
CS 3 Midterm 2 Standards and Solutions

Fall 2006

This exam was probably more difficult that I would have liked, although it seemed to go reasonably
well for many of you.. The average score was right around 50%, and people were spread evenly on
either side of that average.

MT2SCALE

29.0
27.0

25.0
23.0

21.0
19.0

17.0
15.0

13.0
11.0

9.07.05.03.0

12

10

8

6

4

2

0

Std. Dev = 5.82
Mean = 16.1

N = 129.00

Problem 1. One and only one letter different... (4 points)
The predicate one-ltr-different? takes two words, and returns #t if one and only one of the letters in
the first one word is different from the letter at the corresponding position in the second other word.
Otherwise, one-ltr-different? should return #f.

(one-ltr-different? 'abcde 'abxde)  #t
(one-ltr-different? 'abcde 'abxxe)  #f
(one-ltr-different? 'abcde 'abcde)  #f
(one-ltr-different? 'abcde 'bacde)  #f
(one-ltr-different? 'abcde 'abxcde)  #f

Below is a buggy version of one-ltr-different?. Describe (precisely) what the inputs are that will
return an incorrect value for this version.

CS3 Midterm 2 Standards and Solutions (Fall 2006) 1 / 11

(define (one-ltr-different? wd1 wd2)
 (cond ((and (empty? wd1) (empty? wd2))
 #t)
 ((or (empty? wd1) (empty? wd2))
 #f)
 ((not (equal? (first wd1) (first wd2)))
 (equal? (bf wd1) (bf wd2)))
 (else (one-ltr-different? (bf wd1) (bf wd2)))
))

The problem with this recursion is in the first base case, where both sentences are checked if empty.
The problem has a single recursive case, which is called when the first letters of each word are equal.
So, this first base case will return #t any time that the words are identical, which is clearly wrong. This
base case should return #f, or even better should be removed, so that the second base case can check
for empty sentences.

While many of you got this correct, there were just as many that were fooled in a specific way: that this
procedure would incorrectly count as true a words that had two different letters sandwiching a
identical letter. This confusion stemmed from the third base case:

(cond...

 ((not (equal? (first wd1) (first wd2))) ;; base case 3
 (equal? (bf wd1) (bf wd2)))

This base case will work correctly: it tests for whether the first letters of each word are different, and
then checks whether the rest of each word are equal. This is a base case, solveable without recursion.
Many of you seemed to think that it was testing whether the second letter of each word was equal, and
ignoring the rest of the sentence.

This question was vauge on what should happen if the words were of unequal length. An example
case showed a return value of #f (which is what was intended, necessitating the first base case), but
the wording describing the function of one-ltr-different? wasn't clear. If you mentioned a case
of unequal word lengths but failed to mention the incorrect return value when the words were the
same, you got partial credit.

Problem 2. From the beginning: a bunch of “easy” HOFs. (9 points).
In the following problems, you need to use HOFs to write procedures that mimic the functionality of
first, last, butfirst, butlast, and appearances. You

• cannot use recursion or helper procedures
• cannot use any of first, last, butfirst, butlast, or appearances;
• cannot use the procedure item; and
• cannot go outside of the framework code given.

If you think a solution is impossible, you very well may be right: some of these are impossible! Write
IMPOSSIBLE next to the problem to indicate that.

CS3 Midterm 2 Standards and Solutions (Fall 2006) 2 / 11

Don't get stuck on this problem: there is plenty more test after this...

These proved fairly difficult for many of you, although in most cases the solution weren't very tricky.
This question was intended to get at the basic operation of accumulate and keep.

;; Mimic first with the following procedure, if possible
(define (my-first sent)
 (accumulate
 (lambda (__left____right___)

 ______________left___)
 sent))

;; Mimic last with the following procedure, if possible.
(define (my-last sent)
 (accumulate
 (lambda (__left____right___)

 ______________right_______________________________________)
 sent))

;; Mimic butfirst with the following procedure, if possible
(define (my-butfirst sent) ;; mimicking butfirst
 (accumulate
 (lambda (__left____right___)

We accepted answers of IMPOSSIBLE here, since that is what we though was right before we saw
some of your (perfectly possible) answers! Good job! We gave this solution an extra credit point, to
assuage our embarrassment.

