

You may assume that the industry list argument is as described above,
and that the two name arguments correspond to companies in the list.
Test your function at least on arguments that produce a Herfindahl
index change of less than 500, arguments that produce a change of
more than 500, and arguments that produce a change of exactly 500.

