
61A Lecture 4

Monday, September 8

Announcements

2

Announcements

• Homework 1 due Wednesday 9/10 at 2pm. Late homework is not accepted!

2

Announcements

• Homework 1 due Wednesday 9/10 at 2pm. Late homework is not accepted!

• Homework parties on Monday 9/8 (Today!)

2

Announcements

• Homework 1 due Wednesday 9/10 at 2pm. Late homework is not accepted!

• Homework parties on Monday 9/8 (Today!)

!3pm-4pm in Wozniak Lounge in Soda Hall (100 person capacity)

2

Announcements

• Homework 1 due Wednesday 9/10 at 2pm. Late homework is not accepted!

• Homework parties on Monday 9/8 (Today!)

!3pm-4pm in Wozniak Lounge in Soda Hall (100 person capacity)

!6pm-8pm in 2050 Valley Life Sciences Building (408 person capacity)

2

Announcements

• Homework 1 due Wednesday 9/10 at 2pm. Late homework is not accepted!

• Homework parties on Monday 9/8 (Today!)

!3pm-4pm in Wozniak Lounge in Soda Hall (100 person capacity)

!6pm-8pm in 2050 Valley Life Sciences Building (408 person capacity)

• More sections for students without prior programming experience! http://cs61a.org

2

Announcements

• Homework 1 due Wednesday 9/10 at 2pm. Late homework is not accepted!

• Homework parties on Monday 9/8 (Today!)

!3pm-4pm in Wozniak Lounge in Soda Hall (100 person capacity)

!6pm-8pm in 2050 Valley Life Sciences Building (408 person capacity)

• More sections for students without prior programming experience! http://cs61a.org

• Take-home quiz 1 starts Wednesday 9/10 at 3pm, due Thursday 9/11 at 11:59pm

2

Announcements

• Homework 1 due Wednesday 9/10 at 2pm. Late homework is not accepted!

• Homework parties on Monday 9/8 (Today!)

!3pm-4pm in Wozniak Lounge in Soda Hall (100 person capacity)

!6pm-8pm in 2050 Valley Life Sciences Building (408 person capacity)

• More sections for students without prior programming experience! http://cs61a.org

• Take-home quiz 1 starts Wednesday 9/10 at 3pm, due Thursday 9/11 at 11:59pm

!Open-computer, but no external resources or friends

2

Announcements

• Homework 1 due Wednesday 9/10 at 2pm. Late homework is not accepted!

• Homework parties on Monday 9/8 (Today!)

!3pm-4pm in Wozniak Lounge in Soda Hall (100 person capacity)

!6pm-8pm in 2050 Valley Life Sciences Building (408 person capacity)

• More sections for students without prior programming experience! http://cs61a.org

• Take-home quiz 1 starts Wednesday 9/10 at 3pm, due Thursday 9/11 at 11:59pm

!Open-computer, but no external resources or friends

!Content Covered: Lectures through last Friday 9/5 (same topics as Homework 1)

2

Announcements

• Homework 1 due Wednesday 9/10 at 2pm. Late homework is not accepted!

• Homework parties on Monday 9/8 (Today!)

!3pm-4pm in Wozniak Lounge in Soda Hall (100 person capacity)

!6pm-8pm in 2050 Valley Life Sciences Building (408 person capacity)

• More sections for students without prior programming experience! http://cs61a.org

• Take-home quiz 1 starts Wednesday 9/10 at 3pm, due Thursday 9/11 at 11:59pm

!Open-computer, but no external resources or friends

!Content Covered: Lectures through last Friday 9/5 (same topics as Homework 1)

• Project 1 due next Wednesday 9/17 at 11:59pm

2

Iteration Example

The Fibonacci Sequence

4

The Fibonacci Sequence

4

The Fibonacci Sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987

4

The Fibonacci Sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987

4

The Fibonacci Sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987

4

The Fibonacci Sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987

4

def fib(n):
 """Compute the nth Fibonacci number, for N >= 1."""
 pred, curr = 0, 1 # First two Fibonacci numbers
 k = 1 # Tracks which Fib number is curr
 while k < n:
 pred, curr = curr, pred + curr
 k = k + 1
 return curr