 (if (equal? (se left right) sent)
 right ;; last time, lose the 'first' element

 (se left right)) ;; not the last time, keep the sent
 __)
 sent))

;; Mimic butlast with the following procedure, if possible.
(define (my-butlast sent)
 (accumulate
 (lambda (__left____right___)

 (if (word? right)
 (se left) ;; first time, lose 'right'
 (se left right)) ;; not the first time, keep everything
 __)
 sent))

CS3 Midterm 2 Standards and Solutions (Fall 2006) 3 / 11

;; Mimic butfirst with the following procedure, if possible
(define (my-butfirst sent)
 (keep
 (lambda (_________________)

 ___________________IMPOSSIBLE_______________________________)
 sent))

;; Mimic butlast with the following procedure, if possible.
(define (my-butlast sent)
 (keep
 (lambda (_________________)

 ___________________IMPOSSIBLE_______________________________)
 sent))

my-appearances was a standard use of keep:

;; Mimic appearances with the following procedure, if possible.
(define (my-appearances item sent)

 (___count____________
 (keep
 (lambda (_____wd________)

 ______(equal item wd)___________________________________)
 sent)))

Problem 3. Recursion is like decoding words... (8 points)

Write a recursive procedure decode-word which takes a sentence of encoded letters and returns the word
that they form when decoded. Decoding is done with a sentence *codes* which contains 26 codes, one
for each alphabetical letter in order. For instance:

(define *codes* '(12 3 4 1 2 14 ...twenty more codes here...)
(decode-word '(4 12 3))  cab
(decode-word '(14 12 1 2))  fade

The sentence '(a b c d e f ...) is likely to prove useful in your solution. You can assume that all
encoded letters given as input to decode-word exist inside *codes*. Do not use any higher order
functions—rather, use recursion.

(define (decode-word coded-sent)

CS3 Midterm 2 Standards and Solutions (Fall 2006) 4 / 11

This question involved two separate recursions, and it was easiest to separate these into two different
procedures. decode-word is quite easy to write when you assume that there is a procedure
decode-letter:

(define (decode-word coded-sent)
 (if (empty? coded-sent)
 “”
 (word (decode-letter (first coded-sent))
 (decode-word (bf coded-sent))))

The only real “trick” here was to realize that you were building a word from the sentence.

The decode-letter portion of this problem becomes more clear when you have specified a good
procedure name, the arguments that it takes, and what it returns. In this case a it takes single coded
letter (a number), and returns a letter. This procedure will typically involve recursion because it look
this letter up in the *codes* sentence. So, the procedure will need to have local copy of the code so
that it can pass the butfirst of the codes in the recursive call (i.e., so it can recurse down the sentence).
This means making the codes sentence a parameter (and, as you will see, the sentence of the alphabet).
We could change the call to decode-letter inside decode-word, or better use a decode-letter-
helper procedure:

(define (decode-letter coded-ltr) ;; version 1
 (dl-help coded-ltr
 codes
 '(a b c d e f g h i j k l m n o p q r s t u v w x y z)))

(define (dl-help coded-ltr codes alphabet)
 (if (equal? coded-ltr (first codes))
 (first alphabet)
 (dl-help coded-ltr (bf codes) (bf alphabet))))

This version recurses down both the codes and alphabet sentences at the same time, and when it has
found the coded-ltr in the codes sentence, the proper return value is right there in the alphabet
sentence.

There are other ways to write dl-help. For instance, using position and item (and no recursion):

(define (decode-word coded-ltr) ;; version 2: position and item
 (item (+ 1 (position coded-ltr *codes*))
 '(a b c d e f g h i j k l m n o p q r s t u v w x y z)))

You need to add 1 to what position returns, if you recall, to use it in item. And, there are plenty of
other solutions. For instance, some of you essentially wrote position recursively, and passed what it
returned a call to item.

CS3 Midterm 2 Standards and Solutions (Fall 2006) 5 / 11

Problem 4. Moving in the second dimension (A: 8 points, B: 6 , C: 9 points)
Consider a higher order procedure every2d which takes a procedure and two sentences. The procedure
must take two arguments, and every2d will build a sentence by calling the procedure with the
corresponding values of each of the input sentences.

