
61A Lecture 5

Wednesday, September 10

Announcements

2

Announcements
• Take-home quiz released Wednesday 9/10 at 3pm, due Thursday 9/11 at 11:59pm

2

Announcements
• Take-home quiz released Wednesday 9/10 at 3pm, due Thursday 9/11 at 11:59pm

!http://cs61a.org/hw/released/quiz1.html

2

Announcements
• Take-home quiz released Wednesday 9/10 at 3pm, due Thursday 9/11 at 11:59pm

!http://cs61a.org/hw/released/quiz1.html

!3 points; graded for correctness

2

Announcements
• Take-home quiz released Wednesday 9/10 at 3pm, due Thursday 9/11 at 11:59pm

!http://cs61a.org/hw/released/quiz1.html

!3 points; graded for correctness

!Submit in the same way that you submit homework assignments

2

Announcements
• Take-home quiz released Wednesday 9/10 at 3pm, due Thursday 9/11 at 11:59pm

!http://cs61a.org/hw/released/quiz1.html

!3 points; graded for correctness

!Submit in the same way that you submit homework assignments

!If you receive 0/3, you will need to talk to the course staff or be dropped

2

Announcements
• Take-home quiz released Wednesday 9/10 at 3pm, due Thursday 9/11 at 11:59pm

!http://cs61a.org/hw/released/quiz1.html

!3 points; graded for correctness

!Submit in the same way that you submit homework assignments

!If you receive 0/3, you will need to talk to the course staff or be dropped

!Open computer & course materials, but no external resources such as classmates

2

Announcements
• Take-home quiz released Wednesday 9/10 at 3pm, due Thursday 9/11 at 11:59pm

!http://cs61a.org/hw/released/quiz1.html

!3 points; graded for correctness

!Submit in the same way that you submit homework assignments

!If you receive 0/3, you will need to talk to the course staff or be dropped

!Open computer & course materials, but no external resources such as classmates

!Practice quiz from Fall 2013: http://inst.eecs.berkeley.edu/~cs61a/fa13/hw/quiz1.html

2

Announcements
• Take-home quiz released Wednesday 9/10 at 3pm, due Thursday 9/11 at 11:59pm

!http://cs61a.org/hw/released/quiz1.html

!3 points; graded for correctness

!Submit in the same way that you submit homework assignments

!If you receive 0/3, you will need to talk to the course staff or be dropped

!Open computer & course materials, but no external resources such as classmates

!Practice quiz from Fall 2013: http://inst.eecs.berkeley.edu/~cs61a/fa13/hw/quiz1.html

• "Practical Programming Skills" DeCal starts Thursday 9/11, 6:30pm to 8pm in 306 Soda

2

Announcements
• Take-home quiz released Wednesday 9/10 at 3pm, due Thursday 9/11 at 11:59pm

!http://cs61a.org/hw/released/quiz1.html

!3 points; graded for correctness

!Submit in the same way that you submit homework assignments

!If you receive 0/3, you will need to talk to the course staff or be dropped

!Open computer & course materials, but no external resources such as classmates

!Practice quiz from Fall 2013: http://inst.eecs.berkeley.edu/~cs61a/fa13/hw/quiz1.html

• "Practical Programming Skills" DeCal starts Thursday 9/11, 6:30pm to 8pm in 306 Soda

!http://42.cs61a.org, run by Sumukh Sridhara (TA)

2

Announcements
• Take-home quiz released Wednesday 9/10 at 3pm, due Thursday 9/11 at 11:59pm

!http://cs61a.org/hw/released/quiz1.html

!3 points; graded for correctness

!Submit in the same way that you submit homework assignments

!If you receive 0/3, you will need to talk to the course staff or be dropped

!Open computer & course materials, but no external resources such as classmates

!Practice quiz from Fall 2013: http://inst.eecs.berkeley.edu/~cs61a/fa13/hw/quiz1.html

• "Practical Programming Skills" DeCal starts Thursday 9/11, 6:30pm to 8pm in 306 Soda

!http://42.cs61a.org, run by Sumukh Sridhara (TA)

• Guerrilla Section 1 on Higher-order functions: Saturday 9/13, 12:30pm to 3pm in 306 Soda