The Fibonacci Sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987

4

def fib(n):
 """Compute the nth Fibonacci number, for N >= 1."""
 pred, curr = 0, 1 # First two Fibonacci numbers
 k = 1 # Tracks which Fib number is curr
 while k < n:
 pred, curr = curr, pred + curr
 k = k + 1
 return curr

The Fibonacci Sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987

4

The next Fibonacci number is the sum of
the current one and its predecessor

def fib(n):
 """Compute the nth Fibonacci number, for N >= 1."""
 pred, curr = 0, 1 # First two Fibonacci numbers
 k = 1 # Tracks which Fib number is curr
 while k < n:
 pred, curr = curr, pred + curr
 k = k + 1
 return curr

The Fibonacci Sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987

4

The next Fibonacci number is the sum of
the current one and its predecessor

def fib(n):
 """Compute the nth Fibonacci number, for N >= 1."""
 pred, curr = 0, 1 # First two Fibonacci numbers
 k = 1 # Tracks which Fib number is curr
 while k < n:
 pred, curr = curr, pred + curr
 k = k + 1
 return curr

The Fibonacci Sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987

4

The next Fibonacci number is the sum of
the current one and its predecessor

def fib(n):
 """Compute the nth Fibonacci number, for N >= 1."""
 pred, curr = 0, 1 # First two Fibonacci numbers
 k = 1 # Tracks which Fib number is curr
 while k < n:
 pred, curr = curr, pred + curr
 k = k + 1
 return curr

The Fibonacci Sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987

4

The next Fibonacci number is the sum of
the current one and its predecessor

def fib(n):
 """Compute the nth Fibonacci number, for N >= 1."""
 pred, curr = 0, 1 # First two Fibonacci numbers
 k = 1 # Tracks which Fib number is curr
 while k < n:
 pred, curr = curr, pred + curr
 k = k + 1
 return curr

The Fibonacci Sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987

4

The next Fibonacci number is the sum of
the current one and its predecessor

def fib(n):
 """Compute the nth Fibonacci number, for N >= 1."""
 pred, curr = 0, 1 # First two Fibonacci numbers
 k = 1 # Tracks which Fib number is curr
 while k < n:
 pred, curr = curr, pred + curr
 k = k + 1
 return curr

The Fibonacci Sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987

4

The next Fibonacci number is the sum of
the current one and its predecessor

def fib(n):
 """Compute the nth Fibonacci number, for N >= 1."""
 pred, curr = 0, 1 # First two Fibonacci numbers
 k = 1 # Tracks which Fib number is curr
 while k < n:
 pred, curr = curr, pred + curr
 k = k + 1
 return curr

The Fibonacci Sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987

4

The next Fibonacci number is the sum of
the current one and its predecessor

def fib(n):
 """Compute the nth Fibonacci number, for N >= 1."""
 pred, curr = 0, 1 # First two Fibonacci numbers
 k = 1 # Tracks which Fib number is curr
 while k < n:
 pred, curr = curr, pred + curr
 k = k + 1
 return curr

The Fibonacci Sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987

4

The next Fibonacci number is the sum of
the current one and its predecessor

Discussion Question 1

5

What does pyramid compute?

Discussion Question 1

5

What does pyramid compute?

def pyramid(n):
 a, b, total = 0, n, 0
 while b:
 a, b = a+1, b-1
 total = total + a + b
 return total

Discussion Question 1

5

What does pyramid compute?

n2 + 1

(n+ 1)2

2 · (n+ 1)

n2

n · (n+ 1)

def pyramid(n):
 a, b, total = 0, n, 0
 while b:
 a, b = a+1, b-1
 total = total + a + b
 return total

Discussion Question 1

5

What does pyramid compute?

n2 + 1

(n+ 1)2

2 · (n+ 1)

n2

n · (n+ 1)

def pyramid(n):
 a, b, total = 0, n, 0
 while b:
 a, b = a+1, b-1
 total = total + a + b
 return total

a b

Discussion Question 1

5

What does pyramid compute?