If the two sentences are of unequal length, every2d should return the word UNEQUAL.

(every2d + '(1 2 3) '(100 200 300))  (101 202 303)
(every2d word '(cs i fu) '(3 s n))  (cs3 is fun)

(every2d word '(a long long sent) '(short))  UNEQUAL

Part A. Below is code for every2d, which consists of a single call to e2d-helper. Use the provided
header to e2d-helper, and fill in the body as an accumulating recursion so that every2d works correctly.

Do not write any additional helper procedures.

(define (every2d proc sent1 sent2)
 (e2d-helper proc sent1 sent2 '())
)

(define (e2d-helper proc sent1 sent2 answer)

A reasonable solution looked like

(define (e2d-helper proc sent1 sent2 answer)
 (cond ((and (empty? sent1) (empty? sent2))
 answer)
 ((or (empty? sent1) (empty? sent2))
 'UNEQUAL)
 (else (e2d-helper proc (bf sent1) (bf sent2)
 (se (proc (first sent1) (first sent2))
 answer)))))

By using an accumulating recursion, which builds up the final results in the answer variable, the
procedure can return wait until one or both of the sentences are of equal length after running through
the full recursion, because either answer or the word UNEQUAL can simply be returned. An embedded
recursion wouldn't be able to do this. Several of you got around this by changing the second base case
above to something like:

 ((not (equal? (count sent1) (count sent2)))
 'UNEQUAL)

This works well enough, but is pretty “gross” because it checks the count of the sentence through
each step of the recursion, even though it can only be triggered the first time through. Still, it received
full credit if it was used with an accumulating recursion, rather than an embedded one (the embedded
one would work here because the base case would succeed the before any combining of solutions in
the recursive case had happened).

CS3 Midterm 2 Standards and Solutions (Fall 2006) 6 / 11

Part B. Below is a possibly buggy version of prefix-values-removed, from the “Roman Numerals”
case study, written using every2d.

Recall, prefix-values-removed takes a number-sent with possible prefixes, and returns a sentence of
numbers that when summed will be the arabic representation of the roman numeral in question. (The
Roman Numerals case study code is in Appendix A).

Be sure to notice that extra zeros are added to the sentences that every2d is passed.

 ;; takes a sentence of digit values, possibly containing prefixes
 (define (prefix-values-removed number-sent)
 (every2d (lambda (shifted orig)
 (if (< shifted orig)
 (- orig shifted shifted)
 orig)
)
 (se 0 number-sent)
 (se number-sent 0)
))

Provide three good test cases involving prefixes . Include the return value, and comment on whether the
return value is correct (i.e., correct in that the Roman Numerals code will work correctly when it uses this
version of prefix-values-removed).

Your test cases should test as wide a range of different (possibly problematic) conditions as possible.

This version of prefix-values-removed works correctly in all cases, although it returns a different
value from the prefix-values-removed given in the case study. For instance, the decimal-value
for the roman numeral 1946 would be
 (1000 100 1000 10 50 5 1)

The original prefix-values-removed in the case study would change the sentence to
 (1000 900 40 5 1)

This prefix-values-removed would return the sentence
 (1000 100 800 10 30 5 1 0)

and this is at the crux of this problem: being able to see how how the above code turns the first
sentence of digit-values into this later. The easiest way to see this is to line up the two sentences
that are passed to every2d, in which the elements are shifted by adding a zero in front of one of the
sentences.
 shifted: (0 1000 100 1000 10 50 5 1)
 orig: (1000 100 1000 10 50 5 1 0)

The procedure passed to every2d checks each element of the sentences, and either returns the element
from the “original” sentence or returns the original with two times the “shifted” subtracted from it,
based on whether the shifted element is smaller than the original (i.e., whether the shifted element
represents a prefix). In this way, the procedure for every2d can compare consecutive elements of the
sentence.

Note that the code thinks that the very first element in the original sentence is a number that had a
prefix before it, which is impossible. But, because it subtracts zero twice, the value is unchanged.

CS3 Midterm 2 Standards and Solutions (Fall 2006) 7 / 11

Cute, huh? Both versions lof prefix-value-removed return sentences that will sum to the same
number, which is how “correctness” is defined.

