61A Lecture 4

Monday, September 8

Announcements

Announcements

*Homework 1 due Wednesday 9/10 at 2pm. Late homework is not accepted!

Announcements

Homework 1 due Wednesday 9/10 at 2pm. Late homework is not accepted!

Homework parties on Monday 9/8 (Today!)

Announcements

Homework 1 due Wednesday 9/10 at 2pm. Late homework is not accepted!
Homework parties on Monday 9/8 (Today!)

3pm-4pm in Wozniak Lounge in Soda Hall (100 person capacity)

Announcements

Homework 1 due Wednesday 9/10 at 2pm. Late homework is not accepted!
Homework parties on Monday 9/8 (Today!)
3pm-4pm in Wozniak Lounge in Soda Hall (100 person capacity)

6pm—-8pm in 2050 Valley Life Sciences Building (408 person capacity)

Announcements

Homework 1 due Wednesday 9/10 at 2pm. Late homework is not accepted!
Homework parties on Monday 9/8 (Today!)
3pm-4pm in Wozniak Lounge in Soda Hall (100 person capacity)
6pm—-8pm in 2050 Valley Life Sciences Building (408 person capacity)

More sections for students without prior programming experience! http://cs6la.org

Announcements

Homework 1 due Wednesday 9/10 at 2pm. Late homework is not accepted!
Homework parties on Monday 9/8 (Today!)
3pm-4pm in Wozniak Lounge in Soda Hall (100 person capacity)
6pm—-8pm in 2050 Valley Life Sciences Building (408 person capacity)
More sections for students without prior programming experience! http://cs6la.org

Take—home quiz 1 starts Wednesday 9/10 at 3pm, due Thursday 9/11 at 11:59pm

Announcements

Homework 1 due Wednesday 9/10 at 2pm. Late homework is not accepted!
Homework parties on Monday 9/8 (Today!)
3pm-4pm in Wozniak Lounge in Soda Hall (100 person capacity)
6pm—-8pm in 2050 Valley Life Sciences Building (408 person capacity)
More sections for students without prior programming experience! http://cs6la.org
Take—home quiz 1 starts Wednesday 9/10 at 3pm, due Thursday 9/11 at 11:59pm

Open-computer, but no external resources or friends

Announcements

Homework 1 due Wednesday 9/10 at 2pm. Late homework is not accepted!
Homework parties on Monday 9/8 (Today!)
3pm-4pm in Wozniak Lounge in Soda Hall (100 person capacity)
6pm—-8pm in 2050 Valley Life Sciences Building (408 person capacity)
More sections for students without prior programming experience! http://cs6la.org
Take—home quiz 1 starts Wednesday 9/10 at 3pm, due Thursday 9/11 at 11:59pm
Open-computer, but no external resources or friends

Content Covered: Lectures through last Friday 9/5 (same topics as Homework 1)

Announcements

Homework 1 due Wednesday 9/10 at 2pm. Late homework is not accepted!
Homework parties on Monday 9/8 (Today!)
3pm-4pm in Wozniak Lounge in Soda Hall (100 person capacity)
6pm—-8pm in 2050 Valley Life Sciences Building (408 person capacity)
More sections for students without prior programming experience! http://cs6la.org
Take—home quiz 1 starts Wednesday 9/10 at 3pm, due Thursday 9/11 at 11:59pm
Open-computer, but no external resources or friends
Content Covered: Lectures through last Friday 9/5 (same topics as Homework 1)

Project 1 due next Wednesday 9/17 at 11:59pm

Iteration Example

The Fibonacci Sequence

The Fibonacci Sequence

The Fibonacci Sequence

The Fibonacci Sequence

The Fibonacci Sequence

The Fibonacci Sequence

The Fibonacci Sequence

def fib(n):
"""Compute the nth Fibonacci number, for N >= 1."""
pred, curr =0, 1 # First two Fibonacci numbers
k =1 # Tracks which Fib number is curr
while k < n:
pred, curr = curr, pred + curr
k =k +1
return curr

The Fibonacci Sequence

def fib(n):
"""Compute the nth Fibonacci number, for N >= 1."""
pred, curr =0, 1 # First two Fibonacci numbers

k =1 # Tracks which Fib number 1is curr
while k < n:

pred, curr = curr,{pred + curr
kK=k+1 AT

return curr ['The next Fibonacci number is the sum of }

the current one and its predecessor

The Fibonacci Sequence

fib

n R , >
predecessor ~3, 5

current "8, 23
K ht)
3¢
V4 55
V4 89

def fib(n):

