
61A Lecture 6

Friday, September 12

Announcements

2

Announcements

• Homework 2 due Monday 9/15 @ 11:59pm

2

Announcements

• Homework 2 due Monday 9/15 @ 11:59pm

• Project 1 due Wednesday 9/17 @ 11:59pm

2

Announcements

• Homework 2 due Monday 9/15 @ 11:59pm

• Project 1 due Wednesday 9/17 @ 11:59pm

• Optional Guerrilla section Saturday 9/13 @ 12:30pm in 306 Soda about higher-order functions

2

Announcements

• Homework 2 due Monday 9/15 @ 11:59pm

• Project 1 due Wednesday 9/17 @ 11:59pm

• Optional Guerrilla section Saturday 9/13 @ 12:30pm in 306 Soda about higher-order functions

!Organized by Andrew Huang and the readers

2

Announcements

• Homework 2 due Monday 9/15 @ 11:59pm

• Project 1 due Wednesday 9/17 @ 11:59pm

• Optional Guerrilla section Saturday 9/13 @ 12:30pm in 306 Soda about higher-order functions

!Organized by Andrew Huang and the readers

!Work in a group on a problem until everyone in the group understands the solution

2

Announcements

• Homework 2 due Monday 9/15 @ 11:59pm

• Project 1 due Wednesday 9/17 @ 11:59pm

• Optional Guerrilla section Saturday 9/13 @ 12:30pm in 306 Soda about higher-order functions

!Organized by Andrew Huang and the readers

!Work in a group on a problem until everyone in the group understands the solution

• Project party on Monday 9/15, 3pm-4pm in Wozniak Lounge and 6pm-8pm in 2050 VLSB

2

Announcements

• Homework 2 due Monday 9/15 @ 11:59pm

• Project 1 due Wednesday 9/17 @ 11:59pm

• Optional Guerrilla section Saturday 9/13 @ 12:30pm in 306 Soda about higher-order functions

!Organized by Andrew Huang and the readers

!Work in a group on a problem until everyone in the group understands the solution

• Project party on Monday 9/15, 3pm-4pm in Wozniak Lounge and 6pm-8pm in 2050 VLSB

• Midterm 1 on Monday 9/22 from 7pm to 9pm

2

Announcements

• Homework 2 due Monday 9/15 @ 11:59pm

• Project 1 due Wednesday 9/17 @ 11:59pm

• Optional Guerrilla section Saturday 9/13 @ 12:30pm in 306 Soda about higher-order functions

!Organized by Andrew Huang and the readers

!Work in a group on a problem until everyone in the group understands the solution

• Project party on Monday 9/15, 3pm-4pm in Wozniak Lounge and 6pm-8pm in 2050 VLSB

• Midterm 1 on Monday 9/22 from 7pm to 9pm

!Details and review materials will be posted next week

2

Announcements

• Homework 2 due Monday 9/15 @ 11:59pm

• Project 1 due Wednesday 9/17 @ 11:59pm

• Optional Guerrilla section Saturday 9/13 @ 12:30pm in 306 Soda about higher-order functions

!Organized by Andrew Huang and the readers

!Work in a group on a problem until everyone in the group understands the solution

• Project party on Monday 9/15, 3pm-4pm in Wozniak Lounge and 6pm-8pm in 2050 VLSB

• Midterm 1 on Monday 9/22 from 7pm to 9pm

!Details and review materials will be posted next week

!There will be a web form for students who cannot attend due to a conflict

2

Announcements

• Homework 2 due Monday 9/15 @ 11:59pm

• Project 1 due Wednesday 9/17 @ 11:59pm

• Optional Guerrilla section Saturday 9/13 @ 12:30pm in 306 Soda about higher-order functions

!Organized by Andrew Huang and the readers

!Work in a group on a problem until everyone in the group understands the solution

• Project party on Monday 9/15, 3pm-4pm in Wozniak Lounge and 6pm-8pm in 2050 VLSB

• Midterm 1 on Monday 9/22 from 7pm to 9pm

!Details and review materials will be posted next week

!There will be a web form for students who cannot attend due to a conflict

• There's a pinned Piazza thread to find partners

2

Lambda Expressions

(Demo)