n2 + 1

(n+ 1)2

2 · (n+ 1)

n2

n · (n+ 1)

def pyramid(n):
 a, b, total = 0, n, 0
 while b:
 a, b = a+1, b-1
 total = total + a + b
 return total

a b

Discussion Question 1

5

What does pyramid compute?

n2 + 1

(n+ 1)2

2 · (n+ 1)

n2

n · (n+ 1)

def pyramid(n):
 a, b, total = 0, n, 0
 while b:
 a, b = a+1, b-1
 total = total + a + b
 return total

a b

Discussion Question 1

5

What does pyramid compute?

n2 + 1

(n+ 1)2

2 · (n+ 1)

n2

n · (n+ 1)

def pyramid(n):
 a, b, total = 0, n, 0
 while b:
 a, b = a+1, b-1
 total = total + a + b
 return total

a b

Discussion Question 1

5

What does pyramid compute?

n2 + 1

(n+ 1)2

2 · (n+ 1)

n2

n · (n+ 1)

def pyramid(n):
 a, b, total = 0, n, 0
 while b:
 a, b = a+1, b-1
 total = total + a + b
 return total

a b

Discussion Question 1

5

What does pyramid compute?

n2 + 1

(n+ 1)2

2 · (n+ 1)

n2

n · (n+ 1)

def pyramid(n):
 a, b, total = 0, n, 0
 while b:
 a, b = a+1, b-1
 total = total + a + b
 return total

a b

Discussion Question 1

5

What does pyramid compute?

n2 + 1

(n+ 1)2

2 · (n+ 1)

n2

n · (n+ 1)

def pyramid(n):
 a, b, total = 0, n, 0
 while b:
 a, b = a+1, b-1
 total = total + a + b
 return total

a b

Discussion Question 1

5

What does pyramid compute?

n2 + 1

(n+ 1)2

2 · (n+ 1)

n2

n · (n+ 1)

def pyramid(n):
 a, b, total = 0, n, 0
 while b:
 a, b = a+1, b-1
 total = total + a + b
 return total

a b

Discussion Question 1

5

What does pyramid compute?

n2 + 1

(n+ 1)2

2 · (n+ 1)

n2

n · (n+ 1)

def pyramid(n):
 a, b, total = 0, n, 0
 while b:
 a, b = a+1, b-1
 total = total + a + b
 return total

a b

Discussion Question 1

5

What does pyramid compute?

n2 + 1

(n+ 1)2

2 · (n+ 1)

n2

n · (n+ 1)

def pyramid(n):
 a, b, total = 0, n, 0
 while b:
 a, b = a+1, b-1
 total = total + a + b
 return total

a b

Discussion Question 1

5

I'm still here

What does pyramid compute?

n2 + 1

(n+ 1)2

2 · (n+ 1)

n2

n · (n+ 1)

def pyramid(n):
 a, b, total = 0, n, 0
 while b:
 a, b = a+1, b-1
 total = total + a + b
 return total

a b

Designing Functions

Characteristics of Functions

7

Characteristics of Functions

A function's domain is the set of all inputs it might possibly take as arguments.

7

Characteristics of Functions

A function's domain is the set of all inputs it might possibly take as arguments.

A function's range is the set of output values it might possibly return.

7

Characteristics of Functions

A function's domain is the set of all inputs it might possibly take as arguments.

A function's range is the set of output values it might possibly return.

A pure function's behavior is the relationship it creates between input and output.

7

Characteristics of Functions

A function's domain is the set of all inputs it might possibly take as arguments.

A function's range is the set of output values it might possibly return.

A pure function's behavior is the relationship it creates between input and output.

7

def square(x):
 """Return X * X."""

Characteristics of Functions

A function's domain is the set of all inputs it might possibly take as arguments.

A function's range is the set of output values it might possibly return.

A pure function's behavior is the relationship it creates between input and output.