"""Compute the nth Fibonacci number, for N >= 1."""
pred, curr =0, 1 # First two Fibonacci numbers

k =1 # Tracks which Fib number 1is curr
while k < n:

pred, curr = curr,{pred + curr
kK=k+1 AT

return curr ['The next Fibonacci number is the sum of }

the current one and its predecessor

The Fibonacci Sequence

fib

n A , >
predecessor ~3, 5

current "8, 23
K ht)
3¢
V4 55
V4 89

def fib(n):

"""Compute the nth Fibonacci number, for N >= 1."""
pred, curr =0, 1 # First two Fibonacci numbers

k =1 # Tracks which Fib number 1is curr
while k < n:

pred, curr = curr,{pred + curr
kK=k+1 AT

return curr ['The next Fibonacci number is the sum of }

the current one and its predecessor

The Fibonacci Sequence

fib

n A , >
predecessor ~3, 5

current "8, 23
K ht)
3¢
V4 55
V4 89

def fib(n):

"""Compute the nth Fibonacci number, for N >= 1."""
pred, curr =0, 1 # First two Fibonacci numbers

k =1 # Tracks which Fib number 1is curr
while k < n:

pred, curr = curr,{pred + curr
k=k+1 AT

return curr ['The next Fibonacci number is the sum of

the current one and its predecessor

The Fibonacci Sequence

fib
9, 7
n ’
’ 2'
predecessor 3, 5
current "8, 23
K 22
’ 34
V4 55
’ 89
def fib(n):
"""Compute the nth Fibonacci number, for N >= 1."""
pred, curr =0, 1 # First two Fibonacci numbers
k =1 # Tracks which Fib number is curr
while k < n:
g pred, curr = curr,; pred + curr
k=k+1 N

return curr
the current one and its predecessor

The next Fibonacci number is the sum of }

The Fibonacci Sequence

fib

n "L 4, >

current "8, 23
k "<,
3¢
’ 55
’ 89

def fib(n):

"""Compute the nth Fibonacci number, for N >= 1."""
pred, curr =0, 1 # First two Fibonacci numbers

k =1 # Tracks which Fib number 1is curr
while k < n:

pred, curr = curr,{pred + curr
k=k+1 AT

return curr ['The next Fibonacci number is the sum of

the current one and its predecessor

The Fibonacci Sequence

fib
@I

n % 2

predecessor H, 5
current "8, 23
k "<,
3¢
’ 55
’ 89

def fib(n):

"""Compute the nth Fibonacci number, for N >= 1."""
pred, curr =0, 1 # First two Fibonacci numbers

k =1 # Tracks which Fib number 1is curr
while k < n:

pred, curr = curr,{pred + curr
k=k+1 AT

return curr ['The next Fibonacci number is the sum of

the current one and its predecessor

The Fibonacci Sequence

fib

n R , >
predecessor —o, 5

8
current 213
K ht)
3¢
V4 55
V4 89

def fib(n):

"""Compute the nth Fibonacci number, for N >= 1."""
pred, curr =0, 1 # First two Fibonacci numbers

k =1 # Tracks which Fib number 1is curr
while k < n:

pred, curr = curr,{pred + curr
k=k+1 AT

return curr ['The next Fibonacci number is the sum of

the current one and its predecessor

Discussion Question 1

What does pyramid compute?

Discussion Question 1

What does pyramid compute?

def pyramid(n):
a, b, total =0, n, 0
while b:
a, b =a+l, b-1
total = total + a + b
return total

Discussion Question 1

What does pyramid compute?

def pyramid(n):
a, b, total =0, n, 0
while b:
(n 4 1)? a, b =a+l, b-1
total = total + a + b
return total

Discussion Question 1

What does pyramid compute?

def pyramid(n):
a, b, total =0, n, 0
while b:
(n 4 1)? a, b =a+l, b-1
total = total + a + b
return total

5
%
e - b
g
4

Discussion Question 1

What does pyramid compute?

def pyramid(n):
a, b, total =0, n, 0
while b:
(n 4 1)? a, b =a+l, b-1
total = total + a + b
return total

5
%
e - b
g
4

n®+1 l

Discussion Question 1

What does pyramid compute?