Lambda Expressions

4

Lambda Expressions

>>> x = 10

4

Lambda Expressions

>>> x = 10

>>> square = x * x

4

Lambda Expressions

>>> x = 10

>>> square = x * x

An expression: this one
evaluates to a number

4

Lambda Expressions

>>> x = 10

>>> square = x * x

>>> square = lambda x: x * x

An expression: this one
evaluates to a number

4

Lambda Expressions

>>> x = 10

>>> square = x * x

>>> square = lambda x: x * x

An expression: this one
evaluates to a number

Also an expression:
evaluates to a function

4

Lambda Expressions

>>> x = 10

>>> square = x * x

>>> square = lambda x: x * x

An expression: this one
evaluates to a number

Also an expression:
evaluates to a function

A function

4

Lambda Expressions

>>> x = 10

>>> square = x * x

>>> square = lambda x: x * x

An expression: this one
evaluates to a number

Also an expression:
evaluates to a function

with formal parameter x
A function

4

Lambda Expressions

>>> x = 10

>>> square = x * x

>>> square = lambda x: x * x

An expression: this one
evaluates to a number

Also an expression:
evaluates to a function

that returns the value of "x * x"
with formal parameter x

A function

4

Lambda Expressions

>>> x = 10

>>> square = x * x

>>> square = lambda x: x * x

An expression: this one
evaluates to a number

Also an expression:
evaluates to a function

that returns the value of "x * x"
with formal parameter x

A function
Important: No "return" keyword!

4

Lambda Expressions

>>> x = 10

>>> square = x * x

>>> square = lambda x: x * x

An expression: this one
evaluates to a number

Also an expression:
evaluates to a function

that returns the value of "x * x"
with formal parameter x

A function
Important: No "return" keyword!

Must be a single expression

4

Lambda Expressions

>>> x = 10

>>> square = x * x

>>> square = lambda x: x * x

>>> square(4)
16

An expression: this one
evaluates to a number

Also an expression:
evaluates to a function

that returns the value of "x * x"
with formal parameter x

A function
Important: No "return" keyword!

Must be a single expression

4

Lambda Expressions

>>> x = 10

>>> square = x * x

>>> square = lambda x: x * x

>>> square(4)
16

An expression: this one
evaluates to a number

Also an expression:
evaluates to a function

that returns the value of "x * x"
with formal parameter x

A function

Lambda expressions are not common in Python, but important in general

Important: No "return" keyword!

Must be a single expression

4

Lambda Expressions

>>> x = 10

>>> square = x * x

>>> square = lambda x: x * x

>>> square(4)
16

An expression: this one
evaluates to a number

Also an expression:
evaluates to a function

that returns the value of "x * x"
with formal parameter x

A function

Lambda expressions are not common in Python, but important in general

Important: No "return" keyword!

Must be a single expression

4

Lambda expressions in Python cannot contain statements at all!

Lambda Expressions Versus Def Statements

5

Lambda Expressions Versus Def Statements

VS

5

Lambda Expressions Versus Def Statements

square = lambda x: x * x VS

5

Lambda Expressions Versus Def Statements

square = lambda x: x * x def square(x):
 return x * xVS

5

Lambda Expressions Versus Def Statements

square = lambda x: x * x def square(x):
 return x * xVS

• Both create a function with the same domain, range, and behavior.

5

Lambda Expressions Versus Def Statements

square = lambda x: x * x def square(x):
 return x * xVS

• Both create a function with the same domain, range, and behavior.

• Both functions have as their parent the frame in which they were defined.

5

Lambda Expressions Versus Def Statements

square = lambda x: x * x def square(x):
 return x * xVS

• Both create a function with the same domain, range, and behavior.

• Both functions have as their parent the frame in which they were defined.

• Both bind that function to the name square.

5

Lambda Expressions Versus Def Statements

square = lambda x: x * x def square(x):
 return x * xVS

• Both create a function with the same domain, range, and behavior.

• Both functions have as their parent the frame in which they were defined.

• Both bind that function to the name square.

• Only the def statement gives the function an intrinsic name.

5

Lambda Expressions Versus Def Statements

square = lambda x: x * x def square(x):
 return x * xVS

• Both create a function with the same domain, range, and behavior.

• Both functions have as their parent the frame in which they were defined.

• Both bind that function to the name square.

• Only the def statement gives the function an intrinsic name.

5

Lambda Expressions Versus Def Statements

square = lambda x: x * x def square(x):
 return x * xVS

• Both create a function with the same domain, range, and behavior.

• Both functions have as their parent the frame in which they were defined.

• Both bind that function to the name square.

• Only the def statement gives the function an intrinsic name.

