
61A Lecture 2

Wednesday, September 3, 2014

Announcements

2

Announcements

• Lab 1 is due Wednesday 9/3 at 11:59pm

2

Announcements

• Lab 1 is due Wednesday 9/3 at 11:59pm

• Submitting labs and attending section may help your grade

2

Announcements

• Lab 1 is due Wednesday 9/3 at 11:59pm

• Submitting labs and attending section may help your grade

• Homework 1 is due next Wednesday 9/10 at 11:59pm

2

Announcements

• Lab 1 is due Wednesday 9/3 at 11:59pm

• Submitting labs and attending section may help your grade

• Homework 1 is due next Wednesday 9/10 at 11:59pm

• Office hours are a great place to ask questions about lab and homework assignments (demo)

2

Announcements

• Lab 1 is due Wednesday 9/3 at 11:59pm

• Submitting labs and attending section may help your grade

• Homework 1 is due next Wednesday 9/10 at 11:59pm

• Office hours are a great place to ask questions about lab and homework assignments (demo)

• You can switch to sections with open space. http://goo.gl/nWfv7Z

2

Announcements

• Lab 1 is due Wednesday 9/3 at 11:59pm

• Submitting labs and attending section may help your grade

• Homework 1 is due next Wednesday 9/10 at 11:59pm

• Office hours are a great place to ask questions about lab and homework assignments (demo)

• You can switch to sections with open space. http://goo.gl/nWfv7Z

• Michelle Hwang's sections (15, 18) are for students with little prior CS experience

2

Announcements

• Lab 1 is due Wednesday 9/3 at 11:59pm

• Submitting labs and attending section may help your grade

• Homework 1 is due next Wednesday 9/10 at 11:59pm

• Office hours are a great place to ask questions about lab and homework assignments (demo)

• You can switch to sections with open space. http://goo.gl/nWfv7Z

• Michelle Hwang's sections (15, 18) are for students with little prior CS experience

• Videos are a mix of Fall 2013 and new content

2

Names, Assignment, and User-Defined Functions

(Demo)

Types of Expressions

4

Types of Expressions

Primitive expressions:

4

Types of Expressions

Primitive expressions: 2

Number or Numeral

4

Types of Expressions

Primitive expressions: 2 add

Number or Numeral Name

4

Types of Expressions

Primitive expressions: 2 add 'hello'

Number or Numeral Name String

4

Types of Expressions

Primitive expressions:

Call expressions:

2 add 'hello'

Number or Numeral Name String

4

Types of Expressions

Primitive expressions:

Call expressions:

2 add 'hello'

max (2 , 3)

Number or Numeral Name String

4

Types of Expressions

Primitive expressions:

Call expressions:

2 add 'hello'

max (2 , 3)

Operator

Number or Numeral Name String

4

Types of Expressions

Primitive expressions:

Call expressions:

2 add 'hello'

max (2 , 3)

Operator Operand Operand

Number or Numeral Name String

4

Types of Expressions

Primitive expressions:

Call expressions:

2 add 'hello'

max (2 , 3)

Operator Operand Operand

max(min(pow(3, 5), -4), min(1, -2))

Number or Numeral Name String

4

Types of Expressions

Primitive expressions:

Call expressions:

2 add 'hello'

max (2 , 3)

Operator Operand Operand

max(min(pow(3, 5), -4), min(1, -2))

Number or Numeral Name String

4

An operand can also
be a call expression

Types of Expressions

Primitive expressions:

Call expressions:

2 add 'hello'

max (2 , 3)

Operator Operand Operand

max(min(pow(3, 5), -4), min(1, -2))

Number or Numeral Name String

4

An operand can also
be a call expression

Discussion Question 1

5

Discussion Question 1

What is the value of the final expression in this sequence?

5

Discussion Question 1

What is the value of the final expression in this sequence?

>>> f = min

5

Discussion Question 1

What is the value of the final expression in this sequence?

>>> f = min

>>> f = max

5

Discussion Question 1

What is the value of the final expression in this sequence?

>>> f = min

>>> f = max

>>> g, h = min, max

5

Discussion Question 1

What is the value of the final expression in this sequence?

>>> f = min

>>> f = max

>>> g, h = min, max

>>> max = g

5

Discussion Question 1

What is the value of the final expression in this sequence?

