
Problem 4. (3 / 6 points): It was a dark and mysterious recursion…
Consider the recursive procedure gather that takes a sentence of at least two single-
character words (i.e., letters such as 'a', 'b', etc.):

;; sent-of-ltrs is a sentence of at least 2 words that are single
;; letters
(define (gather sent-of-ltrs)
 (cond ((empty? sent-of-ltrs) '())
 ((empty? (bf sent-of-ltrs))
 (se (first sent-of-ltrs)))
 ((equal? (first (first sent-of-ltrs))
 (first (bf sent-of-ltrs)))
 (gather (se (word (first sent-of-ltrs)
 (first (bf sent-of-ltrs)))
 (bf (bf sent-of-ltrs)))))
 (else
 (se (first sent-of-ltrs)
 (gather (bf sent-of-ltrs))))))

Part A (3 points). What will (gather '(a b b b c d d)) return?

Part B (6 points). Write gather-hof, which behaves the same as gather but uses no
explicit recursion.

Page - 2 -

Problem 5. (9 points): Does money grow on tree recursions?
Consider a set of three coins: a penny, worth 1 cent; a nickle, worth 5 cents; and a dime,
worth 10 cents. Write a procedure named possible-amounts which takes a number n,
and returns a sentence of all the possible amounts that any n coins of these three types can
make. For instance

(possible-amounts 1)  (1 5 10)
(possible-amounts 2)  (2 6 11 10 15 20)

(This includes two pennies, a penny and a nickel, a penny and a
dime, two nickels, a nickel and a dime, and two dimes)

(possible-amounts 3)  (3 7 12 11 16 21 15 20 25 30)

Fill in the blanks to make the definition of possible-amounts work correctly:

(define *coin-amounts* __________________________)

(define (possible-amounts n)
 (pa-helper *coin-amounts* n))

(define (pa-helper coins n)

 (cond ((<= n 1) ___________________) ;; base case 1

 ((empty? coins) ________________________) ;; base case 2

 (else (se (add-coin-to-every ;; recur case 1
 (first coins)
 (pa-helper coins (- n 1)))
 (pa-helper ;; recur case 2

 ________________________________)))))

;; add coin to each element of sent
(define (add-coin-to-every coin sent)
 (every (lambda (num)
 (+ coin num))
 sent))

