61A Lecture 1

Friday, August 29, 2014

Welcome to Berkeley Computer Science!

BERKEL憵CS

Welcome to Berkeley Computer Science!

Welcome to Berkeley Computer Science!

BERKEL层荷CS

Welcome to Berkeley Computer Science!

Fall 2014 office hours:

411 Soda

Tuesday $12 \mathrm{pm}-1 \mathrm{pm}$ Wednesday 12pm-1pm

781 Soda by appointment http://denero.org/meet

The Course Staff

The Course Staff

Teaching Assistants (UGSIs/GSIs) run discussion sections, labs, and office hours.

The Course Staff

Teaching Assistants (UGSIs/GSIs) run discussion sections, labs, and office hours.

Soumya Basu

Joy Jeng

Steven Tang

Matthew Chow

Chloe Lischinsky

Michael Tao

Ajeya Cotra

Kaylee Mann

Dickson Tsai

Brian Hou

Beth Marrone

Iris Wang

Andrew Huang

Allen Nguyen

Albert Wu

Robert Huang

Youri Park

Chenyang Yuan

Michelle Hwang

Jack Qiao

Marvin Zhang

Mehdi Jamei

Sumukh Sridhara

The Course Staff

Teaching Assistants (UGSIs/GSIs) run discussion sections, labs, and office hours.

Soumya Basu

Joy Jeng

Steven Tang

Matthew Chow

Chloe Lischinsky

Michael Tao

Ajeya Cotra

Kaylee Mann

Dickson Tsai

Brian Hou

Beth Marrone

Iris Wang

Andrew Huang

Allen Nguyen

Albert Wu

Robert Huang

Youri Park

Chenyang Yuan

Michelle Hwang

Jack Qiao

Marvin Zhang

Mehdi Jamei

Sumukh Sridhara

18 Readers are your personal programming mentors.

The Course Staff

Teaching Assistants (UGSIs/GSIs) run discussion sections, labs, and office hours.

Soumya Basu

Joy Jeng

Steven Tang

Matthew Chow

Chloe Lischinsky

Michael Tao

Ajeya Cotra

Kaylee Mann

Dickson Tsai

Brian Hou

Beth Marrone

Iris Wang

Andrew Huang

Allen Nguyen

Albert Wu

Robert Huang

Youri Park

Chenyang Yuan

Michelle Hwang

Jack Qiao

Marvin Zhang

18 Readers are your personal programming mentors. Over 150 Lab Assistants ensure that you don't get stuck for too long.

Parts of the Course

Parts of the Course

Lecture: Videos posted to http://cs61a.org before each live lecture

Parts of the Course

Lecture: Videos posted to http://cs61a.org before each live lecture
Lab: The most important events in this course

Parts of the Course

Lecture: Videos posted to http://cs61a.org before each live lecture

Lab: The most important events in this course
Discussion: Also the most important events in this course

Parts of the Course

Lecture: Videos posted to http://cs61a.org before each live lecture
Lab: The most important events in this course
Discussion: Also the most important events in this course
Office Hours: Also the most important events in this course [11-5 every day in 411 Soda]

Parts of the Course

Lecture: Videos posted to http://cs61a.org before each live lecture
Lab: The most important events in this course
Discussion: Also the most important events in this course
Office Hours: Also the most important events in this course [11-5 every day in 411 Soda]
Online textbook: http://composingprograms.com

Parts of the Course

Lecture: Videos posted to http://cs61a.org before each live lecture
Lab: The most important events in this course
Discussion: Also the most important events in this course
Office Hours: Also the most important events in this course [11-5 every day in 411 Soda]
Online textbook: http://composingprograms.com

Weekly homework assignments, three exams, \& four programming projects

Parts of the Course

Lecture: Videos posted to http://cs61a.org before each live lecture
Lab: The most important events in this course
Discussion: Also the most important events in this course
Office Hours: Also the most important events in this course [11-5 every day in 411 Soda]
Online textbook: http://composingprograms.com

Weekly homework assignments, three exams, \& four programming projects
Many special events

An Introduction to Computer Science

What is Computer Science?

What is Computer Science?

The study of

What is Computer Science?

What is Computer Science?

What is Computer Science?

The study of \quad| What problems can be solved using computation, |
| :--- |
| How to solve those problems, and |
| What techniques lead to effective solutions. |

What is Computer Science?