>>> f = min

>>> f = max

>>> g, h = min, max

>>> max = g

>>> max(f(2, g(h(1, 5), 3)), 4)

5

Discussion Question 1

What is the value of the final expression in this sequence?

>>> f = min

>>> f = max

>>> g, h = min, max

>>> max = g

>>> max(f(2, g(h(1, 5), 3)), 4)

???

5

Discussion Question 1

What is the value of the final expression in this sequence?

>>> f = min

>>> f = max

>>> g, h = min, max

>>> max = g

>>> max(f(2, g(h(1, 5), 3)), 4)

???

5

Environment Diagrams

Environment Diagrams

Environment diagrams visualize the interpreter’s process.

7Interactive Diagram

Environment Diagrams

Environment diagrams visualize the interpreter’s process.

7Interactive Diagram

Environment Diagrams

Environment diagrams visualize the interpreter’s process.

7Interactive Diagram

Environment Diagrams

Frames (right):Code (left):

Environment diagrams visualize the interpreter’s process.

7Interactive Diagram

Environment Diagrams

Statements and expressions

Frames (right):Code (left):

Environment diagrams visualize the interpreter’s process.

7Interactive Diagram

Environment Diagrams

Import statement

Statements and expressions

Frames (right):Code (left):

Environment diagrams visualize the interpreter’s process.

7Interactive Diagram

Environment Diagrams

Import statement

Statements and expressions

Frames (right):Code (left):

Environment diagrams visualize the interpreter’s process.

7

Assignment statement

Interactive Diagram

Environment Diagrams

Import statement

Statements and expressions

Arrows indicate evaluation order

Frames (right):Code (left):

Environment diagrams visualize the interpreter’s process.

7

Assignment statement

Interactive Diagram

Environment Diagrams

Import statement

Statements and expressions

Arrows indicate evaluation order

Frames (right):Code (left):

Environment diagrams visualize the interpreter’s process.

7

Just executed

Assignment statement

Interactive Diagram

Environment Diagrams

Import statement

Statements and expressions

Arrows indicate evaluation order

Frames (right):Code (left):

Environment diagrams visualize the interpreter’s process.

7

Just executed

Next to execute Assignment statement

Interactive Diagram

Environment Diagrams

Import statement

Each name is bound to a valueStatements and expressions

Arrows indicate evaluation order

Frames (right):Code (left):

Environment diagrams visualize the interpreter’s process.

7

Just executed

Next to execute Assignment statement

Interactive Diagram

Environment Diagrams

Name

Import statement

Each name is bound to a valueStatements and expressions

Arrows indicate evaluation order

Frames (right):Code (left):

Environment diagrams visualize the interpreter’s process.

7

Just executed

Next to execute Assignment statement

Interactive Diagram

Environment Diagrams

Name Value

Import statement

Each name is bound to a valueStatements and expressions

Arrows indicate evaluation order

Frames (right):Code (left):

Environment diagrams visualize the interpreter’s process.

7

Just executed

Next to execute Assignment statement

Interactive Diagram

Environment Diagrams

Name Value

Import statement

Each name is bound to a value

Within a frame, a name cannot be repeated

Statements and expressions

Arrows indicate evaluation order

Frames (right):Code (left):

Environment diagrams visualize the interpreter’s process.

7

Just executed

Next to execute Assignment statement

Interactive Diagram

Environment Diagrams

(Demo)

Name Value

Import statement

Each name is bound to a value

Within a frame, a name cannot be repeated

Statements and expressions

Arrows indicate evaluation order

Frames (right):Code (left):

Environment diagrams visualize the interpreter’s process.

7

Just executed

Next to execute Assignment statement

Interactive Diagram

Assignment Statements

8Interactive Diagram

Assignment Statements

8Interactive Diagram

Assignment Statements

8Interactive Diagram

Assignment Statements

8

Just executed

Interactive Diagram

Assignment Statements

8

Just executed

Next to execute

Interactive Diagram

Assignment Statements

Execution rule for assignment statements:

8

Just executed

Next to execute

Interactive Diagram

Assignment Statements

Execution rule for assignment statements:

1. Evaluate all expressions to the right of = from left to right.

8

Just executed

Next to execute

Interactive Diagram

Assignment Statements

Execution rule for assignment statements:

1. Evaluate all expressions to the right of = from left to right.

2. Bind all names to the left of = to the resulting values in the current frame.

8

Just executed

Next to execute

Interactive Diagram

Assignment Statements

Execution rule for assignment statements:

