61A Lecture 4

Monday, September 8

Announcements

-Homework 1 due Wednesday 9/10 at 2pm. Late homework is not accepted!
-Homework parties on Monday 9/8 (Today!)
3pm-4pm in Wozniak Lounge in Soda Hall (10@ person capacity)
6pm-8pm in 2050 Valley Life Sciences Building (408 person capacity)
“More sections for students without prior programming experience! http://cs6la.org
< Take-home quiz 1 starts Wednesday 9/10 at 3pm, due Thursday 9/11 at 11:59pm
Open—-computer, but no external resources or friends
Content Covered: Lectures through last Friday 9/5 (same topics as Homework 1)

*Project 1 due next Wednesday 9/17 at 11:59pm

Iteration Example

The Fibonacci Sequence
fib

n

predecessor

current s
k

def fib(n):
"""Compute the nth Fibonacci number, for N >= 1."""
pred, curr = @, 1 # First two Fibonacci numbers

k=1 # Tracks which Fib number is curr
while k < n: . .
[pred, curr = curr,;pred + curr
=k+1

return curr [The next Fibonacci number is the sum of
the current one and its predecessor

Discussion Question 1

b .

% (n+1)?
R}%] 2-(n+1)
@ n?+1
@ ne(n+1)

What does pyramid compute?

def pyramid(n):
a, b, total =0, n, 0
while b: .
a, b =fa+l, b-1
total = total'+ia + b
return total

Designing Functions

Characteristics of Functions

def square(x):
winReturn X % X"

def fib(n):
"""Compute the nth Fibonacci number, for N >= 1."""

A function's domain is the set of all inputs it might possibly take as arguments.

x is a real number

n is an integer greater than or equal to 1

A function's range is the set of output values it might possibly return.

returns a non-negative
real number

returns a Fibonacci number

A pure function's behavior is the relationship it creates between input and output.

return value is the
square of the input

return value is the nth Fibonacci number

A Guide to Designing Function

Give each function exactly one job.

Define functions generally.

Generalization

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

Shape:
Area: 2 T -

Finding common structure allows for shared implementation

(Demo)

Higher-Order Functions

Generalizing Over Computational Processes

The common structure among functions may be a computational process, rather than a number.

5
Si=14243+445 =15
k=1

=13 428 4 38 443 4 50 =225
B T 8§ 8 8 8 8
HE . = =3.04
;‘ 3735 99 T 105 T 323
(Demo)

Summation Example

def cube(k) . Function of a single argument
N (not called "term")
return pow(k, 3)

R A formal parameter that will
def summation(n, term be bound to a function
"""Sum the first n terms of a sequence.

>>> summation(5, icube)

225
W The cube function is passed

total, k = 0, 1 as an argument value
’ = ’
while k <= n:]
total, k = total +iterm(k), k + 1
return total .

0+ 1+8+27 + 64+ 125 } { The function bound to term }

gets called here

Functions as Return Values

(Demo)

Locally Defined Functions

Functions defined within other function bodies are bound to names in a local frame

A function that

returns a function

def {make_addexr(n):
"""Return a function that takes one argument k and returns k + n.

>>>{add_three = make_adder(3) /== The name add_three is bound
>>> add tHrée(?) to a function

def adder(k): A def statement w
: returnik + n/ | another def statement
return adder

Can refer to names in the

enclosing function

Call Expressions as Operator Expressions

An expression that An expression that

evaluates to a function evaluates to its argument

Operator Operand
3
[make_adder(1) (2)]
—_ el

_[func adder (k)
dder(1)

)

func make_adder(n) 1) make_adder(n):
dof adder(k):

return k + n .
return adder P func adder(k)

mak

The Purpose of Higher-Order Functions

Functions are first-class: Functions can be manipulated as values in our
programming language.

Higher-order function: A function that takes a function as an argument value or
returns a function as a return value

The Game of Hog
Higher-order functions:
* Express general methods of computation

* Remove repetition from programs

* Separate concerns among functions

(Demo)