7

def square(x):
 """Return X * X."""

def fib(n):
 """Compute the nth Fibonacci number, for N >= 1."""

Characteristics of Functions

A function's domain is the set of all inputs it might possibly take as arguments.

A function's range is the set of output values it might possibly return.

A pure function's behavior is the relationship it creates between input and output.

7

def square(x):
 """Return X * X."""

def fib(n):
 """Compute the nth Fibonacci number, for N >= 1."""

x is a real number

Characteristics of Functions

A function's domain is the set of all inputs it might possibly take as arguments.

A function's range is the set of output values it might possibly return.

A pure function's behavior is the relationship it creates between input and output.

7

def square(x):
 """Return X * X."""

def fib(n):
 """Compute the nth Fibonacci number, for N >= 1."""

x is a real number

returns a non-negative
real number

Characteristics of Functions

A function's domain is the set of all inputs it might possibly take as arguments.

A function's range is the set of output values it might possibly return.

A pure function's behavior is the relationship it creates between input and output.

7

def square(x):
 """Return X * X."""

def fib(n):
 """Compute the nth Fibonacci number, for N >= 1."""

x is a real number

returns a non-negative
real number

return value is the
square of the input

Characteristics of Functions

A function's domain is the set of all inputs it might possibly take as arguments.

A function's range is the set of output values it might possibly return.

A pure function's behavior is the relationship it creates between input and output.

7

def square(x):
 """Return X * X."""

def fib(n):
 """Compute the nth Fibonacci number, for N >= 1."""

x is a real number

returns a non-negative
real number

return value is the
square of the input

n is an integer greater than or equal to 1

Characteristics of Functions

A function's domain is the set of all inputs it might possibly take as arguments.

A function's range is the set of output values it might possibly return.

A pure function's behavior is the relationship it creates between input and output.

7

def square(x):
 """Return X * X."""

def fib(n):
 """Compute the nth Fibonacci number, for N >= 1."""

x is a real number

returns a non-negative
real number

return value is the
square of the input

n is an integer greater than or equal to 1

returns a Fibonacci number

Characteristics of Functions

A function's domain is the set of all inputs it might possibly take as arguments.

A function's range is the set of output values it might possibly return.

A pure function's behavior is the relationship it creates between input and output.

7

def square(x):
 """Return X * X."""

def fib(n):
 """Compute the nth Fibonacci number, for N >= 1."""

x is a real number

returns a non-negative
real number

return value is the
square of the input

n is an integer greater than or equal to 1

returns a Fibonacci number

return value is the nth Fibonacci number

A Guide to Designing Function

8

A Guide to Designing Function

Give each function exactly one job.

8

A Guide to Designing Function

Give each function exactly one job.

Don’t repeat yourself (DRY). Implement a process just once, but execute it many times.

8

A Guide to Designing Function

Give each function exactly one job.

Don’t repeat yourself (DRY). Implement a process just once, but execute it many times.

Define functions generally.

8

A Guide to Designing Function

Give each function exactly one job.

Don’t repeat yourself (DRY). Implement a process just once, but execute it many times.

Define functions generally.

8

A Guide to Designing Function

not

Give each function exactly one job.

Don’t repeat yourself (DRY). Implement a process just once, but execute it many times.

Define functions generally.

8

A Guide to Designing Function

not

Give each function exactly one job.

Don’t repeat yourself (DRY). Implement a process just once, but execute it many times.

Define functions generally.

8

A Guide to Designing Function

not

Give each function exactly one job.

Don’t repeat yourself (DRY). Implement a process just once, but execute it many times.

Define functions generally.