2

Announcements
• Take-home quiz released Wednesday 9/10 at 3pm, due Thursday 9/11 at 11:59pm

!http://cs61a.org/hw/released/quiz1.html

!3 points; graded for correctness

!Submit in the same way that you submit homework assignments

!If you receive 0/3, you will need to talk to the course staff or be dropped

!Open computer & course materials, but no external resources such as classmates

!Practice quiz from Fall 2013: http://inst.eecs.berkeley.edu/~cs61a/fa13/hw/quiz1.html

• "Practical Programming Skills" DeCal starts Thursday 9/11, 6:30pm to 8pm in 306 Soda

!http://42.cs61a.org, run by Sumukh Sridhara (TA)

• Guerrilla Section 1 on Higher-order functions: Saturday 9/13, 12:30pm to 3pm in 306 Soda

• Homework 2 (which is small) due Monday 9/15 at 11:59pm.

2

Announcements
• Take-home quiz released Wednesday 9/10 at 3pm, due Thursday 9/11 at 11:59pm

!http://cs61a.org/hw/released/quiz1.html

!3 points; graded for correctness

!Submit in the same way that you submit homework assignments

!If you receive 0/3, you will need to talk to the course staff or be dropped

!Open computer & course materials, but no external resources such as classmates

!Practice quiz from Fall 2013: http://inst.eecs.berkeley.edu/~cs61a/fa13/hw/quiz1.html

• "Practical Programming Skills" DeCal starts Thursday 9/11, 6:30pm to 8pm in 306 Soda

!http://42.cs61a.org, run by Sumukh Sridhara (TA)

• Guerrilla Section 1 on Higher-order functions: Saturday 9/13, 12:30pm to 3pm in 306 Soda

• Homework 2 (which is small) due Monday 9/15 at 11:59pm.

• Project 1 (which is BIG) due Wednesday 9/17 at 11:59pm.

2

Office Hours: You Should Go!

3

Office Hours: You Should Go!

3

You are not alone!

Office Hours: You Should Go!

3

You are not alone!

Office Hours: You Should Go!

3

You are not alone!

http://cs61a.org/staff.html

Environments for Higher-Order Functions

Environments Enable Higher-Order Functions

5

Environments Enable Higher-Order Functions

5

Functions are first-class: Functions can be manipulated as values in our programming
language.

Environments Enable Higher-Order Functions

5

Functions are first-class: Functions can be manipulated as values in our programming
language.

Higher-order function: A function that takes a function as an argument value or
returns a function as a return value

Environments Enable Higher-Order Functions

5

Functions are first-class: Functions can be manipulated as values in our programming
language.

Higher-order functions:

Higher-order function: A function that takes a function as an argument value or
returns a function as a return value

Environments Enable Higher-Order Functions

5

Functions are first-class: Functions can be manipulated as values in our programming
language.

Higher-order functions:

• Express general methods of computation

Higher-order function: A function that takes a function as an argument value or
returns a function as a return value

Environments Enable Higher-Order Functions

5

Functions are first-class: Functions can be manipulated as values in our programming
language.

Higher-order functions:

• Express general methods of computation

• Remove repetition from programs

Higher-order function: A function that takes a function as an argument value or
returns a function as a return value

Environments Enable Higher-Order Functions

5

Functions are first-class: Functions can be manipulated as values in our programming
language.

Higher-order functions:

• Express general methods of computation

• Remove repetition from programs

• Separate concerns among functions

Higher-order function: A function that takes a function as an argument value or
returns a function as a return value

Environments Enable Higher-Order Functions

5

Environment diagrams describe how higher-order functions work!

Functions are first-class: Functions can be manipulated as values in our programming
language.

Higher-order functions:

• Express general methods of computation

• Remove repetition from programs

• Separate concerns among functions

Higher-order function: A function that takes a function as an argument value or
returns a function as a return value

Environments Enable Higher-Order Functions

(Demo)

5

Environment diagrams describe how higher-order functions work!

Functions are first-class: Functions can be manipulated as values in our programming
language.