def pyramid(n):
a, b, total =0, n, 0
while b:
(n 4 1)? a, b =a+l, b-1
total = total + a + b
return total

5
%
e - b
g
4

R e

L 4

Discussion Question 1

What does pyramid compute?

def pyramid(n):
a, b, total =0, n, 0
while b:
(n 4 1)? a, b =a+l, b-1
total = total + a + b
return total

Discussion Question 1

What does pyramid compute?

def pyramid(n):
a, b, total =0, n, 0
while b:

(n 4 1)? a, b =a+l, b-1

total = total + a + b

return total

Discussion Question 1

What does pyramid compute?

def pyramid(n):
a, b, total =0, n, 0
while b:

(n 4 1)? a, b =a+l, b-1

total = total + a + b

return total

Discussion Question 1

What does pyramid compute?

def pyramid(n):
a, b, total =0, n, 0
while b:
(n 4 1)? a, b =a+l, b-1
total = total + a + b
return total

2 ‘ b
0%
0‘0‘0

¢

Discussion Question 1

What does pyramid compute?

def pyramid(n):
a, b, total =0, n, 0
while b:
(n 4 1)? a, b =a+l, b-1
total = total + a + b
return total

g
<
Wy b
g
y

* o
9%,

930%8
Q0

D

¢

Discussion Question 1

What does pyramid compute?

def pyramid(n):
a, b, total =0, n, 0
while b:
(n 4 1)? a, b =a+l, b-1

g
<
Wy b
g
y

* o
9%,

930%8
Q0

D

¢

Discussion Question 1

What does pyramid compute?

def pyramid(n):
a, b, total =0, n, 0
while b:

g
<
Wy b
g
y

* o
9%,

930%8
Q0

D

¢

Discussion Question 1

What does pyramid compute?

def pyramid(n):
a, b, total =0, n, 0
while b:

g
<
Wy b
g
y

* o
9%,

930%8
Q0

D

¢

Designing Functions

Characteristics of Functions

Characteristics of Functions

A function's domain is the set of all inputs it might possibly take as arguments.

Characteristics of Functions

A function's domain is the set of all inputs it might possibly take as arguments.

A function's range is the set of output values it might possibly return.

Characteristics of Functions

A function's domain is the set of all inputs it might possibly take as arguments.

A function's range is the set of output values it might possibly return.

A pure function's behavior is the relationship it creates between input and output.

Characteristics of Functions

def square(x):
lIIlIIReturn X * X.IIIIII

A function's domain is the set of all inputs it might possibly take as arguments.

A function's range is the set of output values it might possibly return.

A pure function's behavior is the relationship it creates between input and output.

Characteristics of Functions

def square(x): def fib(n):
“""Return X * X.""" """Compute the nth Fibonacci number, for N >= 1."""

A function's domain is the set of all inputs it might possibly take as arguments.

A function's range is the set of output values it might possibly return.

A pure function's behavior is the relationship it creates between input and output.

Characteristics of Functions

def square(x): def fib(n):
“""Return X * X.""" """Compute the nth Fibonacci number, for N >= 1."""

A function's domain is the set of all inputs it might possibly take as arguments.

X 1s a real number

A function's range is the set of output values it might possibly return.

A pure function's behavior is the relationship it creates between input and output.

Characteristics of Functions

def square(x): def fib(n):
“""Return X * X.""" """Compute the nth Fibonacci number, for N >= 1."""

A function's domain is the set of all inputs it might possibly take as arguments.

X 1s a real number

A function's range is the set of output values it might possibly return.

returns a non-negative
real number

A pure function's behavior is the relationship it creates between input and output.

Characteristics of Functions
def square(x): def fib(n):
“""Return X * X.""" """Compute the nth Fibonacci number, for N >= 1."""

A function's domain is the set of all inputs it might possibly take as arguments.

X 1s a real number

A function's range is the set of output values it might possibly return.

returns a non-negative
real number

A pure function's behavior is the relationship it creates between input and output.

return value is the
square of the input

Characteristics of Functions
def square(x): def fib(n):
“""Return X * X.""" """Compute the nth Fibonacci number, for N >= 1."""

A function's domain is the set of all inputs it might possibly take as arguments.

X 1is a real number n 1is an integer greater than or equal to 1

A function's range is the set of output values it might possibly return.

returns a non-negative
real number

A pure function's behavior is the relationship it creates between input and output.

return value is the
square of the input

Characteristics of Functions
def square(x): def fib(n):
"""Return X * X.""" """Compute the nth Fibonacci number, for N >= 1."""

