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You are not alone!

http://cs61a.org/staff.html
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def repeat(f, x): 
    while f(x) != x: 
        x = f(x) 
    return x 
!
def g(y): 
    return (y + 5) // 3 
!
result = repeat(g, 5)

If you think 
there's an error

Interactive Diagram
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Create a function value:   func <name>(<formal parameters>) [parent=<label>]

Its parent is the current frame. 
 
 

Bind <name> to the function value in the current frame

When a function is called:

1. Add a local frame, titled with the <name> of the function being called.

2. Copy the parent of the function to the local frame: [parent=<label>]

3. Bind the <formal parameters> to the arguments in the local frame.

4. Execute the body of the function in the environment that starts with the local frame.
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1
“y” is not 

found

“y” is not 
found, again

Error

• An environment is a 
sequence of frames.

• The environment created 
by calling a top-level 
function (no def within 
def) consists of one 
local frame, followed 
by the global frame.
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