The study of \quad| What problems can be solved using computation, |
| :--- |
| How to solve those problems, and |
| What techniques lead to effective solutions. |

Systems

What is Computer Science?

The study of \quad| What problems can be solved using computation, |
| :--- |
| How to solve those problems, and |
| What techniques lead to effective solutions. |

Systems
Artificial Intelligence

What is Computer Science?

The study of | What problems can be solved using computation, |
| :--- |
| How to solve those problems, and |
| What techniques lead to effective solutions. |

Systems
Artificial Intelligence
Graphics

What is Computer Science?

The study of | What problems can be solved using computation, |
| :--- |
| How to solve those problems, and |
| What techniques lead to effective solutions. |

Systems
Artificial Intelligence
Graphics
Security

What is Computer Science?

The study of \ldots What problems can be solved using computation,
How to solve those problems, and
What techniques lead to effective solutions.
Artificial Intelligence
Graphics
Security
Networking
Programming Languages
Theory
Scientific Computing
?.

What is Computer Science?

The study of \quad| What problems can be solved using computation, |
| :--- |
| How to solve those problems, and |
| What techniques lead to effective solutions. |

Systems
Artificial Intelligence
Graphics
Security
Networking
Programming Languages

Theory
Scientific Computing
...

What is Computer Science?

The study of | What problems can be solved using computation, |
| :--- |
| How to solve those problems, and |
| What techniques lead to effective solutions. |

Systems
Artificial Intelligence
Decision Making
Graphics
Security
Networking
Programming Languages

Theory
Scientific Computing
...

What is Computer Science?

What is Computer Science?

What is Computer Science?

The study of | What problems can be solved using computation, |
| :--- |
| How to solve those problems, and |
| What techniques lead to effective solutions. |

Systems
Artificial Intelligence
Graphics
Security
Networking
Programming Languages
Theory
Scientific Computing
...

What is Computer Science?

The study of | What problems can be solved using computation, |
| :--- |
| How to solve those problems, and |
| What techniques lead to effective solutions. |

Systems
Artificial Intelligence
Graphics
Security
Networking
Programming Languages
Theory
Scientific Computing
...

What is Computer Science?

The study ofa)	What problems can be solved using computation, How to solve those problems, and What techniques lead to effective solutions.	
Systems		
Artificial Intelligence	Decision Making	
Graphics	Robotics	Translation
Security	Natural Language Processing	
Networking		
Programming Languages	\cdots	
Theory		
Scientific Computing		

What is Computer Science?

The study of \begin{tabular}{l}
What problems can be solved using computation,

How to solve those problems, and

What techniques lead to effective solutions.

Systems

Artificial Intelligence
Graphics
Security
Networking
Programming Languages
Theory
Scientific Computing

Decision Making
\end{tabular}

What is Computer Science?

The study of \begin{tabular}{l}
What problems can be solved using computation,

How to solve those problems, and

What techniques lead to effective solutions.

Systems

Artificial Intelligence
Graphics
Security
Networking
Programming Languages
Theory
Scientific Computing

Decision Making
\end{tabular}

What is Computer Science?

The study of \begin{tabular}{l}
What problems can be solved using computation,

How to solve those problems, and

What techniques lead to effective solutions.

Systems

Artificial Intelligence
Graphics
Security
Networking
Programming Languages
Theory
Scientific Computing

Decision Making
\end{tabular}

What is This Course About?

What is This Course About?

- A course about managing complexity

What is This Course About?

- A course about managing complexity
"Mastering abstraction

What is This Course About?

- A course about managing complexity
"Mastering abstraction
"Programming paradigms

What is This Course About?

-A course about managing complexity
"Mastering abstraction
"Programming paradigms
"Not all about 0's and 1's

What is This Course About?

- A course about managing complexity
"Mastering abstraction
"Programming paradigms
"Not all about 0's and 1's

What is This Course About?

- A course about managing complexity
"Mastering abstraction
"Programming paradigms
"Not all about 0's and 1's
- An introduction to Python

What is This Course About?

- A course about managing complexity
"Mastering abstraction
"Programming paradigms
"Not all about 0's and 1's
- An introduction to Python
"Full understanding of language fundamentals

What is This Course About?

