CS 3

Lab assignment 5

Goals

This lab is intended to introduce you to the use of recursion.

Preparation

Read chapter 11 and 12 in Simply Scheme. Before you start the lab, write down three things you learned from this lab and give the list to your t.a. You will not get credit for your lab unless you do this.

Miscellaneous information

The file lab5.scm in the lab code folder contains code to be used for this lab.

Exercise 1 (1 checkoff point)

Exercise 11.7 asks you to write a function copies that takes a number and a word as arguments and returns a sentence containing that many copies of the given word.

a.
Consider the following related functions, each of which takes a word as its only argument: copies2, which returns a sentence containing two copies of the given word; copies3, which returns a sentence containing three copies of the given word; copies4, which returns a sentence containing four copies of the given word; and copies5, which returns a sentence containing five copies of the given word. Write these functions, splitting them among the members of your partnership. Design them to call one another as explained in chapter 11 of Simply Scheme: copies5 should call copies4, which should call copies3, and so on. Then put them together and use the Replacement Modeler to evaluate the ex​pression (copies5 'ha). Print the contents of the Modeler window.

b.
Given below are three different recursive solutions to exercise 11.7. (They’re in the file lab5.scm.) The first is infinitely recursive. The second produces an answer for some integer arguments. The third produces an answer for all integer arguments.

(define (bad-copies n wd)

(if (= n 0) '() (se wd (bad-copies n wd))))

(define (good-copies n wd)

(if (= n 0) '() (se wd (good-copies (- n 1) wd))))

(define (best-copies n wd)

(if (<= n 0) '() (se wd (best-copies (- n 1) wd))))

In the Interaction window, evaluate the expressions

(bad-copies 3 'ha)

and

(good-copies -1 'ha)

watching the bar at the bottom of the window while you do so. Record in your checkoff window what happened to the bar, and the error message that Gambit produced.

c.
Use the Replacement Modeler to evaluate the two expressions from part b. Hit return until you fill the Modeler window for each expression. Then print the contents of each Modeler window. Using information from the Modeler outputs, explain why these functions don’t work.

d.
Use the Replacement Modeler to evaluate the expression

(best-copies 3 'ha)

Carry out the entire evaluation, then print the contents of each Modeler window. Indicate similarities between the Modeler outputs for best-copies and copies5 (from part a).

Show the printed Modeler windows and provide all appropriate explanations for checkoff.

Exercise 2 (1 checkoff point)

One member of your partnership should do part a and the other should do part b. Then compare notes, making sure you understand all similarities and differences between the two solutions. Copy tests of your recursive functions into your checkoff window.

a.
Imagine a function called letter-count that counts the total number of letters in all words in a sentence. For example, (letter-count ‘(simply scheme)) should give 12. Here are some special-case letter-count functions for sentences of particular lengths:

; Return the total number of letters in

; the empty sentence.

(define (letter-count0 sent)

0)

; Return the total number of letters in

; a one-word sentence.

(define (letter-count1 sent)

(count (first sent)))

; Return the total number of letters in

; a two-word sentence.

(define (letter-count2 sent)

(+ (count (first sent)) (letter-count1 (bf sent))))

; Return the total number of letters in

; a three-word sentence.

(define (letter-count3 sent)

(+ (count (first sent)) (letter-count2 (bf sent))))

Write and test a recursive version of letter-count. Copy your function and results of your tests to the checkoff window.

b.
Now imagine another function called exaggerate. It takes a sentence and doubles every number in it. For example, (exaggerate ‘(i got a 45 on the test)) gives you (i got a 90 on the test). Here are some special-case exaggerate functions for sentences of particular lengths.

; Exaggerate the empty sentence.

(define (exaggerate0 sent)

'())

; Exaggerate a one-word sentence.

(define (exaggerate1 sent)

(if (number? (first sent))

(se (* (first sent) 2))

sent))

; Exaggerate a two-word sentence.

(define (exaggerate2 sent)

(if (number? (first sent))

(se (* (first sent) 2) (exaggerate1 (bf sent)))

(se (first sent) (exaggerate1 (bf sent)))))

; Exaggerate a three-word sentence.

(define (exaggerate3 sent)

(if (number? (first sent))

(se (* (first sent) 2) (exaggerate2 (bf sent)))

(se (first sent) (exaggerate2 (bf sent)))))

Write and test a recursive version of exaggerate that returns the result of doubling all numbers in its argument sentence. Copy your function and results of your tests to the checkoff window.

Exercise 3 (1 checkoff point)

Fill in the blanks in the recursive version of substitute , which takes a new word, an old word, and a sentence and replaces every instance of the old word with the new word. The file lab5.scm contains the code.

(define (substitute new old sent)

(cond

(
)

((equal? (first sent) old)

(se new (substitute
)))

(else

(se (first sent) (substitute
)))))

Then, to test your function, evaluate the following expressions.

(substitute 'maybe 'yeah '(she loves you yeah))

(substitute 'she 'he '(he is a programmer))

(substitute 'tooth 'eye '(eye for an eye))

Copy your function and results of your tests into your checkoff window.

Exercise 4 (1 checkoff point)

Write a function called censor that takes a sentence to be censored and a list of words that are not allowed. censor should replace all words that are not allowed with the word bleep! For example,

(censored ‘(but why would you want to do that?) ‘(but)) should give you (bleep! why would you want to do that?). (One TV station in Ohio actually bleeps the conjunction “but!”)

Then, to test your function, evaluate the following expressions.

(censored ‘(stop censoring me!) ‘(semprini))

(censored '(stop censoring me!) '())

(censored ‘(stop censoring me!) '(stop me!))