8

Generalization

Generalizing Patterns with Arguments

10

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

10

Shape:

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

10

Shape:

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

r

10

Shape:

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

r
r

10

Shape:

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

r
r r

10

Shape:

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

r
r r

Area:

10

Shape:

r2

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

r
r r

Area:

10

Shape:

r2 ⇡ · r2

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

r
r r

Area:

10

Shape:

r2 ⇡ · r2 3
p
3

2
· r2

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

r
r r

Area:

10

Shape:

r2 ⇡ · r2 3
p
3

2
· r21 · r2

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

r
r r

Area:

10

Shape:

r2 ⇡ · r2 3
p
3

2
· r21 · r2

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

r
r r

Area:

10

Shape:

r2 ⇡ · r2 3
p
3

2
· r21 · r2

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

r
r r

Area:

10

Shape:

r2 ⇡ · r2 3
p
3

2
· r21 · r2

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

r
r r

Area:

10

Shape:

r2 ⇡ · r2 3
p
3

2
· r21 · r2

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

r
r r

Area:

Finding common structure allows for shared implementation

10

Shape:

r2 ⇡ · r2 3
p
3

2
· r21 · r2

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

r
r r

Area:

Finding common structure allows for shared implementation

10

(Demo)

Higher-Order Functions

Generalizing Over Computational Processes

12

Generalizing Over Computational Processes

The common structure among functions may be a computational process, rather than a number.

12

5X

k=1

k = 1 + 2 + 3 + 4 + 5 = 15

5X

k=1

k3 = 13 + 23 + 33 + 43 + 53 = 225

5X

k=1

8

(4k � 3) · (4k � 1)
=

8

3
+

8

35
+

8

99
+

8

195
+

8

323
= 3.04

Generalizing Over Computational Processes

The common structure among functions may be a computational process, rather than a number.

12

5X

k=1

k = 1 + 2 + 3 + 4 + 5 = 15

5X

k=1

k3 = 13 + 23 + 33 + 43 + 53 = 225

5X

k=1

8

(4k � 3) · (4k � 1)
=

8

3
+

8

35
+

8

99
+

8

195
+

8

323
= 3.04

Generalizing Over Computational Processes

The common structure among functions may be a computational process, rather than a number.

12

5X

k=1

k = 1 + 2 + 3 + 4 + 5 = 15

5X

k=1

k3 = 13 + 23 + 33 + 43 + 53 = 225

5X

k=1

8

(4k � 3) · (4k � 1)
=

8

3
+

8

35
+

8

99
+

8

195
+

8

323
= 3.04

Generalizing Over Computational Processes

The common structure among functions may be a computational process, rather than a number.

12

5X

k=1

k = 1 + 2 + 3 + 4 + 5 = 15

5X

k=1

k3 = 13 + 23 + 33 + 43 + 53 = 225

5X

k=1

8

(4k � 3) · (4k � 1)
=

8

3
+

8

35
+

8

99
+

8

195
+

8

323
= 3.04

Generalizing Over Computational Processes

The common structure among functions may be a computational process, rather than a number.

12

5X

k=1

k = 1 + 2 + 3 + 4 + 5 = 15

5X

k=1

k3 = 13 + 23 + 33 + 43 + 53 = 225

5X

k=1

8

(4k � 3) · (4k � 1)
=

8

3
+

8

35
+

8

99
+

8

195
+

8

323
= 3.04

Generalizing Over Computational Processes

The common structure among functions may be a computational process, rather than a number.

12

(Demo)

Summation Example

hof.py Page 2

 return total

def identity(k):
 return k

def cube(k):
 return pow(k, 3)

def summation(n, term):
 """Sum the first n terms of a sequence.

 >>> summation(5, cube)
 225
 """
 total, k = 0, 1
 while k <= n:
 total, k = total + term(k), k + 1
 return total

def pi_term(k):
 return 8 / (k * 4 − 3) / (k * 4 − 1)

Local function definitions; returning functions

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

def compose1(f, g):
 """Return a function that composes f and g.

 f, g −− functions of a single argument
 """
 def h(x):
 return f(g(x))
 return h

@main
def run():
 interact()

13

Summation Example

hof.py Page 2

 return total

def identity(k):
 return k

def cube(k):
 return pow(k, 3)

def summation(n, term):
 """Sum the first n terms of a sequence.