1. Evaluate all expressions to the right of = from left to right.

2. Bind all names to the left of = to the resulting values in the current frame.

8

Just executed

Just executed

Next to execute

Interactive Diagram

Assignment Statements

Execution rule for assignment statements:

1. Evaluate all expressions to the right of = from left to right.

2. Bind all names to the left of = to the resulting values in the current frame.

8

Just executed

Just executed

Next to execute

Interactive Diagram

Discussion Question 1 Solution

9

(Demo)

Interactive Diagram

Discussion Question 1 Solution

9

(Demo)

Interactive Diagram

Discussion Question 1 Solution

9

(Demo)

Interactive Diagram

Discussion Question 1 Solution

9

(Demo)

Interactive Diagram

Discussion Question 1 Solution

9

func min(...)

(Demo)

Interactive Diagram

Discussion Question 1 Solution

9

func min(...)
f(2, g(h(1, 5), 3))

(Demo)

Interactive Diagram

Discussion Question 1 Solution

9

func min(...)
f(2, g(h(1, 5), 3))

func max(...) 2

(Demo)

Interactive Diagram

Discussion Question 1 Solution

9

func min(...)
f(2, g(h(1, 5), 3))

g(h(1, 5), 3)
func max(...) 2

(Demo)

Interactive Diagram

Discussion Question 1 Solution

9

func min(...)
f(2, g(h(1, 5), 3))

g(h(1, 5), 3)
func max(...) 2

func min(...)

(Demo)

Interactive Diagram

Discussion Question 1 Solution

9

func min(...)
f(2, g(h(1, 5), 3))

g(h(1, 5), 3)
func max(...) 2

h(1, 5)
func min(...)

(Demo)

Interactive Diagram

Discussion Question 1 Solution

9

func min(...)
f(2, g(h(1, 5), 3))

g(h(1, 5), 3)
func max(...) 2

h(1, 5)
func min(...)

5 func max(...) 1

(Demo)

Interactive Diagram

Discussion Question 1 Solution

9

func min(...)
f(2, g(h(1, 5), 3))

g(h(1, 5), 3)
func max(...) 2

h(1, 5)
func min(...) 5

5 func max(...) 1

(Demo)

Interactive Diagram

Discussion Question 1 Solution

9

func min(...)
f(2, g(h(1, 5), 3))

g(h(1, 5), 3)
func max(...) 2

3
h(1, 5)

func min(...) 5

5 func max(...) 1

(Demo)

Interactive Diagram

Discussion Question 1 Solution

9

func min(...)
f(2, g(h(1, 5), 3))

g(h(1, 5), 3)
3 func max(...) 2

3
h(1, 5)

func min(...) 5

5 func max(...) 1

(Demo)

Interactive Diagram

Discussion Question 1 Solution

9

func min(...)
f(2, g(h(1, 5), 3))

3

g(h(1, 5), 3)
3 func max(...) 2

3
h(1, 5)

func min(...) 5

5 func max(...) 1

(Demo)

Interactive Diagram

Discussion Question 1 Solution

9

func min(...) 4
f(2, g(h(1, 5), 3))

3

g(h(1, 5), 3)
3 func max(...) 2

3
h(1, 5)

func min(...) 5

5 func max(...) 1

(Demo)

Interactive Diagram

Discussion Question 1 Solution

9

func min(...) 4

3

f(2, g(h(1, 5), 3))
3

g(h(1, 5), 3)
3 func max(...) 2

3
h(1, 5)

func min(...) 5

5 func max(...) 1

(Demo)

Interactive Diagram

Discussion Question 1 Solution

9

func min(...) 4

3

f(2, g(h(1, 5), 3))
3

g(h(1, 5), 3)
3 func max(...) 2

3
h(1, 5)

func min(...) 5

5 func max(...) 1 3

(Demo)

Interactive Diagram

Defining Functions

Defining Functions

Assignment is a simple means of abstraction: binds names to values

Function definition is a more powerful means of abstraction: binds names to expressions

11

Defining Functions

Assignment is a simple means of abstraction: binds names to values

Function definition is a more powerful means of abstraction: binds names to expressions

<name>(<formal parameters>):

return <return expression>

>>> def

11

Defining Functions

Assignment is a simple means of abstraction: binds names to values

Function definition is a more powerful means of abstraction: binds names to expressions

