61A Lecture 4
Monday, September 8

Announcements

Homework 1 due Wednesday $9 / 10$ at 2 pm. Late homework is not accepted
Homework parties on Monday 9/8 (Today!)
-3pm-4pm in Wozniak Lounge in Soda Hall (100 person capacity)
-6pm-8pm in 2050 Valley Life Sciences Building (408 person capacity)
-More sections for students without prior programming experience! http://cs61a.org
Take-home quiz 1 starts Wednesday $9 / 10$ at 3 pm , due Thursday $9 / 11$ at 11:59pm
-Open-computer, but no external resources or friends
Content Covered: Lectures through last Friday 9/5 (same topics as Homework 1
Project 1 due next Wednesday $9 / 17$ at 11:59pm

Designing Functions

A pure function's behavior is the relationship it creates between input and output.

$$
\text { return value is the } \quad \text { return value is the nth Fibonacci number }
$$

ren

A Guide to Designing Function

Give each function exactly one job.

Don't repeat yourself (DRY). Implement a process just once, but execute it many times.

\square
Generalizing Patterns with Arguments
Regular geometric shapes relate length and area.
Area:
Finding common structure allows for shared implementation
(Demo)
\square

Generalizing Over Computational Processes
The common structure among functions may be a computational process, rather than a number.
$\qquad \sum_{k=1}^{5}(k=1+2+3+4+5$
$\qquad \sum_{k=1}^{5} k^{3}=15$
$\sum_{k=1}^{5} \frac{8}{(4 k-3) \cdot(4 k-1)}=\frac{8}{3}+\frac{8}{35}+\frac{8}{99}+\frac{8}{195}+\frac{8}{323}$
(Demo)

\square

Locally Defined Functions Functions defined within other function bodies are bound to names in a local

The Purpose of Higher-Order Functions
Functions are first-class: Functions can be manipulated as values in our programming language.

Higher-order function: A function that takes a function as an argument value or
returns a function as a return value returns a function as a return value

Higher-order functions:

- Express general methods of computation
- Remove repetition from programs
- Separate concerns among functions

The Game of Hog

