CS 3

Homework assignments 7 & 8

Goals

This assignment will give you more practice designing a larger program.

Miscellaneous information

Do this assignment with your lab partner(s). Split the functions among your partnership any way you want, and be prepared to describe how and why you split the assignment up the way you did.

All partnership members will be expected to know about the entire program. Bring a disk with your solutions on it to lab.

Background

The game of Twenty-One (also called “Blackjack”) uses the standard deck of 52 cards. The object of the game is to be dealt a set of cards whose value is as close to 21 as possible but does not exceed 21. The value of a face card—jack, queen, or king—is 10. The value of an ace is either 1 or 11, whichever the player wants. The value of any other card is its face value.

Twenty-One is played essentially as follows. A player is initially dealt two cards. Then the player asks for cards one at a time from the dealer until she decides to “stick” with the cards she has or her total ex​ceeds 21. If her total exceeds 21, she immediately loses. Otherwise the dealer repeats the procedure of the player, drawing cards until either she loses by exceeding 21 or she decides to stick with the total she has. If neither the player nor the dealer has exceeded 21, the two hand totals are compared and the hand with the larger value wins. (There are sever​al specialized hand-handling procedures that we will not consider here.)

Expert Twenty-One players try to keep track of the cards remaining in the deck, in order to estimate better whether or not the next card dealt will improve their hand. For this assignment, you will write a program that a player could use for assistance.

Problem

Write a function draw-another? that, given a hand as its first argument and a deck as its second, returns true when at least half the cards in the deck will improve the value of the hand. Both the hand and the deck are repre​sented as sen​tences that each contain at least one card, and cards are represented as words as in homework assignment 8.

For the purposes of this problem, a card improves the value of a hand exactly when adding the card to the hand results in a total that’s closer to 21 without going over. To evaluate a hand, you should count an ace as 11 wherever possible; with a hand that contains an ace that counts as 11, a card that would force the ace to be counted as 1 should not be counted as improving the hand.

Examples

Listed below are some example calls to draw-another?, along with the values they should return and the reasons why.

	call
	desired result
	explanation

	(draw-another?

'(h4 d5 d2)

any-nonempty-deck)
	#t
	Since the hand total is less than 12, no card can force it to go over 21. (An ace, if drawn, would be counted as 1.)

	(draw-another?

'(h4 d5 d2 s6)

'(ha ck h2

 s4 c5 d10))
	#t
	The hand total is 17. Three cards—the ace (counting as 1), the 2, and the 4—out of the six in the deck improve the hand.

	(draw-another?

'(s6 ca)

'(ha ck h2

 s5 c6 d10))
	#f
	The hand total is 17, with the ace counting as 11. Two cards in the deck, the ace (counting as 1) and the 2, improve the hand. Even though the 5 and the 6 could result in a hand total less than 21, they do not improve the hand since they lower the ace’s value.

	(draw-another?

'(ca s6 h8)

'(ha ck h2

 s5 c6 d10))
	#t
	The hand total is 15, with the ace counting as 1. The ace, 2, 5, and 6 improve the hand. (Note that draw-another?’s advice may not have been followed to create the hand in the first place.)

	(draw-another?

'(sa s6 ca)

'(ha ck h2

 s5 c6 d10))
	#f
	The hand value is 18, with one of the aces counting as 1 and the other count​ing 11. Only the ace and 2 improve the hand.

Miscellaneous requirements

You will be required to accompany your code with comments, and your grade on this assignment will include evaluation of your comments. Each of your functions must be accompanied with comments that describe each argument—its type, plus whatever else you know about it—along with the result returned. To simplify grading, your program should be typed into a file that can be loaded using Gambit’s Load command.

Your program should include auxiliary functions to be called from draw-another? (for instance, a function to determine if a given card improves a hand); none of your functions should be a big mess. Provide good names for your functions and their placeholders. The organization of your program and the names you use will also contribute to your grade. Restrict your use of Scheme to material covered in Simply Scheme chapters 1-9. Do not use recursion. You may use code from the case studies or the textbook.