<name>(<formal parameters>):

return <return expression>

>>> def

Function signature indicates how many arguments a function takes

11

Defining Functions

Assignment is a simple means of abstraction: binds names to values

Function definition is a more powerful means of abstraction: binds names to expressions

<name>(<formal parameters>):

return <return expression>

>>> def

Function signature indicates how many arguments a function takes

Function body defines the computation performed when the function is applied

11

Defining Functions

Assignment is a simple means of abstraction: binds names to values

Function definition is a more powerful means of abstraction: binds names to expressions

<name>(<formal parameters>):

return <return expression>

>>> def

Execution procedure for def statements:

Function signature indicates how many arguments a function takes

Function body defines the computation performed when the function is applied

11

Defining Functions

Assignment is a simple means of abstraction: binds names to values

Function definition is a more powerful means of abstraction: binds names to expressions

<name>(<formal parameters>):

return <return expression>

>>> def

Execution procedure for def statements:

1. Create a function with signature <name>(<formal parameters>)

Function signature indicates how many arguments a function takes

Function body defines the computation performed when the function is applied

11

Defining Functions

Assignment is a simple means of abstraction: binds names to values

Function definition is a more powerful means of abstraction: binds names to expressions

<name>(<formal parameters>):

return <return expression>

>>> def

Execution procedure for def statements:

1. Create a function with signature <name>(<formal parameters>)

2. Set the body of that function to be everything indented after the first line

Function signature indicates how many arguments a function takes

Function body defines the computation performed when the function is applied

11

Defining Functions

Assignment is a simple means of abstraction: binds names to values

Function definition is a more powerful means of abstraction: binds names to expressions

<name>(<formal parameters>):

return <return expression>

>>> def

Execution procedure for def statements:

1. Create a function with signature <name>(<formal parameters>)

2. Set the body of that function to be everything indented after the first line

3. Bind <name> to that function in the current frame

Function signature indicates how many arguments a function takes

Function body defines the computation performed when the function is applied

11

Calling User-Defined Functions

12Interactive Diagram

Calling User-Defined Functions

Procedure for calling/applying user-defined functions (version 1):

12Interactive Diagram

Calling User-Defined Functions

Procedure for calling/applying user-defined functions (version 1):

1. Add a local frame, forming a new environment

12Interactive Diagram

Calling User-Defined Functions

Procedure for calling/applying user-defined functions (version 1):

1. Add a local frame, forming a new environment
2. Bind the function's formal parameters to its arguments in that frame

12Interactive Diagram

Calling User-Defined Functions

Procedure for calling/applying user-defined functions (version 1):

1. Add a local frame, forming a new environment
2. Bind the function's formal parameters to its arguments in that frame
3. Execute the body of the function in that new environment

12Interactive Diagram

Calling User-Defined Functions

Procedure for calling/applying user-defined functions (version 1):

1. Add a local frame, forming a new environment
2. Bind the function's formal parameters to its arguments in that frame
3. Execute the body of the function in that new environment

12Interactive Diagram

Calling User-Defined Functions

Procedure for calling/applying user-defined functions (version 1):

1. Add a local frame, forming a new environment
2. Bind the function's formal parameters to its arguments in that frame
3. Execute the body of the function in that new environment

Built-in function

12Interactive Diagram

Calling User-Defined Functions

Procedure for calling/applying user-defined functions (version 1):

1. Add a local frame, forming a new environment
2. Bind the function's formal parameters to its arguments in that frame
3. Execute the body of the function in that new environment

Built-in function

User-defined
function

12Interactive Diagram

Calling User-Defined Functions

Procedure for calling/applying user-defined functions (version 1):

1. Add a local frame, forming a new environment
2. Bind the function's formal parameters to its arguments in that frame
3. Execute the body of the function in that new environment

Local frame

Built-in function

User-defined
function

12Interactive Diagram

Calling User-Defined Functions

Procedure for calling/applying user-defined functions (version 1):

1. Add a local frame, forming a new environment
2. Bind the function's formal parameters to its arguments in that frame
3. Execute the body of the function in that new environment

Local frame

Original name of
function called

Built-in function

User-defined
function

12Interactive Diagram

Calling User-Defined Functions

Procedure for calling/applying user-defined functions (version 1):

1. Add a local frame, forming a new environment
2. Bind the function's formal parameters to its arguments in that frame
3. Execute the body of the function in that new environment

Local frame

Original name of
function called

Formal parameter
bound to argument

Built-in function

User-defined
function

12Interactive Diagram

Calling User-Defined Functions

Procedure for calling/applying user-defined functions (version 1):

1. Add a local frame, forming a new environment
2. Bind the function's formal parameters to its arguments in that frame
3. Execute the body of the function in that new environment

Local frame

Original name of
function called

Formal parameter
bound to argument Return value 

(not a binding!)

