
 
1. Recall that mceval.scm tests true or false using the true? and false? procedure: 

 
(define (true? x) (not (eq? x false))) 
(define (false? x) (eq? x false)) 
 
Suppose we type the following definition into MCE: 
 
MCE> (define true false) 
 
What would be returned by the following expression: 
 
MCE> (if (= 2 2) 3 4) 
A: 3 
B: 4 
C: ERROR 

 
2. Suppose we type the following into mc-eval: 

 
MCE> (define ‘x (* x x)) 
 
This expression evaluates without error.  What would be returned by the following expressions? 
 
MCE> quote 
A: ERROR: unbound variable quote 
B: (compound-procedure quote ((* x x)) <procedure-env>) 
 
MCE> (quote 10) 
A: 10 
B: 100 

 
3. Write a procedure useless-square that performs the squaring function correctly the first time 

you call it, and thereafter only returns what it returned the first time.  For example, 
> (useless-square 5) 
25 
> (useless-square 10) 
25 
> (useless-square 3) 
25 

 
 

4. What does the following sequence of expressions return: 
> (define foo 100) 
> (define (set-fooer! y) (set! foo y)) 
> (define (bar x) 
 (let ((foo 10)) 
  (set-fooer! 20) 
  foo)) 
  
 LEXICAL SCOPING: _______________ DYNAMIC SCOPING: _______________ 
> foo 
 
 LEXICAL SCOPING: _______________ DYNAMIC SCOPING: _______________ 
 
 



5. For each evaluator, will the following expression return a value or cause  an error? Circle VALUE or 
ERROR for each. 
> (let ((a 3) 
        (b a)) 
    (+ a 4)) 
 
VALUE  ERROR  The MCE 
VALUE  ERROR  Analyzing evaluator 
VALUE  ERROR  Lazy evaluator 
VALUE  ERROR  The MCE with dynamic scope 

 
For each evaluator, will the following expression return a value or cause  
an error? Circle VALUE or ERROR for each. 
> (let ((a 3) 
        (b a)) 
    (+ a b)) ;; this line different from the one above 
 
VALUE  ERROR  The MCE 
VALUE  ERROR  Analyzing evaluator 
VALUE  ERROR  Lazy evaluator 
VALUE  ERROR  The MCE with dynamic scope 
 

 
6. Which of the following interactions will execute faster or the same in the analyzing evaluator than in 

the original metacircular evaluator? Circle FASTER or SAME for each. 
 

> (define (gauss-recur n) ;; sum of #s from 1 to n 
    (if (= n 1) 
         1 
        (+ n (gauss-recur (- n 1))))) 
> (gauss-recur 1000) 
 
Analyzing will be:  FASTER   SAME  
 
> (define (gauss n) ;; sum of #s from 1 to n 
    (/ (* (+ n 1) n) 2) 
> (gauss 1000) 
 
Analyzing will be:  FASTER   SAME  

 
 

7. Rotating lists is fun, so let’s do some.  For the following, assume that only the rule append has been 
defined, as in the lecture: 
 
a. Implement a rule rotate-forward so that: 
 
 (rotate-forward (1 2 3 4) ?what) ==> ?what = (2 3 4 1). 
 

That is, the second list is the first list with the first element attached to the end instead.  Assume 
the list is non-empty. 
 
 

 
 

 



b. Let’s get both sides of the story.  We'd like a rule rotate-backward so that 
 
  (rotate-backward (1 2 3 4) ?what) ==> ?what = (4 1 2 3) 
 

That is, the second list is the first list with the last element attached to the front instead.  You 
may define other helper rules if you'd like. 

 
 

 
8. Our goal is to define a procedure (coolize ls) that does this: 
STk> (coolize ‘(1 2 3 4 5)) 
(1 (2 (3) 4) 5) 
STk> (coolize ‘(a b c d e f)) 
(a (b (c () d) e) f) 
 
We’ll build up to it: 
 
a. Define a procedure (last ls) that returns the last element of a list. 

 
b. Define a procedure (trimmed ls) that takes in a list and returns the same 

list without the first and last element.  So, 
(trimmed ‘(1 2 3 4 5 6)) ==> (2 3 4 5) 
(trimmed ‘()) ==> () 
(trimmed ‘(1)) ==> () 
(trimmed ‘(1 2)) ==> () 
 

c. Now, implement coolize. 
 
 

9. Write a procedure, (tree-member? x tree) that takes in an element and a 
general tree, and returns #t if x is part of tree, and #f otherwise. 

 
 

10. Write a procedure, (smallest-containing-tree tree x y) that takes in a 
general tree and two elements x and y, and returns the smallest subtree of 
tree containing both x and y.  If tree does not contain x and y, return #f.  
You can use tree-member?. 

