

def make adder $\sqrt{n T:}$ A function that returns a function
inn"rēêtürin a function that takes one argument k and returns $k+n$.

def curry2(f):
"" "Returns a function g such that $g(x)(y)$ returns $f(x, y)$."" "
def $g(x)$:
def $h(y):$
return $f(x, y)$
return h
return g
Currying: Transforming a multi-argument function into a single-argument, higher-order function.

```
- The def statement header is similar to other functions
- Conditional statements check for base cases
- Base cases are evaluated without recursive calls
- Recursive cases are evaluated with recursive calls
def sum_digits(n):
    """Return the sum of the digits of positive integer n."""
    if n< 10:
        return n
    else:
        all_but_last, last = n // 10, n % 10
        return sum_digits(all_but_last) + last
```


Program output:

Global frame \longrightarrow func cascade (n)
cascade L
cascade
n 123
cascade
n 12
Return None value None

Each cascade frame is from a different call to cascade.
Until the Return value appears that call has not completed.

Any statement can appear before or after the recursive call.
square $=$ lambda $x: x * x \quad$ VS def square (x) :

- Both create a function with the same domain, range, and behavior.
- Both functions have as their parent the environment in which they were defined.
- Both bind that function to the name square.
- Only the def statement gives the function an intrinsic name.

When a function is defined:

1. Create a function value: func <name>(<formal parameters>)
2. If the parent frame of that function is not the global frame, add matching labels to the parent frame and the function value (such as f1, f2, or f3).

f1: make_adder func adder (k) [parent=f1]

3. Bind <name> to the function value in the first frame of the current environment.
When a function is called:
4. Add a local frame, titled with the <name> of the function being called.
5. If the function has a parent label, copy it to the local frame: [parent=<label>]
6. Bind the <formal parameters> to the arguments in the local frame.
7. Execute the body of the function in the environment that starts with the local frame.

How to find the square root of 2 ?
>>> $\mathrm{f}=$ lambda x : $\mathrm{x} * \mathrm{x}-2$
>>> $\mathrm{df}=$ lambda x : $2 * x$
>>> find_zero(f, df)
1.4142135623730951

Begin with a function f and an initial guess x

1. Compute the value of f at the guess: $f(x)$
2. Compute the derivative of f at the guess: $f^{\prime}(x)$
3. Update guess to be: $x-\frac{f(x)}{f^{\prime}(x)}$
def improve(update, close, guess=1):
"""Iteratively improve guess with update until close(guess) is true."""
while not close(guess):
guess = update(guess)
return guess
def approx_eq(x, y, tolerance=1e-15):
return abs $(x-y)$ tolerance
def find_zero(f, df):
"""Return a zero of the function f with derivative df."""
def near_zero(x):
return approx_eq($f(x), 0)$
return improve(newton_update(f, df), near_zero)
def newton_update(f, df):
"" "Return an update function for f with derivative df,
using Newton's method."""
def update (x) :
return $x-f(x) / d f(x)$
return update
def power(x, n):
"""Return x * x * x * ... * x for x repeated n times."""
product, $\mathrm{k}=1$, 0
while $\mathrm{k}<\mathrm{n}$:
product, $\mathrm{k}=$ product $* \mathrm{x}, \mathrm{k}+1$
return product
def nth_root_of_a(n, a):
"" "Return the nth root of a."""
def $f(x)$:
return power $(x, n)-a$
def $\mathrm{df}(\mathrm{x})$:
return n * power($x, n-1$)
return find_zero(f, df)

- Recursive decomposition:
finding simpler instances of
the problem: partition(6, 4)
Explore two possibilities:
- Use at least one 4

Don't use any 4
Solve two simpler problems:
partition (2, 4)
Tree recursion often involves exploring different choices.
def count_partitions(n, m): if $\mathrm{n}==0$: return 1
lif $n<0$: return 0
elif $m==0$:
return 0
else:
> with_m = count_partitions(n-m, m)
without_m = count_partitions($n, m-1$) return with_m + without_m
from operator import floordiv, mod
def divide_exact($n, d)$:
"""Return the quotient and remainder of dividing N by D.