Built-in function

User-defined
function

12Interactive Diagram

Calling User-Defined Functions

13

Procedure for calling/applying user-defined functions (version 1):

1. Add a local frame, forming a new environment
2. Bind the function's formal parameters to its arguments in that frame
3. Execute the body of the function in that new environment

Interactive Diagram

Calling User-Defined Functions

A function’s signature has all the
information needed to create a local frame

13

Procedure for calling/applying user-defined functions (version 1):

1. Add a local frame, forming a new environment
2. Bind the function's formal parameters to its arguments in that frame
3. Execute the body of the function in that new environment

Interactive Diagram

Calling User-Defined Functions

A function’s signature has all the
information needed to create a local frame

13

Procedure for calling/applying user-defined functions (version 1):

1. Add a local frame, forming a new environment
2. Bind the function's formal parameters to its arguments in that frame
3. Execute the body of the function in that new environment

Interactive Diagram

Calling User-Defined Functions

A function’s signature has all the
information needed to create a local frame

13

Procedure for calling/applying user-defined functions (version 1):

1. Add a local frame, forming a new environment
2. Bind the function's formal parameters to its arguments in that frame
3. Execute the body of the function in that new environment

Interactive Diagram

Looking Up Names In Environments

14

Looking Up Names In Environments

Every expression is evaluated in the context of an environment.

14

Looking Up Names In Environments

Every expression is evaluated in the context of an environment.

So far, the current environment is either:

14

Looking Up Names In Environments

Every expression is evaluated in the context of an environment.

So far, the current environment is either:

• The global frame alone, or

14

Looking Up Names In Environments

Every expression is evaluated in the context of an environment.

So far, the current environment is either:

• The global frame alone, or

• A local frame, followed by the global frame.

14

Looking Up Names In Environments

Every expression is evaluated in the context of an environment.

So far, the current environment is either:

• The global frame alone, or

• A local frame, followed by the global frame.

Most important two things I’ll say all day:

14

Looking Up Names In Environments

Every expression is evaluated in the context of an environment.

So far, the current environment is either:

• The global frame alone, or

• A local frame, followed by the global frame.

Most important two things I’ll say all day:

An environment is a sequence of frames.

14

Looking Up Names In Environments

Every expression is evaluated in the context of an environment.

So far, the current environment is either:

• The global frame alone, or

• A local frame, followed by the global frame.

Most important two things I’ll say all day:

An environment is a sequence of frames.

A name evaluates to the value bound to that name in the earliest frame of the current
environment in which that name is found.

14

Looking Up Names In Environments

Every expression is evaluated in the context of an environment.

So far, the current environment is either:

• The global frame alone, or

• A local frame, followed by the global frame.

Most important two things I’ll say all day:

An environment is a sequence of frames.

A name evaluates to the value bound to that name in the earliest frame of the current
environment in which that name is found.

E.g., to look up some name in the body of the square function:

14

Looking Up Names In Environments

Every expression is evaluated in the context of an environment.

So far, the current environment is either:

• The global frame alone, or

• A local frame, followed by the global frame.

Most important two things I’ll say all day:

An environment is a sequence of frames.

A name evaluates to the value bound to that name in the earliest frame of the current
environment in which that name is found.

E.g., to look up some name in the body of the square function:

• Look for that name in the local frame.

14

Looking Up Names In Environments

Every expression is evaluated in the context of an environment.

So far, the current environment is either:

• The global frame alone, or

• A local frame, followed by the global frame.

Most important two things I’ll say all day:

An environment is a sequence of frames.

A name evaluates to the value bound to that name in the earliest frame of the current
environment in which that name is found.

E.g., to look up some name in the body of the square function:

• Look for that name in the local frame.