- A course about managing complexity
"Mastering abstraction
"Programming paradigms
"Not all about 0's and 1's
- An introduction to Python
"Full understanding of language fundamentals
- Learning through implementation

What is This Course About?

-A course about managing complexity
"Mastering abstraction
"Programming paradigms
"Not all about 0's and 1's

- An introduction to Python
"Full understanding of language fundamentals
-Learning through implementation
-How computers interpret programming languages

What is This Course About?

-A course about managing complexity
"Mastering abstraction
"Programming paradigms
"Not all about 0's and 1's

- An introduction to Python
"Full understanding of language fundamentals
"Learning through implementation
-How computers interpret programming languages
- A challenging course that will demand a lot of you

Course Policies

Alternatives to This Course

Alternatives to This Course

CS 61AS: Self-Paced 61A

Alternatives to This Course

CS 61AS: Self-Paced 61A

CS 10: The Beauty and Joy of Computing

Course Policies

Course Policies

Learning

Course Policies

Learning

Community

Learning

Community

Course Staff

Learning

Community

Course Staff

Details...
http://cs61a.org/about.html

Collaboration

Collaboration

Asking questions is highly encouraged

Collaboration

Asking questions is highly encouraged

- Discuss everything with each other; learn from your fellow students!

Collaboration

Asking questions is highly encouraged

- Discuss everything with each other; learn from your fellow students!
- Homework can be completed with a partner

Collaboration

Asking questions is highly encouraged

- Discuss everything with each other; learn from your fellow students!
- Homework can be completed with a partner
- Projects should be completed with a partner

Collaboration

Asking questions is highly encouraged

- Discuss everything with each other; learn from your fellow students!
- Homework can be completed with a partner
- Projects should be completed with a partner
- Choose a partner from your discussion section

Collaboration

Asking questions is highly encouraged

- Discuss everything with each other; learn from your fellow students!
- Homework can be completed with a partner
- Projects should be completed with a partner
- Choose a partner from your discussion section

The limits of collaboration

Collaboration

Asking questions is highly encouraged

- Discuss everything with each other; learn from your fellow students!
- Homework can be completed with a partner
- Projects should be completed with a partner
- Choose a partner from your discussion section

The limits of collaboration

- One simple rule: Don't share your code, except with your partner

Collaboration

Asking questions is highly encouraged

- Discuss everything with each other; learn from your fellow students!
- Homework can be completed with a partner
- Projects should be completed with a partner
- Choose a partner from your discussion section

The limits of collaboration

- One simple rule: Don't share your code, except with your partner
- Copying project solutions causes people to fail this course

Collaboration

Asking questions is highly encouraged

- Discuss everything with each other; learn from your fellow students!
- Homework can be completed with a partner
- Projects should be completed with a partner
-Choose a partner from your discussion section

The limits of collaboration

- One simple rule: Don't share your code, except with your partner
- Copying project solutions causes people to fail this course
- We really do catch people who violate the rules, because...

Collaboration

Asking questions is highly encouraged

- Discuss everything with each other; learn from your fellow students!
- Homework can be completed with a partner
- Projects should be completed with a partner
- Choose a partner from your discussion section

The limits of collaboration

- One simple rule: Don't share your code, except with your partner
- Copying project solutions causes people to fail this course
- We really do catch people who violate the rules, because...
-We also know how to search the web for solutions

Collaboration

Asking questions is highly encouraged

- Discuss everything with each other; learn from your fellow students!
- Homework can be completed with a partner
- Projects should be completed with a partner
-Choose a partner from your discussion section

The limits of collaboration

- One simple rule: Don't share your code, except with your partner
- Copying project solutions causes people to fail this course
- We really do catch people who violate the rules, because...
-We also know how to search the web for solutions
-We know how to use computers

Collaboration

Asking questions is highly encouraged

- Discuss everything with each other; learn from your fellow students!
- Homework can be completed with a partner
- Projects should be completed with a partner
-Choose a partner from your discussion section

The limits of collaboration

- One simple rule: Don't share your code, except with your partner
- Copying project solutions causes people to fail this course
- We really do catch people who violate the rules, because...
-We also know how to search the web for solutions
-We know how to use computers