Test cases were to involve prefixes. The best conditions to test are a decimal-value sentence with a
prefix at the front (this was a source of problems in the case study), a prefix at the end, and a prefix
only in the middle. This procedure worked correctly on all of these sentences:

Roman
numeral

Arabic
value

decimal-values (the input) output

CMXXII 922 (100 1000 10 10 1 1) (100 800 10 10 1 1 0)
XIV 14 (10 1 5) (10 1 3 0)
MCMXI 1911 (1000 100 1000 10 1) (1000 100 800 10 1 0)

Note that many of you tested prefix-value-removed with invalid inputs. That is, inputs that didn't
come from valid roman numerals—sentences with multiple prefixes in a row, etc. It is very hard to
judge “correctness” when the input isn't valid!

Part C. Write decode-word (described in problem 3) without using explicit recursion; rather, use only
higher order procedures. Do use the HOF every2d (you can assume that you have a properly working
version).

Again, the sentence '(a b c d e f g ...) is likely to prove useful.

This was a hard problem. Since this is the same procedure as in question 3, understanding the
concepts used there potentially helped you a lot in this case. Again, there should be two different
procedures: decode-word and decode-letter. These involve processing elements in a sentence
without concern for the other elements of the list: perfect for every and every2d!

(define (decode-word coded-sent) ;; HOF
 (accumulate word
 (every decode-letter coded-sent)))

Again, the only real trick here was turning the sentence that every returns into a word as specified in
the problem statement. Also, if your decode-letter procedure needed other arguments, you would
have had to use a lambda statement.

decode-letter seems oh-so-perfect for every2d: each element in two sentences (*codes* and the
alphabet sentence) needs to be looked at in order, checking for equality with a parameter (coded-
ltr). The only problem is every2d is going to return something for each of the 26 elements in the
two lists, and we only want one thing returned. A keep seems more appropriate, but we don't have a
keep2d procedure.

Two solutions are most obvious:(1) using a keep outside of an every2d, to get rid of the extra things
every2d returned (2) making the every2d both transform the element we want to keep and remove
the elements we don't. First solution first:

(define (decode-letter coded-ltr) ;; HOF version one

CS3 Midterm 2 Standards and Solutions (Fall 2006) 8 / 11

 (keep (lambda (wd)
 (not (number? wd)))
 (every2d (lambda (code alpha-ltr)
 (if (equal? coded-ltr code)
 alpha-ltr
 1)) ;; keep will remove this
 codes
 '(a b c d e f ...)
)))

In version two, the every2d procedure returns the empty list '() when it doesn't want to keep an
element, and this will be 'disappeared' when every2d uses se to combine the return values.

(define (decode-letter coded-ltr) ;; HOF version two
 (every2d (lambda (code alpha-ltr)
 (if (equal? coded-ltr code)
 alpha-ltr
 '())) ;; this will disappear when every2d
 ;; combines the return values up
 codes
 '(a b c d e f ...)
))

Many students used every2d in another way, namely to combine *codes* and the alphabet sentence
into one sentence. For instance, (every2d word *codes* '(a b c d e f ...)) will return a
sentence like '(12a 3b 4c 1d 2e 14f ...) . This single sentence can then processed as above
just using every (where the lambda needs to take apart the words that every2d created).

(define (decode-letter coded-ltr)
 (every (lambda (letter-code)
 (if (equal? coded-ltr (bf letter-code))
 (first letter-code)
 '()))
 (every2d word *code* '(a b c d e f ...))))

We saw some solutions which didn’t make use of every2d, but instead wrote decode-letter using
item and position. The intent of the problem was to use higher order functions, namely every2d.
Some of you, however, still managed to write non-recursive (and impressive) versions of position
using accumulate.

Problem 5. Counting descendants. (A: 2, B: 6 points)
Consider the procedure num-descendants that returns the number of descendants a fish will make
within a certain number of generations. The procedure takes the number of generations as its argument.

A descendant is a direct child or a descendant’s child. The number of descendants in one generation
would be the number of direct children made, the number in two generations would be the children and
grandchildren, and so on. Do not count the original fish in this number!