5

Lambda Expressions Versus Def Statements

square = lambda x: x * x def square(x):
 return x * xVS

• Both create a function with the same domain, range, and behavior.

• Both functions have as their parent the frame in which they were defined.

• Both bind that function to the name square.

• Only the def statement gives the function an intrinsic name.

The Greek
letter lambda

5

Lambda Expressions Versus Def Statements

square = lambda x: x * x def square(x):
 return x * xVS

• Both create a function with the same domain, range, and behavior.

• Both functions have as their parent the frame in which they were defined.

• Both bind that function to the name square.

• Only the def statement gives the function an intrinsic name.

The Greek
letter lambda

5

Lambda Expressions Versus Def Statements

square = lambda x: x * x def square(x):
 return x * xVS

• Both create a function with the same domain, range, and behavior.

• Both functions have as their parent the frame in which they were defined.

• Both bind that function to the name square.

• Only the def statement gives the function an intrinsic name.

The Greek
letter lambda

5

Currying

Function Currying

7

Function Currying

def make_adder(n):
 return lambda k: n + k

7

Function Currying

def make_adder(n):
 return lambda k: n + k

>>> make_adder(2)(3)
5
>>> add(2, 3)
5

7

Function Currying

def make_adder(n):
 return lambda k: n + k

>>> make_adder(2)(3)
5
>>> add(2, 3)
5

There's a general
relationship between

these functions

7

Function Currying

def make_adder(n):
 return lambda k: n + k

>>> make_adder(2)(3)
5
>>> add(2, 3)
5

There's a general
relationship between

these functions

7

(Demo)

Function Currying

def make_adder(n):
 return lambda k: n + k

>>> make_adder(2)(3)
5
>>> add(2, 3)
5

There's a general
relationship between

these functions

Curry: Transform a multi-argument function into a single-argument, higher-order function.

7

(Demo)

Function Currying

def make_adder(n):
 return lambda k: n + k

>>> make_adder(2)(3)
5
>>> add(2, 3)
5

There's a general
relationship between

these functions

Curry: Transform a multi-argument function into a single-argument, higher-order function.

Currying was discovered by Moses Schönfinkel and re-discovered by Haskell Curry.

7

(Demo)

Function Currying

def make_adder(n):
 return lambda k: n + k

>>> make_adder(2)(3)
5
>>> add(2, 3)
5

There's a general
relationship between

these functions

Curry: Transform a multi-argument function into a single-argument, higher-order function.

Currying was discovered by Moses Schönfinkel and re-discovered by Haskell Curry.

Schönfinkeling?

7

(Demo)

Newton's Method

Newton's Method Background

Quickly finds accurate approximations to zeroes of differentiable functions!

9

Newton's Method Background

Quickly finds accurate approximations to zeroes of differentiable functions!

f(x) = x2 - 2

9

Newton's Method Background

Quickly finds accurate approximations to zeroes of differentiable functions!

-5 -2.5 0 2.5 5

-2.5

2.5

f(x) = x2 - 2

9

Newton's Method Background

Quickly finds accurate approximations to zeroes of differentiable functions!

-5 -2.5 0 2.5 5

-2.5

2.5

f(x) = x2 - 2
A "zero" of a function f is
an input x such that f(x)=0

9

Newton's Method Background

Quickly finds accurate approximations to zeroes of differentiable functions!

-5 -2.5 0 2.5 5

-2.5

2.5

f(x) = x2 - 2
A "zero" of a function f is
an input x such that f(x)=0

x=1.414213562373095

9

Newton's Method Background

Quickly finds accurate approximations to zeroes of differentiable functions!

-5 -2.5 0 2.5 5

-2.5

2.5

f(x) = x2 - 2
A "zero" of a function f is
an input x such that f(x)=0

Application: a method for computing square roots, cube roots, etc.

x=1.414213562373095

9

Newton's Method Background

Quickly finds accurate approximations to zeroes of differentiable functions!

-5 -2.5 0 2.5 5

-2.5

2.5

f(x) = x2 - 2
A "zero" of a function f is
an input x such that f(x)=0

Application: a method for computing square roots, cube roots, etc.