• If not found, look for it in the global frame. 
(Built-in names like “max” are in the global frame too,  
 but we don’t draw them in environment diagrams.)

14

Looking Up Names In Environments

Every expression is evaluated in the context of an environment.

So far, the current environment is either:

• The global frame alone, or

• A local frame, followed by the global frame.

Most important two things I’ll say all day:

An environment is a sequence of frames.

A name evaluates to the value bound to that name in the earliest frame of the current
environment in which that name is found.

E.g., to look up some name in the body of the square function:

• Look for that name in the local frame.

• If not found, look for it in the global frame. 
(Built-in names like “max” are in the global frame too,  
 but we don’t draw them in environment diagrams.)

(Demo)
14

Print and None

(Demo)

None Indicates that Nothing is Returned

16

None Indicates that Nothing is Returned

The special value None represents nothing in Python

16

None Indicates that Nothing is Returned

The special value None represents nothing in Python

A function that does not explicitly return a value will return None

16

None Indicates that Nothing is Returned

The special value None represents nothing in Python

A function that does not explicitly return a value will return None

Careful: None is not displayed by the interpreter as the value of an expression

16

None Indicates that Nothing is Returned

The special value None represents nothing in Python

A function that does not explicitly return a value will return None

Careful: None is not displayed by the interpreter as the value of an expression

16

>>> def does_not_square(x):

... x * x

...

None Indicates that Nothing is Returned

The special value None represents nothing in Python

A function that does not explicitly return a value will return None

Careful: None is not displayed by the interpreter as the value of an expression

16

>>> def does_not_square(x):

... x * x

... No return

None Indicates that Nothing is Returned

The special value None represents nothing in Python

A function that does not explicitly return a value will return None

Careful: None is not displayed by the interpreter as the value of an expression

16

>>> def does_not_square(x):

... x * x

...

>>> does_not_square(4)

No return

None Indicates that Nothing is Returned

The special value None represents nothing in Python

A function that does not explicitly return a value will return None

Careful: None is not displayed by the interpreter as the value of an expression

16

>>> def does_not_square(x):

... x * x

...

>>> does_not_square(4)

No return

None value is not displayed

None Indicates that Nothing is Returned

The special value None represents nothing in Python

A function that does not explicitly return a value will return None

Careful: None is not displayed by the interpreter as the value of an expression

16

>>> def does_not_square(x):

... x * x

...

>>> does_not_square(4)

>>> sixteen = does_not_square(4)

No return

None value is not displayed

None Indicates that Nothing is Returned

The special value None represents nothing in Python

A function that does not explicitly return a value will return None

Careful: None is not displayed by the interpreter as the value of an expression

16

>>> def does_not_square(x):

... x * x

...

>>> does_not_square(4)

>>> sixteen = does_not_square(4)The name sixteen
is now bound to
the value None

No return

None value is not displayed

None Indicates that Nothing is Returned

The special value None represents nothing in Python

A function that does not explicitly return a value will return None

Careful: None is not displayed by the interpreter as the value of an expression

16

>>> def does_not_square(x):

... x * x

...

>>> does_not_square(4)

>>> sixteen = does_not_square(4)

>>> sixteen + 4

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for +: 'NoneType' and 'int'

