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<If a number a is divisible by 9, then sum_digits(a) is also divisible by 9.

<Useful for typo detection!
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+Credit cards actually use the Luhn algorithm, which we'll implement after digit_sum.
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The Recursive Leap of Faith

def fact(n):
if n == 0:
return 1

return n * fact(n-1)

Is fact implemented correctly?

1. Verify the base case.

2. Treat fact as a functional abstraction!
3. Assume that fact(n-1) is correct.

4, Verify that fact(n) is correct,
assuming that fact(n-1) correct.

Photo by Kevin Lee, Preikestolen, Norway
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Used to verify credit card numbers

From Wikipedia: http://en.wikipedia.org/wiki/Luhn_algorithm

« From the rightmost digit, which is the check digit, moving left, double the value of every
second digit; if product of this doubling operation is greater than 9 (e.g., 7 * 2 = 14),
then sum the digits of the products (e.g., 10: 1 + @ = 1, 14: 1 + 4 = 5). . .

Recursion and lteration

+ Take the sum of all the digits.

1 3 8 7 4 3
2 3 1467 |7 8 3 =30
The Luhn sum of a valid credit card number is a multiple of 10. (Demo)
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def sum_digits_iter(n):
digit_sum = 0
while n > 0:
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More formulaic: Iteration is a special case of recursion.

Idea: The state of an iteration can be passed as arguments.

def sum_digits_iter(n):
digit_sum = @
while n > 0:
n, last = split(n) T ]
idigit_sum = digit_sum + last Updates via assignment become...
return digit_sum

def sum_digits_rec(n, digit_sum):
if n == 0: )
return digit_sum

..arguments to a recursive call }
else
n, last = split(n)
return sum_digits_rec(n, digit_sum + last)