The positive zero of f(x) = x2 - a is . (We're solving the equation x2 = a.)

x=1.414213562373095

�
�

9

Newton's Method

Given a function f and initial guess x,

10

Newton's Method

Given a function f and initial guess x,

10

Repeatedly improve x:

Newton's Method

Given a function f and initial guess x,

10

Repeatedly improve x:

Newton's Method

Compute the value of f
at the guess: f(x)

Given a function f and initial guess x,

10

Repeatedly improve x:

Newton's Method

Compute the value of f
at the guess: f(x)

Compute the derivative
of f at the guess: f'(x)

Given a function f and initial guess x,

10

Repeatedly improve x:

Newton's Method

Compute the value of f
at the guess: f(x)

Compute the derivative
of f at the guess: f'(x)

Update guess x to be:

Given a function f and initial guess x,

�� ���)
�����

10

Repeatedly improve x:

Newton's Method

Compute the value of f
at the guess: f(x)

Compute the derivative
of f at the guess: f'(x)

Update guess x to be:

Given a function f and initial guess x,

Current point:
(x, f(x))

�� ���)
�����

10

Repeatedly improve x:

Newton's Method

Compute the value of f
at the guess: f(x)

Compute the derivative
of f at the guess: f'(x)

Update guess x to be:

Given a function f and initial guess x,

Current point:
(x, f(x))

Length from 0:
-f(x)

�� ���)
�����

10

Repeatedly improve x:

Newton's Method

Compute the value of f
at the guess: f(x)

Compute the derivative
of f at the guess: f'(x)

Update guess x to be:

Given a function f and initial guess x,

Current point:
(x, f(x))

Length from 0:
-f(x)

�� ���)
�����

10

Slope of this
tangent line

is f'(x)

Repeatedly improve x:

Newton's Method

Compute the value of f
at the guess: f(x)

Compute the derivative
of f at the guess: f'(x)

Update guess x to be:

Given a function f and initial guess x,

Current point:
(x, f(x))

Change to x:
-f(x)/f'(x)

Length from 0:
-f(x)

�� ���)
�����

10

Slope of this
tangent line

is f'(x)

Repeatedly improve x:

Newton's Method

Compute the value of f
at the guess: f(x)

Compute the derivative
of f at the guess: f'(x)

Update guess x to be:

Given a function f and initial guess x,

Current point:
(x, f(x))

Change to x:
-f(x)/f'(x)

Length from 0:
-f(x)

�� ���)
�����

10

Slope of this
tangent line

is f'(x)

Zero of
tangent
line:

!
!�� ���)
�����

Repeatedly improve x:

Newton's Method

Compute the value of f
at the guess: f(x)

Compute the derivative
of f at the guess: f'(x)

Update guess x to be:

Given a function f and initial guess x,

Current point:
(x, f(x))

Change to x:
-f(x)/f'(x)

Length from 0:
-f(x)

�� ���)
�����

10

Slope of this
tangent line

is f'(x)

Zero of
tangent
line:

!
!�� ���)
�����

Repeatedly improve x:

Newton's Method

Compute the value of f
at the guess: f(x)

Compute the derivative
of f at the guess: f'(x)

Update guess x to be:

Given a function f and initial guess x,

Current point:
(x, f(x))

Change to x:
-f(x)/f'(x)

Length from 0:
-f(x)

�� ���)
�����

10

Slope of this
tangent line

is f'(x)

Zero of
tangent
line:

!
!�� ���)
�����

Repeatedly improve x:

Finish when f(x) = 0 (or close enough)

Newton's Method

Compute the value of f
at the guess: f(x)

Compute the derivative
of f at the guess: f'(x)

Update guess x to be:

Given a function f and initial guess x,

Current point:
(x, f(x))

Change to x:
-f(x)/f'(x)

Length from 0:
-f(x)

�� ���)
�����

10

Slope of this
tangent line

is f'(x)

Zero of
tangent
line:

!
!�� ���)
�����

http://en.wikipedia.org/wiki/File:NewtonIteration_Ani.gif

Repeatedly improve x:

Finish when f(x) = 0 (or close enough)

Using Newton's Method

11

Using Newton's Method

How to find the square root of 2?

11

Using Newton's Method

>>> f = lambda x: x*x - 2

>>> df = lambda x: 2*x

>>> find_zero(f, df)

1.4142135623730951

How to find the square root of 2?

11

Using Newton's Method

>>> f = lambda x: x*x - 2

>>> df = lambda x: 2*x

>>> find_zero(f, df)

1.4142135623730951

How to find the square root of 2?