 >>> summation(5, cube)
 225
 """
 total, k = 0, 1
 while k <= n:
 total, k = total + term(k), k + 1
 return total

def pi_term(k):
 return 8 / (k * 4 − 3) / (k * 4 − 1)

Local function definitions; returning functions

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

def compose1(f, g):
 """Return a function that composes f and g.

 f, g −− functions of a single argument
 """
 def h(x):
 return f(g(x))
 return h

@main
def run():
 interact()

Function of a single argument
(not called "term")

13

Summation Example

hof.py Page 2

 return total

def identity(k):
 return k

def cube(k):
 return pow(k, 3)

def summation(n, term):
 """Sum the first n terms of a sequence.

 >>> summation(5, cube)
 225
 """
 total, k = 0, 1
 while k <= n:
 total, k = total + term(k), k + 1
 return total

def pi_term(k):
 return 8 / (k * 4 − 3) / (k * 4 − 1)

Local function definitions; returning functions

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

def compose1(f, g):
 """Return a function that composes f and g.

 f, g −− functions of a single argument
 """
 def h(x):
 return f(g(x))
 return h

@main
def run():
 interact()

Function of a single argument
(not called "term")

A formal parameter that will
be bound to a function

13

Summation Example

hof.py Page 2

 return total

def identity(k):
 return k

def cube(k):
 return pow(k, 3)

def summation(n, term):
 """Sum the first n terms of a sequence.

 >>> summation(5, cube)
 225
 """
 total, k = 0, 1
 while k <= n:
 total, k = total + term(k), k + 1
 return total

def pi_term(k):
 return 8 / (k * 4 − 3) / (k * 4 − 1)

Local function definitions; returning functions

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

def compose1(f, g):
 """Return a function that composes f and g.

 f, g −− functions of a single argument
 """
 def h(x):
 return f(g(x))
 return h

@main
def run():
 interact()

Function of a single argument
(not called "term")

A formal parameter that will
be bound to a function

The function bound to term
gets called here

13

Summation Example

hof.py Page 2

 return total

def identity(k):
 return k

def cube(k):
 return pow(k, 3)

def summation(n, term):
 """Sum the first n terms of a sequence.

 >>> summation(5, cube)
 225
 """
 total, k = 0, 1
 while k <= n:
 total, k = total + term(k), k + 1
 return total

def pi_term(k):
 return 8 / (k * 4 − 3) / (k * 4 − 1)

Local function definitions; returning functions

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

def compose1(f, g):
 """Return a function that composes f and g.

 f, g −− functions of a single argument
 """
 def h(x):
 return f(g(x))
 return h

@main
def run():
 interact()

Function of a single argument
(not called "term")

A formal parameter that will
be bound to a function

The function bound to term
gets called here

The cube function is passed
as an argument value

13

Summation Example

hof.py Page 2

 return total

def identity(k):
 return k

def cube(k):
 return pow(k, 3)

def summation(n, term):
 """Sum the first n terms of a sequence.

 >>> summation(5, cube)
 225
 """
 total, k = 0, 1
 while k <= n:
 total, k = total + term(k), k + 1
 return total

def pi_term(k):
 return 8 / (k * 4 − 3) / (k * 4 − 1)

Local function definitions; returning functions

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

def compose1(f, g):
 """Return a function that composes f and g.

 f, g −− functions of a single argument
 """
 def h(x):
 return f(g(x))
 return h

@main
def run():
 interact()

Function of a single argument
(not called "term")

A formal parameter that will
be bound to a function

The function bound to term
gets called here

The cube function is passed
as an argument value

0 + 1 + 8 + 27 + 64 + 125

13

Functions as Return Values

(Demo)

Locally Defined Functions

15

Locally Defined Functions

Functions defined within other function bodies are bound to names in a local frame

15

hof.py Page 2

 return total

def identity(k):
 return k

def cube(k):
 return pow(k, 3)

def summation(n, term):
 """Sum the first n terms of a sequence.