Higher-order functions:

• Express general methods of computation

• Remove repetition from programs

• Separate concerns among functions

Higher-order function: A function that takes a function as an argument value or
returns a function as a return value

Names can be Bound to Functional Arguments

6Interactive Diagram

Names can be Bound to Functional Arguments

6Interactive Diagram

Names can be Bound to Functional Arguments

6

Applying a user-defined function:

• Create a new frame
• Bind formal parameters 

(f & x) to arguments
• Execute the body: 

return f(f(x))

Interactive Diagram

Names can be Bound to Functional Arguments

6

Applying a user-defined function:

• Create a new frame
• Bind formal parameters 

(f & x) to arguments
• Execute the body: 

return f(f(x))

Interactive Diagram

Names can be Bound to Functional Arguments

6

Applying a user-defined function:

• Create a new frame
• Bind formal parameters 

(f & x) to arguments
• Execute the body: 

return f(f(x))

Interactive Diagram

2

1

Names can be Bound to Functional Arguments

6

Applying a user-defined function:

• Create a new frame
• Bind formal parameters 

(f & x) to arguments
• Execute the body: 

return f(f(x))

Interactive Diagram

2

1

Discussion Question

What is the value of the final expression below? (Demo)

7Interactive Diagram

Discussion Question

What is the value of the final expression below? (Demo)

7

def repeat(f, x):
 while f(x) != x:
 x = f(x)
 return x
!
def g(y):
 return (y + 5) // 3
!
result = repeat(g, 5)

Interactive Diagram

Discussion Question

What is the value of the final expression below? (Demo)

7

def repeat(f, x):
 while f(x) != x:
 x = f(x)
 return x
!
def g(y):
 return (y + 5) // 3
!
result = repeat(g, 5)

Interactive Diagram

Discussion Question

What is the value of the final expression below? (Demo)

7

def repeat(f, x):
 while f(x) != x:
 x = f(x)
 return x
!
def g(y):
 return (y + 5) // 3
!
result = repeat(g, 5)

If you think
there's an error

Interactive Diagram

Environments for Nested Definitions

(Demo)

Environment Diagrams for Nested Def Statements

9Interactive Diagram

Environment Diagrams for Nested Def Statements
Nested def

9Interactive Diagram

Environment Diagrams for Nested Def Statements
Nested def

9Interactive Diagram

Environment Diagrams for Nested Def Statements
Nested def

9Interactive Diagram

Environment Diagrams for Nested Def Statements
Nested def

9Interactive Diagram

Environment Diagrams for Nested Def Statements
Nested def

9Interactive Diagram

Environment Diagrams for Nested Def Statements

2

1

3
Nested def

9Interactive Diagram

Environment Diagrams for Nested Def Statements

2

1

3
Nested def

9Interactive Diagram

Environment Diagrams for Nested Def Statements

2

1

3

• Every user-defined function has
a parent frame (often global)

Nested def

9Interactive Diagram

Environment Diagrams for Nested Def Statements

2

1

3

• Every user-defined function has
a parent frame (often global)

• The parent of a function is the
frame in which it was defined

Nested def

9Interactive Diagram

Environment Diagrams for Nested Def Statements

2

1

3

• Every user-defined function has
a parent frame (often global)

• The parent of a function is the
frame in which it was defined

• Every local frame has a parent
frame (often global)

Nested def

9Interactive Diagram

Environment Diagrams for Nested Def Statements

2

1

3

• Every user-defined function has
a parent frame (often global)

• The parent of a function is the
frame in which it was defined

• Every local frame has a parent
frame (often global)

• The parent of a frame is the
parent of the function called

Nested def

9Interactive Diagram

How to Draw an Environment Diagram

10

How to Draw an Environment Diagram

When a function is defined:

10

How to Draw an Environment Diagram

When a function is defined:

Create a function value: func <name>(<formal parameters>) [parent=<label>]

10

How to Draw an Environment Diagram

When a function is defined:

Create a function value: func <name>(<formal parameters>) [parent=<label>]

Its parent is the current frame. 
 
 

10

How to Draw an Environment Diagram

When a function is defined:

Create a function value: func <name>(<formal parameters>) [parent=<label>]

Its parent is the current frame. 
 
 

10

How to Draw an Environment Diagram

When a function is defined:

Create a function value: func <name>(<formal parameters>) [parent=<label>]

Its parent is the current frame. 
 