 
11. Write a procedure, (num-sum exp) that takes in a valid Scheme expression, 

and returns the sum of all numbers that occurs in that expression.  For 
example, 
(num-sum‘(if (= 2 3) (lambda(x) (+ x 3)) 10)) ==> 18 

 
12. Write a procedure, (square-nums exp) that takes in a valid Scheme 

expression, and returns the same expression with every number squared.  
For example, 
(square-nums ‘(if (= 2 3) (lambda(x) (+ x 3)) 10)) ==> 
 (if (= 4 9) (lambda(x) (+ x 9)) 100)) 
 

 
 
 
 



 
 

13. De Morgan's Law 
Consider a subset of Scheme with only operators and, or and not.  Furthermore, 
and and or always take in exactly two arguments, and not takes in one.  You 
can express all kinds of boolean expressions, like 

(and (not (or a b)) (or c (and d e))) 
 

De Morgan's Law says that the following two boolean expressions are 
equivalent: 

(not (and a b)) <==> (or (not a) (not b)) 
 
 Therefore, for example, these are equivalent: 

(or (not (and a b)) c) <==> (or (or (not a) (not b)) c) 
(not (and (and a b) c)) <==> (or (or (not a) (not b)) (not c)) 

 
Suppose we've written a procedure for you, not-and-exp?, that takes in an 
expression and returns #t if that expression is of the form (not (and ...)).  
This is defined thus: 

 
(define (not-and-exp? exp) 
  (and (pair? exp) 

 (eq? (car exp) 'not) 
       (pair? (cadr exp)) 
       (eq? (caadr exp) 'and))) 

 
Write a procedure, (demorganize exp), that takes in a boolean expression and 
applies De Morgan's law over it wherever possible. 

 
 

14. Consider a procedure (updated table name new-value) where updated takes in a name, a 
new-value and a table of name-value pairs (containing no duplicate names), and returns a new 
table either with the new name-value entry added if name doesn’t already exist in the table, or a new 
table with the given new-value for the pre-existing entry associated with name. 

 
(updated ‘((mike 3) (jon 7)) ‘paul 10) ==> ((mike 3) (jon 7) (paul 10)) 
(updated ‘((mike 3) (jon 7)) ‘mike 10) ==> ((mike 10) (jon 7)) 
 
Write the non-destructive version of updated: 
 
(define (updated table name new-value) 
 
Of course, this was before we knew the pleasures of mutation, and so was wasteful – we reconstruct a 
new table each time!  We propose a destructive updated!, where we allocate new pairs only if 
there’s no pre-existing entry with the same name.  Implement this below: 
 
(define (updated! table name new-value) 

 
 
 
 
 
 
 



15. This is an attempt to write (remove-first! ls x), which destructive removes the first instance 
of x: 
(define (remove-first! ls x) 
 (cond ((null? ls) ‘()) 
   ((eq? (car ls) x) (set! ls (cdr ls))) 
   ((eq? (cadr ls) x) (set-cdr! ls (cddr ls))) 
   (else (remove-first! (cdr ls) x)))) 
 
Suppose (define L ‘(a b c)).  What happens to L when we do: 
 
a. (remove-first! L ‘a) 

 
 

L ==> __________________________ 
 
b. (remove-first! L ‘b) 

  
 
  L ==> __________________________ 

 
c. (remove-first! L ‘z) 

  
 
  L ==> __________________________ 

16. Consider this problem: 
(define p 
 (let ((x #f)) 
  (set! x 1) 
  (lambda (n) 
   (lambda () 
    (set! n (+ n 1)) 
    (set! x (+ x n)) 
    x)))) 
(define m 3) 
(define p1 (p m)) 
(define p2 (p m)) 
(p1) 
(p2) 
(p1) 
a. Draw out the-global-environment after the last define statement using box-and-pointer 

diagrams.  Don’t draw more boxes than there are, and don’t forget the procedure environments! 
 

b. What is returned after the last statement? 
 

17. Fill in the blanks: 
 (define foo 
  (let ((L (list 1))) 
   (lambda (a) 
    (let ((M (cons a L))) 
     (lambda (b) 
             (set! L (cons (+ a 1) L)) 
             (set! a (+ a 2)) 
        (set-car! (cdr M) (+ 3 (cadr M))) 
        (set! b (+ b 4)) 
             (list a b L M)))))) 
 



Stk> (define f (foo 1)) 
Stk> (f 2) 
 
____________________________ 
 
Stk> (define g (foo 2)) 
Stk> (g 1) 
 
____________________________ 
 

 Stk> (f 2) 
 
____________________________ 

 
 Stk> (g 1) 

 
____________________________ 
 

18. There are just too many things to do and too much to keep track of during midterms week.  We’d 
like to implement a system that helps us keep track of what we need to do.  To that end, we propose a 
job class.  A job object is a certain amount of work required; you can do some amounts of work 
until the work is done.  A job also has an automatically assigned id.  A job is “done” when there’s no 
more work to do for that job.  We also want to keep track of number of jobs we’ve created.  We’d 
like to interact this way: 
 
STk> (define job1 (instantiate job ‘(take out trash) 10)) 
job1 
STk> (define job2 (instantiate job ‘(eat dinner) 5)) 
job2 
STk> (define job3 (instantiate job ‘(study for cs61a) 100000)) 
job3 
STk> (ask job1 ‘id) 
0 
STk> (ask job2 ‘id) 
1 
STk> (ask job2 ‘work-to-do) 
5 
STk> (ask job1 ‘do-work 10) 
okay 
STk> (ask job1 ‘work-to-do) 
0 
STk> (ask job1 ‘done?) 
#t 
STk> (ask job1 ‘do-work 10) 
(but you are already done!) 
STk> (ask job ‘number-of-jobs) 
3 
 
(define-class (job description work-to-do) 
 

 