 >>> summation(5, cube)
 225
 """
 total, k = 0, 1
 while k <= n:
 total, k = total + term(k), k + 1
 return total

def pi_term(k):
 return 8 / (k * 4 − 3) / (k * 4 − 1)

Local function definitions; returning functions

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

def compose1(f, g):
 """Return a function that composes f and g.

 f, g −− functions of a single argument
 """
 def h(x):
 return f(g(x))
 return h

@main
def run():
 interact()

Locally Defined Functions

Functions defined within other function bodies are bound to names in a local frame

15

hof.py Page 2

 return total

def identity(k):
 return k

def cube(k):
 return pow(k, 3)

def summation(n, term):
 """Sum the first n terms of a sequence.

 >>> summation(5, cube)
 225
 """
 total, k = 0, 1
 while k <= n:
 total, k = total + term(k), k + 1
 return total

def pi_term(k):
 return 8 / (k * 4 − 3) / (k * 4 − 1)

Local function definitions; returning functions

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

def compose1(f, g):
 """Return a function that composes f and g.

 f, g −− functions of a single argument
 """
 def h(x):
 return f(g(x))
 return h

@main
def run():
 interact()

Locally Defined Functions

A function that
returns a function

Functions defined within other function bodies are bound to names in a local frame

15

hof.py Page 2

 return total

def identity(k):
 return k

def cube(k):
 return pow(k, 3)

def summation(n, term):
 """Sum the first n terms of a sequence.

 >>> summation(5, cube)
 225
 """
 total, k = 0, 1
 while k <= n:
 total, k = total + term(k), k + 1
 return total

def pi_term(k):
 return 8 / (k * 4 − 3) / (k * 4 − 1)

Local function definitions; returning functions

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

def compose1(f, g):
 """Return a function that composes f and g.

 f, g −− functions of a single argument
 """
 def h(x):
 return f(g(x))
 return h

@main
def run():
 interact()

Locally Defined Functions

A function that
returns a function

The name add_three is bound
to a function

Functions defined within other function bodies are bound to names in a local frame

15

hof.py Page 2

 return total

def identity(k):
 return k

def cube(k):
 return pow(k, 3)

def summation(n, term):
 """Sum the first n terms of a sequence.

 >>> summation(5, cube)
 225
 """
 total, k = 0, 1
 while k <= n:
 total, k = total + term(k), k + 1
 return total

def pi_term(k):
 return 8 / (k * 4 − 3) / (k * 4 − 1)

Local function definitions; returning functions

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

def compose1(f, g):
 """Return a function that composes f and g.

 f, g −− functions of a single argument
 """
 def h(x):
 return f(g(x))
 return h

@main
def run():
 interact()

Locally Defined Functions

A function that
returns a function

A def statement within
another def statement

The name add_three is bound
to a function

Functions defined within other function bodies are bound to names in a local frame

15

hof.py Page 2

 return total

def identity(k):
 return k

def cube(k):
 return pow(k, 3)

def summation(n, term):
 """Sum the first n terms of a sequence.

 >>> summation(5, cube)
 225
 """
 total, k = 0, 1
 while k <= n:
 total, k = total + term(k), k + 1
 return total

def pi_term(k):
 return 8 / (k * 4 − 3) / (k * 4 − 1)

Local function definitions; returning functions

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

def compose1(f, g):
 """Return a function that composes f and g.

 f, g −− functions of a single argument
 """
 def h(x):
 return f(g(x))
 return h

@main
def run():
 interact()

Locally Defined Functions

A function that
returns a function

A def statement within
another def statement

The name add_three is bound
to a function

Can refer to names in the
enclosing function

Functions defined within other function bodies are bound to names in a local frame

15

Call Expressions as Operator Expressions

16

Call Expressions as Operator Expressions

make_adder(1) (2)

16

Call Expressions as Operator Expressions

make_adder(1) (2)

Operator

16

Call Expressions as Operator Expressions

make_adder(1) (2)

Operator Operand

16

Call Expressions as Operator Expressions

make_adder(1) (2)

Operator Operand

An expression that
evaluates to a function

16

Call Expressions as Operator Expressions

make_adder(1) (2)

