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def square(x): def fib(n):
"""Return X * X.""" """Compute the nth Fibonacci number, for N >= 1."""

A function's domain is the set of all inputs it might possibly take as arguments.

X 1is a real number n 1is an integer greater than or equal to 1

A function's range is the set of output values it might possibly return.

returns a non-negative returns a Fibonacci number
real number

A pure function's behavior is the relationship it creates between input and output.

return value 1is the return value 1is the nth Fibonacci number
square of the input
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Shape:
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Finding common structure allows for shared implementation
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Summation Example

. i | Function of a single argument
cube (k) : 3) i (not called "term") }

as an argument value

i 225
TR T The cube function is passed J
0, 1

total, k = 0,
while k <= n: e \
total, k = total + term(k), k + 1

return total A

gets called here

{ O +1+8+27 + 64 + 125 J { The function bound to term }
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Functions defined within other function bodies are bound to names in a local frame

A function that
returns a function

I A \
def:make adderi(n):
"""Return a function that takes one argument k and returns k + n.

>>> add Ehree(ay T to a function
7

>>> addthree=make_adder(3)<[The name add_three is bound}

E’def adder(k): i< A def statement within
another def statement

return adder

Can refer to names in the
enclosing function
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Operator Operand
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func adder(K)
[__ make_adder(1)

-

func make;édder(n) 1
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__‘ def adder(k):

return k + n
return adder

]
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The Purpose of Higher-Order Functions

Functions are first-class: Functions can be manipulated as values in our
programming language.

Higher-order function: A function that takes a function as an argument value or
returns a function as a return value

Higher-order functions:
* Express general methods of computation
* Remove repetition from programs

* Separate concerns among functions



The Game of Hog

(Demo)