CS3 Midterm 2 Standards and Solutions (Fall 2006) 9 / 11

This particular species of fish will make three children each year that it is between 2 years old and 6 years
old, inclusive. The fish is too young to make children before that, and dies at the beginning of its 7th year.
Therefore, (num-descendants 1) should return 15.

The following is a buggy version of get-descendants:

;; buggy version
(define (num-descendants gen)
 (nd-help gen 0))

(define (nd-help gen age)
 (cond ((= gen 0) 0)

 ((< age 2)
 (nd-help gen (+ age 1)))
 ((< age 6)
 (+ (nd-help (- gen 1) 0)
 (nd-help (- gen 1) 0)
 (nd-help (- gen 1) 0)
))
 ((> age 6) 1)
))

Part A: What will the result be, using the buggy version above, of (num-descendants 1)?

The answer here is 0. The nd-help procedure recurses twice based on the condition (< age 2),
increasing age each time. Then, the recursive case conditioned with (< age 6) spawns three new
recursive calls, each with gen set to zero. Each of these calls immediately hits the first base case, and
return 0. Understanding this process was crucial to answering part B correctly.

Part B. Fix the buggy version of num-descendants so that it works correctly.

Your solution should follow the general strategy of the buggy version—using tree recursion—rather than
using a mathematical approach with the procedures *, expt, and so forth.

In this recursion, you are tasked with summing the number of fish that are created during the program
execution. The basic strategy to this program is that recursive calls are made each time a fish lives for
a year, and the call knows what age and what generation (down from the original fish) the fish is. So,
recursive calls are made for two reasons:

● when the fish grows a year older (and doesn't die): generation stays the same, and age is one
greater.

● when the fish creates a new fish (i.e., when a fish is born). The recursive call is for the new
fish, with generation one less and age of zero).

In addition to knowing what the recursive calls mean, you also need to determine how to return
numbers in order to create the proper summation (and overall return value). In pascal, numbers
were added in the base cases, which is possible here. Numbers can also be added in some recursive
cases (e.g., see the solution to problem 5 (pascal-calls) in the second midterm of fall 2004. There
two basic approaches to fixing this procedure, and they differ in where they add numbers.

CS3 Midterm 2 Standards and Solutions (Fall 2006) 10 / 11

One method is to count fish when they die. So, we will need to add 1 when the age is greater than 6,
and add 1 when the generation is equal to 0 (because we don't want the fish to age in the normal
progression here, since this is the maximum generation away that we will count). But, with these two
additions, we've over counted by 1, because we've counted the original fish. An easy place to correct
for that is in num-descendants, rather than in the tree-recursive procedure. (Notice also that we
needed to correct the tests for the conditions from what was written in the buggy procedure).

;; method of counting fish at death
(define (num-descendants gen)
 (- (nd-help gen 0) 1)) ; subtract one so we don't count the original fish

(define (nd-help gen age)
 (cond ((= gen 0) ; this fish is the maximum generation
 1) ; away, count it now and no births allowed
 ((< age 2)
 (nd-help gen (+ age 1))) ; too young to spawn, one year older
 ((<= age 6)
 (+ (nd-help (- gen 1) 0) ; birth 1
 (nd-help (- gen 1) 0) ; birth 2
 (nd-help (- gen 1) 0) ; birth 3
 (nd-help gen (+ age 1)))) ; same fish, one year older
 ((> age 6)
 1) ;fish dies
))

The second method for counting fish is at birth. In this method, we want the base case for death and
maximum generation to be zero. To count births, we simply add 3 when the original fish spawns:

;; method of counting fish at birth
(define (num-descendants gen)
 (nd-help gen 0))

(define (nd-help gen age)
 (cond ((= gen 0) 0)
 ((< age 2)
 (nd-help gen (+ age 1)))
 ((<= age 6)
 (+ (nd-help (- gen 1) 0)
 (nd-help (- gen 1) 0)
 (nd-help (- gen 1) 0)
 3 ;; count the births
 (nd-help gen (+ age 1))))
 ((> age 6) 0)))

With this solution, there is no need to correct the amount in num-descendants: since we are
counting births, we won't count when the original fish is born, only counting that fish's descendants.
Easy!

CS3 Midterm 2 Standards and Solutions (Fall 2006) 11 / 11

		CS 3 Midterm 2 Standards and Solutions