A function's domain is the set of all inputs it might possibly take as arguments.

X 1is a real number n 1is an integer greater than or equal to 1

A function's range is the set of output values it might possibly return.

returns a non-negative returns a Fibonacci number
real number

A pure function's behavior is the relationship it creates between input and output.

return value is the
square of the input

Characteristics of Functions
def square(x): def fib(n):
"""Return X * X.""" """Compute the nth Fibonacci number, for N >= 1."""

A function's domain is the set of all inputs it might possibly take as arguments.

X 1is a real number n 1is an integer greater than or equal to 1

A function's range is the set of output values it might possibly return.

returns a non-negative returns a Fibonacci number
real number

A pure function's behavior is the relationship it creates between input and output.

return value 1is the return value 1is the nth Fibonacci number
square of the input

A Guide to Designing Function

A Guide to Designing Function

Give each function exactly one job.

A Guide to Designing Function

Give each function exactly one job.

Don’t repeat yourself (DRY). Implement a process just once, but execute it many times.

A Guide to Designing Function

Give each function exactly one job.

Don’t repeat yourself (DRY). Implement a process just once, but execute it many times.

Define functions generally.

A Guide to Designing Function

Give each function exactly one job.

Don’t repeat yourself (DRY). Implement a process just once, but execute it many times.

Define functions generally.

A Guide to Designing Function

Give each function exactly one job.

not

Don’t repeat yourself (DRY). Implement a process just once, but execute it many times.

Define functions generally.

A Guide to Designing Function

Give each function exactly one job.

not

Don’t repeat yourself (DRY). Implement a process just once, but execute it many times.

Define functions generally.

A Guide to Designing Function

Give each function exactly one job.

not

Don’t repeat yourself (DRY).

Define functions generally.

=

Generalization

Generalizing Patterns with Arguments

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

Shape:

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

Shape:

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

Shape:

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

Shape:

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

Shape:

Area:

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

Shape:

Area: r

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

Shape:

Area: r

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

Shape:

Area: r

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

Shape:

Area: 1 -T2

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

Shape:

Area: {ﬂiﬁ r2

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

Shape:

Area: {ﬂiﬁ r2

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

Shape:

Area: i {7T} r —— ?

................

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

Shape:

Area: i {7T} r E——————? r

Finding common structure allows for shared implementation

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

Shape:

Area: i {7T} r E——————? r

Finding common structure allows for shared implementation

(Demo)

Higher-Order Functions

Generalizing Over Computational Processes

Generalizing Over Computational Processes

The common structure among functions may be a computational process, rather than a number.

Generalizing Over Computational Processes

The common structure among functions may be a computational process, rather than a number.

5
Y k=1+2+3+4+5 — 15
k=1
5
Zk3:13+23+33+43+53 — 295
k=1
> 8 8 8 8 8 8
_ 2 — 3.04
Z(4/@—3)-(41@—1) 3735 799" 105 " 323

k=1

Generalizing Over Computational Processes

The common structure among functions may be a computational process, rather than a number.

5
S i=14243+445 — 15
k=1
5
}:H:ﬂ?+?+3?+ﬁ+ﬁ3 — 295
k=1
> 8 8 8 8 8 8
N — 3.04
E:Mk—a-uk—n 3735 799 " 195 T 323

k=1

Generalizing Over Computational Processes

The common structure among functions may be a computational process, rather than a number.

5
S i=14243+445 — 15
k=1
5 ..
Y =1 +28 433 4 4% 4 5° = 225
k=1
° 8 8 8 8 8 8
= = — 3.04
E:Mk—a-uk—n 3735 99 195 " 323

k=1

Generalizing Over Computational Processes

The common structure among functions may be a computational process, rather than a number.

5

S i=14243+445 — 15
k=1

5 .
Y =1 +28 433 4 4% 4 5° = 225
k=1

=2 — 3.04
37399 105 3 50

Generalizing Over Computational Processes

The common structure among functions may be a computational process, rather than a number.

5

S i=14243+445 — 15
k=1

5 T "
Y =1 +28 433 4 4% 4 5° = 225
k=1

=2 — 3.04
37399 105 3 50

Summation Example

def cube(k):
return pow(k, 3)

def summation(n, term):
"""Sum the first n terms of a sequence.

