61A Lecture 6

Friday, September 12

Announcements

Homework 2 due Monday 9/15 @ 11:59pm
Project 1 due Wednesday 9/17 @ 11:59pm
Optional Guerrilla section Saturday 9/13 @ 12:30pm in 306 Soda about higher—-order functions
Organized by Andrew Huang and the readers
Work in a group on a problem until everyone in the group understands the solution
Project party on Monday 9/15, 3pm-4pm in Wozniak Lounge and 6pm-8pm in 2050 VLSB
Midterm 1 on Monday 9/22 from 7pm to 9pm
Details and review materials will be posted next week
There will be a web form for students who cannot attend due to a conflict

There's a pinned Piazza thread to find partners

Lambda Expressions

(Demo)

Lambda Expressions

>>> X = 10 An expression: this one
evaluates to a number

g ‘.I (

M ‘ Also an expression:
evaluates to a function

1l
peS
*
P

>>> Ssquare

>>> square =:lambda X: X * X |
T g Important: No "return" keyword!]
A function ~

with formal parameter x
that returns the value of "x * x!

>>> square(4) &
16 [Must be a single expression]

Lambda expressions are not common in Python, but important in general

Lambda expressions in Python cannot contain statements at all!

Lambda Expressions Versus Def Statements

(4

square = lambda x: X * X

VS def square(x):
return x x X

Both create a function with the same domain, range, and behavior.

Both functions have as their parent the frame in which they were defined.

Both bind that function to the name square.

Only the def statement gives the function an intrinsic name.

Global frame /’—rfuncfxéx) <line 1> [parent=Global] Global frame /drfunc square(x) [parent=Global]
{Equare i A square

---------------- . The Greek f1

fl:{)\ <line 1> :[parent=Global]

................ letter lambda

x |4 X |4

: square [parent=Global]

Return 6 Return
value value

Currying

Function Currying

def make_adder(n):
return lambda k: n + k

>>> make_adder(2)(3)

. 5 There's a general
: relationship between (Demo)
;>> add(2, 3) | these functions

Curry: Transform a multi-argument function into a single-argument, higher-order function.

Currying was discovered by Moses Schonfinkel and re-discovered by Haskell Curry.
A

[Schonfinkeling?]

Newton's Method

Newton's Method Background

Quickly finds accurate approximations to zeroes of differentiable functions!

\ A

N~
£.0

A "zero" of a function f 1is
an input x such that f(x)=0

>

3
[S

x=1.414213562373095]

[
\

o
o

o
o
yd
)
N
o

Application: a method for computing square roots, cube roots, etc.

The positive zero of f(x) = x2 — a is va. (We're solving the equation x2 = a.)

Newton's Method

Given a function f and initial guess X,

Repeatedly improve x:

Compute the value of f
at the guess: f(x)

Compute the derivative
of f at the guess: f'(x)

Update guess x to be:

f(x)

f'(x)

Finish when f(x) = @ (or close enough)

10

5 Change to x:
=f(x)/f"(x)

0 25

[

Length from @:
—-f(x)

Slope of this
tangent line
is f'(x)

Current point:
P (x, f(x))

Using Newton's Method

How to find the square root of 27

.

>>> f

>>> df

>>> find
1.414213

How to find the cube root of 7297

“F

v

i

>>> (g

>>> dg =
>>> find
9.0

glambda X: XkX — 2} 3 = 52 = %
lambda x: 2kx frix) = 2x
_zero(f, df)

5623730951 Applies Newton's method]

_zero(g, dg)

lterative Improvement

Special Case: Square Roots

How to compute square_root(a)

Idea: Iteratively refine a guess x about the square root of a

Update: X = —X

I: Babylonian Method

Implementation questions:

What guess should start the computation?

How do we know when we are finished?

Special Case: Cube Roots

How to compute cube_root(a)

Idea: Iteratively refine a guess x about the cube root of a

Update: X — X2

Implementation questions:

What guess should start the computation?

How do we know when we are finished?

Implementing Newton's Method

(Demo)

