61A Lecture 23

Wednesday, October 30

Announcements

Homework 7 due Tuesday 11/5 @ 11:59pm.
Project 1 composition revisions due Thursday 11/7 @ 11:59pm.

Midterm 2 is graded.
(And yes, it was very challenging.)
Mean: 30
Solutions will be posted and exams distributed soon.

Scheme

Scheme is a Dialect of Lisp

What are people saying about

Lisp?

*"The greatest single programming language ever designed."
—-Alan Kay, co-inventor of Smalltalk and OOP

*"The only computer language
—Neal Stephenson, DeNero's

*"God's programming language.
—-Brian Harvey, Berkeley CS

that is beautiful."
favorite sci-fi author

instructor extraordinaire

LISP 15 OVER HALF A
CENTURYQOLD AND IT

STILL HAS THIS PERFECT,
TIMELESS AIRABUTIT.

_'_W_’/

T WONDER IF THECYCLES

| WILL CONTINUE FOREVER.

A FEV CODERS FROMEACH
NEW GENERATION RE-
DISCOVERING THE LIS ARTS,

WEAPONS
FOR A MORE... CIVIUZED AGE.

http://imgs.xkcd.com/comics/lisp_cycles.png

Scheme Fundamentals

Scheme programs consist of expressions, which can be:
* Primitive expressions: 2, 3.3, true, +. quotient

e Combinations: (quotient 10 2). (not true)

Numbers are self-evaluating; symbols are bound to values.

Call expressions include an operator and @ or more operands in parentheses.

. e 2
> (quotient 10 2) “quotient” names Scheme’s
5 . built-in integer division
z (quotient (+ 8 7) 5) procedure (i.e., function)
o J
> (B3 P g
(+(x 2 4) Combinations can span
(+ 35))) multiple lines
q:ﬁé— 10 7) (spacing doesn’t matter)
)) (G J

(Demo)

Special Forms

Special Forms

A combination that is not a call expression is a special form:
<:(Evaluation:

. ion: i icat t 1t t]
If expression (if <predicate> <consequent> <alternative>) (1) Evaluate the
e And and or: (and <er> ... <e,>). (or <er> ... <e,>) predicate expression.
_— : : 2) Evaluate either
e Binding symbols: (define <symbol> <expression>) éh; consequent or
* New procedures: (define (<symbol> <formal parameters>) <body>) \alternative.

\%

(define pi 3.14)< The symbol “pi” is bound to 3.14 in the

> (x pi 2)
5.28 global frame

> (define (abs x)
(if (< x 0)
(- x)
X))
> (abs -3)
3

A procedure is created and bound to the
symbol “abs”

(Demo)

Counting Trees

Example: Counting Binary Trees

The structure of a sentence can be described by a tree. Each sub-tree is a constituent.

a long noun phrase ,/':::EE>\\‘\~\ some trees.are balanced ,/”fjs;:::f‘\\\ so many trees exist

a two word modifier the other trees lean

...‘

W X

Y Z
A A A
The number of trees over n leaves with k leaves in the left and n-k in the right is:
(The number of trees with k leaves) * (The number of trees with n-k leaves)

(Demo)

Lambda Expressions

Lambda Expressions

Lambda expressions evaluate to anonymous procedures.

(lambda (<formal-parameters>) <body>)

Two equivalent expressions:

(define (plus4 x) (+ x 4))

(define plus4 (lambda (x) (+ x 4)))

An operator can be a call expression too:

Evaluates to the
add—-x-&-y-&-z2 procedure

Pairs and Lists

Pairs and Lists

In the late 1950s, computer scientists used confusing names.

« cons: Two-argument procedure that creates a pair

e car: Procedure that returns the first element of a pair

e cdr: Procedure that returns the second element of a pair

e nil: The empty list

They also used a non-obvious notation for recursive lists.

* A (recursive) list in Scheme is a pair in which the second element is nil or a Scheme list.
* Scheme lists are written as space-separated combinations.

* A dotted list has any value for the second element of the last pair; maybe not a list!

(define x (cons 1 2))
X

=

. 2)
(car x) Not a well-formed list!

()

0
o
S
X

=
—_
N O

ons 1 (cons 2 (cons 3 (cons 4 nil))))
3 4)

~V NV EFEL,V~—~VYV

(Demo)

Symbolic Programming

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

> (define a 1)
> (define b 2) No sign of “a” and “b” in the
? (;;st ab) resulting value

1

Quotation is used to refer to symbols directly in Lisp.

> (list 'a 'b)
(a b) Symbols are now values
> (list 'a b)

(a 2)
Quotation can also be applied to combinations to form lists.

(car '"(a b c))

>
a
> (cdr '(a b c))
(b ¢)

Scheme Lists and Quotation

Dots can be used in a quoted list to specify the second element of the final pair.

> (cdr (cdr '(1 2 . 3)))
3

However, dots appear in the output only of ill-formed lists.

(12 . 3) 1| ——|2]3

(12 .3)

> (12 . (34) : : . : -
(123 a) ! : & :
> (123 . nil) |

(12 3) ! 2 3 | ~5—[nil

What is the printed result of evaluating this expression?

> (cdr '((12) . (34. (5))))
(3 45)

Sierpinski's Triangle

(Demo)