>>> gsummation(5, cube)
225
total, k
while k <

total, k = total + term(k), k + 1
return total

0, 1
n:

Summation Example

defcube(k)- ----------------------------------- i | Function of a single argument
| i | (not called "term")
- return pow(k, 3)

def summation(n, term):
"""Sum the first n terms of a sequence.

>>> gsummation(5, cube)
225
total, k
while k <

total, k = total + term(k), k + 1
return total

0, 1
n:

Summation Example

defcube(k) """""""""""""""""""""""""" Function of a single argument
i (not called "“term")
return pow(k, 3)

R — (A formal parameter that will}

def summation(n, term be bound to a function

Sum the first ' n terms of a sequence.

>>> gsummation(5, cube)
225
total, k = 0, 1
while k <= n:
total, k = total + term(k), k + 1
return total

Summation Example

def

Function of a single argument
cube(k): i (not called "term") }
return pow(k, 3)

I | A formal parameter that will
summation(n, term be bound to a function

Sum the first ' n terms of a sequence.

>>> gsummation(5, cube)
225
total, k = 0, 1
while k <= n:
total, k = total + term(k), k + 1

return total A
{ The function bound to term }

gets called here

Summation Example

def

Function of a single argument
cube(k): i (not called "term") }
return pow(k, 3)

I | A formal parameter that will
summation(n, term be bound to a function

Sum the first ' n terms of a sequence.

>>> summation (5, icube)

225

nun The cube function is passed J
as an argument value

total, k = 0, 1 2l el

while k <= n:
total, k = total + term(k), k + 1

return total A
{ The function bound to term }

gets called here

Summation Example

. i | Function of a single argument
cube (k) : 3) i (not called "term") }

as an argument value

i 225
TR T The cube function is passed J
0, 1

total, k = 0,
while k <= n: e \
total, k = total + term(k), k + 1

return total A

gets called here

{ O +1+8+27 + 64 + 125 J { The function bound to term }

Functions as Return Values

(Demo)

Locally Defined Functions

Locally Defined Functions

Functions defined within other function bodies are bound to names in a local frame

Locally Defined Functions

Functions defined within other function bodies are bound to names in a local frame

def make adder(n):
"""Return a function that takes one argument k and returns k + n.

>>> add three = make adder(3)
>>> add_three(4)
7
def adder(k):
return k + n
return adder

Locally Defined Functions

Functions defined within other function bodies are bound to names in a local frame

A function that
returns a function

""WReturn a function that takes one argument k and returns k + n.

>>> add_ three = make adder(3)
>>> add_three(4)
7

def adder(k):
return k + n
return adder

Locally Defined Functions

Functions defined within other function bodies are bound to names in a local frame

A function that
returns a function

""'"Return a function that takes one argument k and returns k + n.

>>> add_three=make_adder(3) The name add_three is bound
>>> ddd three gy to a function

7

def adder(k):
return k + n
return adder

Locally Defined Functions

Functions defined within other function bodies are bound to names in a local frame

A function that
returns a function

I A \
def:make adderi(n):
"""Return a function that takes one argument k and returns k + n.

>>> add Ehree(ay T to a function
7

>>> addthree=make_adder(3)<[The name add_three is bound}

Edef adder(k): A def statement within
return k + n; | another def statement

return adder

Locally Defined Functions

Functions defined within other function bodies are bound to names in a local frame

A function that
returns a function

I A \
def:make adderi(n):
"""Return a function that takes one argument k and returns k + n.

>>> add Ehree(ay T to a function
7

>>> addthree=make_adder(3)<[The name add_three is bound}

E’def adder(k): i< A def statement within
another def statement

return adder

Can refer to names in the
enclosing function

Call Expressions as Operator Expressions

Call Expressions as Operator Expressions

make_adder(1)

Call Expressions as Operator Expressions

Operator

make_adder(1)

Call Expressions as Operator Expressions

Operator Operand

make_adder(1) (2

Call Expressions as Operator Expressions

An expression that
evaluates to a function

V
Operator Operand

make_adder(1) (2

Call Expressions as Operator Expressions

An expression that An expression that
evaluates to a function evaluates to its argument
V V
Operator Operand

make_adder(1) (2)

Call Expressions as Operator Expressions

An expression that An expression that
evaluates to a function evaluates to its argument
V V
Operator Operand