The name sixteen
is now bound to
the value None

No return

None value is not displayed

Pure Functions & Non-Pure Functions

Pure Functions
just return values

Non-Pure Functions
have side effects

17

abs

Pure Functions & Non-Pure Functions

Pure Functions
just return values

Non-Pure Functions
have side effects

17

abs

Pure Functions & Non-Pure Functions

-2
Pure Functions
just return values

Non-Pure Functions
have side effects

17

abs

Pure Functions & Non-Pure Functions

-2
2

Pure Functions
just return values

Non-Pure Functions
have side effects

17

abs

Pure Functions & Non-Pure Functions

-2
2

Pure Functions
just return values

Non-Pure Functions
have side effects

Argument

17

abs

Pure Functions & Non-Pure Functions

-2
2

Pure Functions
just return values

Non-Pure Functions
have side effects

Argument

Return value

17

abs

Pure Functions & Non-Pure Functions

-2
2

pow

Pure Functions
just return values

Non-Pure Functions
have side effects

Argument

Return value

17

abs

Pure Functions & Non-Pure Functions

-2
2

2, 100 pow

Pure Functions
just return values

Non-Pure Functions
have side effects

Argument

Return value

17

abs

Pure Functions & Non-Pure Functions

-2
2

2, 100 pow

Pure Functions
just return values

Non-Pure Functions
have side effects

Argument

Return value

17

2 Arguments

abs

Pure Functions & Non-Pure Functions

-2
2

2, 100
1267650600228229401496703205376

pow

Pure Functions
just return values

Non-Pure Functions
have side effects

Argument

Return value

17

2 Arguments

abs

Pure Functions & Non-Pure Functions

-2
2

print

2, 100
1267650600228229401496703205376

pow

Pure Functions
just return values

Non-Pure Functions
have side effects

Argument

Return value

17

2 Arguments

abs

Pure Functions & Non-Pure Functions

-2
2

-2 print

2, 100
1267650600228229401496703205376

pow

Pure Functions
just return values

Non-Pure Functions
have side effects

Argument

Return value

17

2 Arguments

abs

Pure Functions & Non-Pure Functions

-2
2

-2
None

print

2, 100
1267650600228229401496703205376

pow

Pure Functions
just return values

Non-Pure Functions
have side effects

Argument

Return value

17

2 Arguments

abs

Pure Functions & Non-Pure Functions

-2
2

-2
None

print

Python displays the output “-2”

2, 100
1267650600228229401496703205376

pow

Pure Functions
just return values

Non-Pure Functions
have side effects

Argument

Return value

17

2 Arguments

abs

Pure Functions & Non-Pure Functions

-2
2

-2
None

print

Python displays the output “-2”

2, 100
1267650600228229401496703205376

pow

Pure Functions
just return values

Non-Pure Functions
have side effects

Argument

Return value

Returns None!

17

2 Arguments

abs

Pure Functions & Non-Pure Functions

-2
2

-2
None

print

Python displays the output “-2”

2, 100
1267650600228229401496703205376

pow

Pure Functions
just return values

Non-Pure Functions
have side effects

Argument

Return value

A side effect isn't a
value; it's anything
that happens as a
consequence of

calling a function

Returns None!

17

2 Arguments

Nested Expressions with Print

18

Nested Expressions with Print

print(print(1), print(2))

18

Nested Expressions with Print

print(print(1), print(2))

18

Nested Expressions with Print

print(print(1), print(2))

func print(...)

18

Nested Expressions with Print

print(print(1), print(2))

func print(...)
print(1)

func print(...) 1

18

Nested Expressions with Print

print(print(1), print(2))

func print(...)

print(...):1
None

display “1”

print(1)

func print(...) 1

18

Nested Expressions with Print

print(print(1), print(2))

func print(...)

print(...):1
None

display “1”

print(1)

func print(...) 1

None

18

Nested Expressions with Print

print(print(1), print(2))

func print(...)

print(...):1
None

display “1”

print(1)

func print(...) 1

None
print(2)

2

18

func print(...)

Nested Expressions with Print

print(print(1), print(2))

func print(...)

print(...):1
None

display “1”

print(...):2
None

display “2”

print(1)

func print(...) 1

None
print(2)

2

18

func print(...)

Nested Expressions with Print

print(print(1), print(2))

func print(...)

print(...):1
None

display “1”

print(...):2
None

display “2”

print(1)

func print(...) 1

None
print(2)

2

None

18

func print(...)

Nested Expressions with Print

print(print(1), print(2))

func print(...)

print(...):1
None

display “1”

print(...):2
None

display “2”

print(...):None, None
None

display “None None”

print(1)

func print(...) 1

None
print(2)

2

None

18

func print(...)

Nested Expressions with Print

None
print(print(1), print(2))

func print(...)

print(...):1
None

display “1”

print(...):2
None

display “2”

print(...):None, None
None

display “None None”

print(1)

func print(...) 1

None
print(2)

2

None

18

func print(...)

Nested Expressions with Print

None
print(print(1), print(2))

func print(...)

print(...):1
None

display “1”

print(...):2
None

display “2”

print(...):None, None
None

display “None None”

print(1)

func print(...) 1

None
print(2)

2

None

18

func print(...)

Nested Expressions with Print

None
print(print(1), print(2))

func print(...)

print(...):1
None

display “1”

print(...):2
None

display “2”

print(...):None, None
None

display “None None”

print(1)

func print(...) 1

None
print(2)

2

None

18

Does not get
displayed

func print(...)