 

Bind <name> to the function value in the current frame

10

How to Draw an Environment Diagram

When a function is defined:

Create a function value: func <name>(<formal parameters>) [parent=<label>]

Its parent is the current frame. 
 
 

Bind <name> to the function value in the current frame

When a function is called:

10

How to Draw an Environment Diagram

When a function is defined:

Create a function value: func <name>(<formal parameters>) [parent=<label>]

Its parent is the current frame. 
 
 

Bind <name> to the function value in the current frame

When a function is called:

1. Add a local frame, titled with the <name> of the function being called.

10

How to Draw an Environment Diagram

When a function is defined:

Create a function value: func <name>(<formal parameters>) [parent=<label>]

Its parent is the current frame. 
 
 

Bind <name> to the function value in the current frame

When a function is called:

1. Add a local frame, titled with the <name> of the function being called.

2. Copy the parent of the function to the local frame: [parent=<label>]

10

How to Draw an Environment Diagram

When a function is defined:

Create a function value: func <name>(<formal parameters>) [parent=<label>]

Its parent is the current frame. 
 
 

Bind <name> to the function value in the current frame

When a function is called:

1. Add a local frame, titled with the <name> of the function being called.

2. Copy the parent of the function to the local frame: [parent=<label>]

3. Bind the <formal parameters> to the arguments in the local frame.

10

How to Draw an Environment Diagram

When a function is defined:

Create a function value: func <name>(<formal parameters>) [parent=<label>]

Its parent is the current frame. 
 
 

Bind <name> to the function value in the current frame

When a function is called:

1. Add a local frame, titled with the <name> of the function being called.

2. Copy the parent of the function to the local frame: [parent=<label>]

3. Bind the <formal parameters> to the arguments in the local frame.

4. Execute the body of the function in the environment that starts with the local frame.

10

Local Names

(Demo)

Local Names are not Visible to Other (Non-Nested) Functions

12Interactive Diagram

Local Names are not Visible to Other (Non-Nested) Functions

2

1

12Interactive Diagram

Local Names are not Visible to Other (Non-Nested) Functions

2

1

12Interactive Diagram

Local Names are not Visible to Other (Non-Nested) Functions

2

1
“y” is not

found

12Interactive Diagram

Local Names are not Visible to Other (Non-Nested) Functions

2

1
“y” is not

found

“y” is not
found, again

12Interactive Diagram

Local Names are not Visible to Other (Non-Nested) Functions

2

1
“y” is not

found

“y” is not
found, again

Error

12Interactive Diagram

Local Names are not Visible to Other (Non-Nested) Functions

2

1
“y” is not

found

“y” is not
found, again

Error

• An environment is a
sequence of frames.

12Interactive Diagram

Local Names are not Visible to Other (Non-Nested) Functions

2

1
“y” is not

found

“y” is not
found, again

Error

• An environment is a
sequence of frames.

• The environment created
by calling a top-level
function (no def within
def) consists of one
local frame, followed
by the global frame.

12Interactive Diagram

Function Composition

(Demo)

The Environment Diagram for Function Composition

14Interactive Diagram

The Environment Diagram for Function Composition

14Interactive Diagram

The Environment Diagram for Function Composition

14Interactive Diagram

The Environment Diagram for Function Composition

14Interactive Diagram

The Environment Diagram for Function Composition

Return value of make_adder is
an argument to compose1

14Interactive Diagram

The Environment Diagram for Function Composition

Return value of make_adder is
an argument to compose1

14Interactive Diagram

The Environment Diagram for Function Composition

Return value of make_adder is
an argument to compose1

14Interactive Diagram

The Environment Diagram for Function Composition

Return value of make_adder is
an argument to compose1

14Interactive Diagram

The Environment Diagram for Function Composition

2

1

3

Return value of make_adder is
an argument to compose1

14Interactive Diagram

The Environment Diagram for Function Composition

2

1

3

Return value of make_adder is
an argument to compose1

14Interactive Diagram

The Environment Diagram for Function Composition

2

1

3

1

2

3

Return value of make_adder is
an argument to compose1

14Interactive Diagram