[make_adder(1) (2)]

Call Expressions as Operator Expressions

An expression that An expression that
evaluates to a function evaluates to its argument
V V
Operator Operand
[make_adder (1) (2)]

[__ make_adder(l)-_}

Call Expressions as Operator Expressions

An expression that An expression that
evaluates to a function evaluates to its argument
V V
Operator Operand
[make_adder (1) (2)]

[__Imake_adder(l)-_}

func make;édder(n)

Call Expressions as Operator Expressions

An expression that An expression that
evaluates to a function evaluates to its argument
V V
Operator Operand
[make_adder (1) (2)]

[__ make_adder(l)-_}

func make;édder(n) 1

Call Expressions as Operator Expressions

An expression that An expression that
evaluates to a function evaluates to its argument
V V
Operator Operand
[make_adder (1) (2) }
[__ make_adder(l)-_}
func make'_-adder(n) 1 |p make_adder(n): t

:

Call Expressions as Operator Expressions

An expression that An expression that
evaluates to a function evaluates to its argument
V V
Operator Operand
[make_adder (1) (2)]
[__ make_adder(l)-_}
func make'_-adder(n) 1 |p make_adder(n): t

def adder(k):
return k + n

return adder

Call Expressions as Operator Expressions

An expression that An expression that
evaluates to a function evaluates to its argument
V V
Operator Operand
[make_adder (1) (2) }
[__ make_adder(l)-_}
func make'_-adder(n) 1 |p make_adder(n): t

def adder(k):
return k + n
return adder } func adder(k)

Call Expressions as Operator Expressions

An expression that An expression that
evaluates to a function evaluates to its argument
V V
Operator Operand
[make_adder (1) (2) }

Func adder (k) | <

[__ make_adder(l)-_}

func make'_-z—adder(n) 1 |p make_adder(n): t

def adder(k): .
return k + n
return adder } func adder(k)

Call Expressions as Operator Expressions

An expression that
evaluates to a function

An expression that

evaluates to its argument

V V
Operator Operand
[Imake_agder(l)l (2) }

func adder(K)
[__ make_adder(1)

-

func make;édder(n) 1

P make_adder(n):

__‘ def adder(k):

return k + n
return adder

]

» func adder(k)

Call Expressions as Operator Expressions

An expression that An expression that
evaluates to a function evaluates to its argument
V V
Operator Operand
[make_adder (1) (2) }
b _____‘ 1 |—q—|

F"'h'é ke_adder(1)j """""""""""""""""""""""""""""""" |

func make'_-z—adder(n) 1 |p make_adder(n): t

def adder(k):
return k + n

return adder } func adder(k)

Call Expressions as Operator Expressions

An expression that An expression that
evaluates to a function evaluates to its argument
V V
Operator Operand
3
[make_adder (1) (2) }
I —* | e

F"'h'é ke_adder(1)j """""""""""""""""""""""""""""""" |

func make'_-z—adder(n) 1 |p make_adder(n): t

def adder(k):
return k + n

return adder } func adder(k)

The Purpose of Higher-Order Functions

The Purpose of Higher-Order Functions

Functions are first-class: Functions can be manipulated as values in our
programming language.

The Purpose of Higher-Order Functions

Functions are first-class: Functions can be manipulated as values in our
programming language.

Higher-order function: A function that takes a function as an argument value or
returns a function as a return value

The Purpose of Higher-Order Functions

Functions are first-class: Functions can be manipulated as values in our
programming language.

Higher-order function: A function that takes a function as an argument value or
returns a function as a return value

Higher-order functions:

The Purpose of Higher-Order Functions

Functions are first-class: Functions can be manipulated as values in our
programming language.

Higher-order function: A function that takes a function as an argument value or
returns a function as a return value

Higher-order functions:

* Express general methods of computation

The Purpose of Higher-Order Functions

Functions are first-class: Functions can be manipulated as values in our
programming language.

Higher-order function: A function that takes a function as an argument value or
returns a function as a return value

Higher-order functions:
* Express general methods of computation

* Remove repetition from programs

The Purpose of Higher-Order Functions

Functions are first-class: Functions can be manipulated as values in our
programming language.

Higher-order function: A function that takes a function as an argument value or
returns a function as a return value

Higher-order functions:
* Express general methods of computation
* Remove repetition from programs

* Separate concerns among functions

The Game of Hog

(Demo)