Operator Operand

An expression that
evaluates to a function

An expression that
evaluates to its argument

16

Call Expressions as Operator Expressions

make_adder(1) (2)

Operator Operand

An expression that
evaluates to a function

An expression that
evaluates to its argument

16

Call Expressions as Operator Expressions

make_adder(1) (2)

Operator Operand

An expression that
evaluates to a function

An expression that
evaluates to its argument

16

make_adder(1)

Call Expressions as Operator Expressions

make_adder(1) (2)

Operator Operand

An expression that
evaluates to a function

An expression that
evaluates to its argument

16

make_adder(1)

func make_adder(n)

Call Expressions as Operator Expressions

make_adder(1) (2)

Operator Operand

An expression that
evaluates to a function

An expression that
evaluates to its argument

16

make_adder(1)

func make_adder(n) 1

make_adder(n):

Call Expressions as Operator Expressions

make_adder(1) (2)

Operator Operand

An expression that
evaluates to a function

An expression that
evaluates to its argument

16

make_adder(1)

func make_adder(n) 1

make_adder(n):

Call Expressions as Operator Expressions

make_adder(1) (2)

Operator Operand

An expression that
evaluates to a function

An expression that
evaluates to its argument

16

make_adder(1)

func make_adder(n) 1

make_adder(n):

Call Expressions as Operator Expressions

make_adder(1) (2)

Operator Operand

An expression that
evaluates to a function

An expression that
evaluates to its argument

16

make_adder(1)

func make_adder(n) 1

func adder(k)

make_adder(n):

Call Expressions as Operator Expressions

make_adder(1) (2)

Operator Operand

An expression that
evaluates to a function

An expression that
evaluates to its argument

16

make_adder(1)
func adder(k)

func make_adder(n) 1

func adder(k)

make_adder(n):

Call Expressions as Operator Expressions

make_adder(1) (2)

Operator Operand

An expression that
evaluates to a function

An expression that
evaluates to its argument

16

2
make_adder(1)
func adder(k)

func make_adder(n) 1

func adder(k)

make_adder(n):

Call Expressions as Operator Expressions

make_adder(1) (2)

Operator Operand

An expression that
evaluates to a function

An expression that
evaluates to its argument

16

2
make_adder(1)
func adder(k)

func make_adder(n) 1

func adder(k)

make_adder(n):

Call Expressions as Operator Expressions

make_adder(1) (2)

Operator Operand

An expression that
evaluates to a function

An expression that
evaluates to its argument

16

2

3

make_adder(1)
func adder(k)

func make_adder(n) 1

func adder(k)

The Purpose of Higher-Order Functions

17

The Purpose of Higher-Order Functions

Functions are first-class: Functions can be manipulated as values in our
programming language.

17

The Purpose of Higher-Order Functions

Functions are first-class: Functions can be manipulated as values in our
programming language.

Higher-order function: A function that takes a function as an argument value or
returns a function as a return value

17

The Purpose of Higher-Order Functions

Functions are first-class: Functions can be manipulated as values in our
programming language.

Higher-order functions:

Higher-order function: A function that takes a function as an argument value or
returns a function as a return value

17

The Purpose of Higher-Order Functions

Functions are first-class: Functions can be manipulated as values in our
programming language.

Higher-order functions:

• Express general methods of computation

Higher-order function: A function that takes a function as an argument value or
returns a function as a return value

17

The Purpose of Higher-Order Functions

Functions are first-class: Functions can be manipulated as values in our
programming language.

Higher-order functions:

• Express general methods of computation

• Remove repetition from programs

Higher-order function: A function that takes a function as an argument value or
returns a function as a return value

17

The Purpose of Higher-Order Functions

Functions are first-class: Functions can be manipulated as values in our
programming language.

Higher-order functions:

• Express general methods of computation

• Remove repetition from programs

• Separate concerns among functions

Higher-order function: A function that takes a function as an argument value or
returns a function as a return value

17

The Game of Hog

(Demo)