11

Using Newton's Method

>>> f = lambda x: x*x - 2

>>> df = lambda x: 2*x

>>> find_zero(f, df)

1.4142135623730951

How to find the square root of 2?

 f(x) = x2 - 2
f'(x) = 2x

11

Using Newton's Method

>>> f = lambda x: x*x - 2

>>> df = lambda x: 2*x

>>> find_zero(f, df)

1.4142135623730951

How to find the square root of 2?

 f(x) = x2 - 2
f'(x) = 2x

11

Applies Newton's method

Using Newton's Method

>>> f = lambda x: x*x - 2

>>> df = lambda x: 2*x

>>> find_zero(f, df)

1.4142135623730951

How to find the square root of 2?

How to find the cube root of 729?

 f(x) = x2 - 2
f'(x) = 2x

11

Applies Newton's method

Using Newton's Method

>>> f = lambda x: x*x - 2

>>> df = lambda x: 2*x

>>> find_zero(f, df)

1.4142135623730951

How to find the square root of 2?

How to find the cube root of 729?

 f(x) = x2 - 2
f'(x) = 2x

11

3
p
V

V

Applies Newton's method

Using Newton's Method

>>> f = lambda x: x*x - 2

>>> df = lambda x: 2*x

>>> find_zero(f, df)

1.4142135623730951

How to find the square root of 2?

How to find the cube root of 729?

>>> g = lambda x: x*x*x - 729

>>> dg = lambda x: 3*x*x

>>> find_zero(g, dg)

9.0

 f(x) = x2 - 2
f'(x) = 2x

11

3
p
V

V

Applies Newton's method

Using Newton's Method

>>> f = lambda x: x*x - 2

>>> df = lambda x: 2*x

>>> find_zero(f, df)

1.4142135623730951

How to find the square root of 2?

How to find the cube root of 729?

>>> g = lambda x: x*x*x - 729

>>> dg = lambda x: 3*x*x

>>> find_zero(g, dg)

9.0

 f(x) = x2 - 2
f'(x) = 2x

 g(x) = x3 - 729
g'(x) = 3x2

11

3
p
V

V

Applies Newton's method

Iterative Improvement

Special Case: Square Roots

13

Special Case: Square Roots

How to compute square_root(a)

Idea: Iteratively refine a guess x about the square root of a

13

Special Case: Square Roots

How to compute square_root(a)

Idea: Iteratively refine a guess x about the square root of a

Update:

13

� =
�+ �

�
�

Special Case: Square Roots

How to compute square_root(a)

Idea: Iteratively refine a guess x about the square root of a

Update:

13

� =
�+ �

�
�

Special Case: Square Roots

How to compute square_root(a)

Idea: Iteratively refine a guess x about the square root of a

Update:

Babylonian Method

13

� =
�+ �

�
�

Special Case: Square Roots

How to compute square_root(a)

Idea: Iteratively refine a guess x about the square root of a

Implementation questions:

Update:

Babylonian Method

13

� =
�+ �

�
�

Special Case: Square Roots

How to compute square_root(a)

Idea: Iteratively refine a guess x about the square root of a

What guess should start the computation?

Implementation questions:

Update:

Babylonian Method

13

� =
�+ �

�
�

Special Case: Square Roots

How to compute square_root(a)

Idea: Iteratively refine a guess x about the square root of a

What guess should start the computation?

How do we know when we are finished?

Implementation questions:

Update:

Babylonian Method

13

Special Case: Cube Roots

14

Special Case: Cube Roots

How to compute cube_root(a)

Idea: Iteratively refine a guess x about the cube root of a

14

Special Case: Cube Roots

How to compute cube_root(a)

Idea: Iteratively refine a guess x about the cube root of a

Update:

14

� =
� · �+ �

��

�

Special Case: Cube Roots

How to compute cube_root(a)

Idea: Iteratively refine a guess x about the cube root of a

Update:

14

� =
� · �+ �

��

�

Special Case: Cube Roots

How to compute cube_root(a)

Idea: Iteratively refine a guess x about the cube root of a

Implementation questions:

Update:

14

� =
� · �+ �

��

�

Special Case: Cube Roots

How to compute cube_root(a)

Idea: Iteratively refine a guess x about the cube root of a

What guess should start the computation?

Implementation questions:

Update:

14

� =
� · �+ �

��

�

Special Case: Cube Roots

How to compute cube_root(a)

Idea: Iteratively refine a guess x about the cube root of a

What guess should start the computation?

How do we know when we are finished?

Implementation questions:

Update:

14

Implementing Newton's Method

(Demo)