Build good habits now

Expressions

Types of expressions

Types of expressions

An expression describes a computation and evaluates to a value

Types of expressions

An expression describes a computation and evaluates to a value

$$
18+69
$$

Types of expressions

An expression describes a computation and evaluates to a value

$$
18+69
$$

$$
\frac{6}{23}
$$

Types of expressions

An expression describes a computation and evaluates to a value

$$
18+69
$$

$$
\frac{6}{23}
$$

$\sqrt{3493161}$

Types of expressions

An expression describes a computation and evaluates to a value
$18+69 \frac{6}{23} \quad \sin \pi$
$\sqrt{3493161}$

Types of expressions

An expression describes a computation and evaluates to a value

$$
\begin{array}{lll}
18+69 & \sin \pi & \\
& \\
& \sqrt{3493161} \\
|-1869| &
\end{array}
$$

Types of expressions

An expression describes a computation and evaluates to a value

$$
\begin{array}{lll}
18+69 & \frac{6}{23} & \sin \pi \\
\\
& \sum_{i=1}^{100} i & \sqrt{3493161} \\
|-1869| & &
\end{array}
$$

Types of expressions

An expression describes a computation and evaluates to a value

$$
\begin{array}{llr}
18+69 & \frac{6}{23} & \sin \pi \\
\\
|-1869| & \sum_{i=1}^{100} i & \sqrt{3493161} \\
& & \binom{69}{18}
\end{array}
$$

Types of expressions

An expression describes a computation and evaluates to a value

$$
\begin{array}{rrr}
18+69 & \frac{6}{23} & \sin \pi \\
\\
f(x) & & \\
& \sum_{i=1}^{100} i & \sqrt{3493161} \\
|-1869| & & \binom{69}{18}
\end{array}
$$

Types of expressions

An expression describes a computation and evaluates to a value

$$
\begin{array}{ccc}
& 18+69 & \frac{6}{23} \\
2^{100} & f(x) & \sin \pi \\
\\
& \sum_{i=1}^{100} i & \sqrt{3493161} \\
& & \\
& & (-1869 \mid
\end{array}
$$

Types of expressions

An expression describes a computation and evaluates to a value

$18+69$	$\frac{6}{23}$	$\sin \pi$
2^{100}	$\log _{2} 1024$	
$\|-1869\|$	$\sum_{i=1}^{100} i$	$\sqrt{3493161}$
$\binom{69}{18}$		

Types of expressions

An expression describes a computation and evaluates to a value

$18+69$	$\frac{6}{23}$	$\sin \pi$
2^{100}		$\log _{2} 1024$
$7 \bmod 2$	$\sum_{i=1}^{100} i$	$\sqrt{3493161}$
$\|-1869\|$		$\binom{69}{18}$

Types of expressions

An expression describes a computation and evaluates to a value

$18+69$	$\frac{6}{23}$	$\sin \pi$
2^{100}	$f(x)$	$\sqrt{3493161}$
$7 \bmod 2$	$\sum_{i=1}^{100} i$	$\log _{2} 1024$
$\|-1869\|$		$\binom{69}{18}$

Types of expressions

An expression describes a computation and evaluates to a value

Call Expressions in Python

All expressions can use function call notation (Demo)

Anatomy of a Call Expression

Operators and operands are also expressions

Anatomy of a Call Expression

Operators and operands are also expressions

So they evaluate to values

Anatomy of a Call Expression

Operators and operands are also expressions

So they evaluate to values

Evaluation procedure for call expressions:

Anatomy of a Call Expression

Operators and operands are also expressions

So they evaluate to values

Evaluation procedure for call expressions:

1. Evaluate the operator and then the operand subexpressions

Anatomy of a Call Expression

Operators and operands are also expressions

So they evaluate to values

Evaluation procedure for call expressions:

1. Evaluate the operator and then the operand subexpressions
2. Apply the function that is the value of the operator subexpression to the arguments that are the values of the operand subexpression

Evaluating Nested Expressions

$\operatorname{mul}(\operatorname{add}(2, \operatorname{mul}(4,6)), \operatorname{add}(3,5))$

Evaluating Nested Expressions

Evaluating Nested Expressions

$\operatorname{mul}(\operatorname{add}(2, \operatorname{mul}(4,6)), \operatorname{add}(3,5))$

Evaluating Nested Expressions

Functions, Objects, and Interpreters

