61A Lecture 6

Friday, September 12

Announcements

- Homework 2 due Monday 9/15 @ 11:59pm
- Project 1 due Wednesday 9/17 @ 11:59pm
- •Optional Guerrilla section Saturday 9/13 @ 12:30pm in 306 Soda about higher-order functions
 - •Organized by Andrew Huang and the readers
 - Work in a group on a problem until everyone in the group understands the solution
- Project party on Monday 9/15, 3pm-4pm in Wozniak Lounge and 6pm-8pm in 2050 VLSB
- Midterm 1 on Monday 9/22 from 7pm to 9pm
 - •Details and review materials will be posted next week
 - •There will be a web form for students who cannot attend due to a conflict
- There's a pinned Piazza thread to find partners

Lambda Expressions

(Demo)

Lambda Expressions

Lambda expressions are not common in Python, but important in general Lambda expressions in Python cannot contain statements at all!

_

Lambda Expressions Versus Def Statements

- Both create a function with the same domain, range, and behavior.
- Both functions have as their parent the frame in which they were defined.
- Both bind that function to the name square.
- Only the def statement gives the function an intrinsic name.

Function Currying

```
def make_adder(n):
    return lambda k: n + k

>>> make_adder(2)(3)
    There's a general
    relationship between
    these functions

(Demo)
```

Curry: Transform a multi-argument function into a single-argument, higher-order function.

Currying was discovered by Moses Schönfinkel and re-discovered by Haskell Curry.

Schönfinkeling?

7

Newton's Method Background

Quickly finds accurate approximations to zeroes of differentiable functions!

Application: a method for computing square roots, cube roots, etc.

The positive zero of $f(x) = x^2 - a$ is \sqrt{a} . (We're solving the equation $x^2 = a$.)

Newton's Method

Given a function f and initial guess x,

Repeatedly improve x:

Compute the value of f at the guess: f(x)

Compute the derivative of f at the guess: f'(x)

Update guess x to be:

$$x - \frac{f(x)}{f'(x)}$$

Finish when f(x) = 0 (or close enough)

Using Newton's Method

How to find the square root of 2?

How to find the cube root of 729?

>>> g = lambda x:
$$x*x*x - 729$$

>>> dg = lambda x: $3*x*x$
>>> find_zero(g, dg)
9.0

Special Case: Square Roots

How to compute square_root(a)

Idea: Iteratively refine a guess x about the square root of a

Update:
$$X = \frac{X + \frac{a}{X}}{2}$$

Babylonian Method

Implementation questions:

What guess should start the computation?

How do we know when we are finished?

Special Case: Cube Roots

How to compute cube_root(a)

Idea: Iteratively refine a guess x about the cube root of a

Implementation questions:

What guess should start the computation?

How do we know when we are finished?

Implementing Newton's Method

(Demo)