Using the Web to teach programming

I'll describe today a pilot version of CS 3 taught summer 2002:

- implementation
- results
- implications for instruction at Berkeley and elsewhere

CS 302 10/21/02

CS₃

- CS 3 ("Introduction to Symbolic Programming") is a first programming course using Scheme.
- It covers
- functional (side-effect free) programming.
- recursion, and
- use of higher-order functions
- It ends with a relatively complex project (\sim 200 lines of code).
- It includes activities based on case studies, narratives of worked-out solutions

CS 302 10/21/02

Summer 2002 CS 3

- Contact hours for summer CS 3 (8-week session):
- 0 hours of lecture,
- 0 hours discussion section, and

2 hours lab

2 hours lecture

Traditional CS 3 contact hours

1 hour discussion

- 14 hours of lab per week.
- system and presented in a custom course "portal". Activities were all online, developed in the WISE
- assistants each staffed by an instructor and two or three lab Three lab sections (enrollment = 22, 18, 10) were

WISE

- WISE (Web-based Inquiry Science Environment) with a front end that organizes them. combines a database of pedagogical activities
- Activities include
- Web page reading
- quizzes
- online discussion
- comparing online answers
- online note-taking

CS 302 10/21/02

More CS 3 logistics

- Students did relatively more of their work in the lab rather than at home
- Pacing was flexible; there were occasional "catch-up" days.

CS 3 use of WISE

- Activities were organized in relatively small steps.
- of activities. proceeded through a bunch of the other kinds The typical day started with a quiz, and
- Some work was visible to the staff; mini-lectures or individualized tutoring occasionally resulted.
- Homework often involved contributing to discussion.

CS 302 10/21/02

Course portal

Student learning environment

CS 302 10/21/02

9

Collaborative problem solving

CS 302 10/21/02

Collaborative problem solving

can view the before they post their own responses of responses Students must

others.

CS 302 10/21/02

10

Student discussion

1 CS 302 10/21/02 12

Scheme tools

CS 302 10/21/02

13

CS 302 10/21/02

14

Summary of differences

- Higher proportion of supervised online activity.
- Constant monitoring of students; timely tutoring.
- Wider variety of activities, including implicit and explicit collaborations.
- Flexible pacing.

Results

- Better performance on comparable final exams (average = 32.9 out of 60 compared to 25.8).
- Extremely high course evaluation ratings.

Ratings of "respond then review" questions (5 is best, 1 worst)

- (3.7) Supply a solution to an exercise with several "right" answers.
- (3.5) Supply a suggestion for understanding _
- (3.5) Explain how you got an answer.
- (3.4) Explain how ____ works.
- (3.4) Report the results of experiments.
- (3.3) Supply a good comment or parameter name.

16

Ratings of "respond then review" questions (5 is best, 1 worst)

- (3.1) Supply the "largest" or "smallest" solution to a problem.
- (2.9) Provide an opinion about choice between alternative designs or code segments.
- (2.8) Reflect on what might make ____ hard to understand.

CS 302 10/21/02

17

Ratings of discussion questions (5 is best, 1 worst)

- (3.1) Supply and justify a preference between alternative designs or code segments.
- (3.0) Describe features of a given design or program that you'd like to imitate.
- (2.8) Explain why ____ is hard for you or someone else to learn.
- (2.8) Provide and compare images of recursion.

Ratings of discussion questions (5 is best, 1 worst)

- (3.8) Comment on mistakes you made.
- (3.6) Suggest tips for understanding ____
- (3.6) Explain productive techniques for understanding larger programs.
- (3.4) Suggest how you might handle a given programming difficulty (e.g. reaching a dead end).
- (3.3) Devise a quiz for the case study
- (3.3) Summarize the case study.

CS 302 10/21/02

18

What does the instructor do?

- Monitor online work
- to help identify students who need help, and
- to identify misconceptions.
- Tune the curriculum.
- Train staff.

Research questions

- Does it work in the regular school year?
 (Summer students may be exceptional somehow.)
- What good are the new activities?
- How much does timeliness matter?
- What role does physical location play?
 Would a "virtual" lab section work?
- Can CS 3S (self-paced version of CS 3) benefit?

CS 302 10/21/02

21

CS 302 10/21/02

22

Plans for Berkeley CS 3

- (Fall 2002) Experimental section of CS 3:
 6 hours of lab, 1 hour of discussion/lab.
- (Spring 2003) New format for CS 3: 1 hour lecture, 5 hours lab, 1 hour discussion/lab.

More research questions

- Who succeeds that didn't in the old system?
- What value does a good lecturer provide, and how can we capture it?
- How do curricular segments compare?

Implementation at U.C. Merced

- The CITRIS project is supporting the transfer of our lower-division courses to U.C. Merced.
- Campus is expected to open in fall 2004.
- Students will take classes in Merced and at remote "learning centers" in Modesto, Fresno, and Bakersfield.
- Plans for spring 2003
- A version of CS 3 will be run through Merced Community
 College (one instructor, no lab assistants).
- Berkeley staff will watch Merced online activities and somehow alert instructor/student of difficulties.

24

Questions

- Can the system accommodate Merced students?
- Does virtual tutoring work?
- How much expertise is needed at the remote site?

CS 302 10/21/02

Analysis of elements of technologically-based

Methods for benchmarking educational

Research directions

innovation.

Studies of the process of course

instruction.

customization.

25

Longer-term CITRIS-sponsored work

- Tools
- The Curriculum Builder, which manages a data base of richly annotated course activities.
- The Course Customizer, which allows a prospective instructor to build a course from activities in the data base.
- Development
- Versions of the other lower-division CS courses, plus courses in other areas.

CS 302 10/21/02

26

CS 302 10/21/02

27