61A Lecture 7

Monday, September 15

Announcements

Announcements

“Homework 2 due Monday 9/15 at 11:59pm

Announcements

“Homework 2 due Monday 9/15 at 11:59pm

-Project 1 deadline extended, due Thursday 9/18 at 11:59pm

Announcements
-Homework 2 due Monday 9/15 at 11:59pm
“Project 1 deadline extended, due Thursday 9/18 at 11:59pm

Extra credit point if you submit by Wednesday 9/17 at 11:59pm

Announcements

-Homework 2 due Monday 9/15 at 11:59pm

“Project 1 deadline extended, due Thursday 9/18 at 11:59pm
Extra credit point if you submit by Wednesday 9/17 at 11:59pm

«Project/homework party Monday 9/15: 3pm-4pm in Wozniak Lounge & 6pm-8pm in 2050 VLSB

Announcements

-Homework 2 due Monday 9/15 at 11:59pm
-Project 1 deadline extended, due Thursday 9/18 at 11:59pm
Extra credit point if you submit by Wednesday 9/17 at 11:59pm
Project/homework party Monday 9/15: 3pm-4pm in Wozniak Lounge & 6pm-8pm in 2050 VLSB

These optional events appear on http://cs6la.org/weekly.html

Announcements

+Homework 2 due Monday 9/15 at 11:59pm

-Project 1 deadline extended, due Thursday 9/18 at 11:59pm
Extra credit point if you submit by Wednesday 9/17 at 11:59pm

<Project/homework party Monday 9/15: 3pm-4pm in Wozniak Lounge & 6pm-8pm in 2050 VLSB
These optional events appear on http://cs6la.org/weekly.html

“Midterm 1 is next Monday 9/23 from 7pm to 9pm in various locations across campus

Announcements

+Homework 2 due Monday 9/15 at 11:59pm

“Project 1 deadline extended, due Thursday 9/18 at 11:59pm
Extra credit point if you submit by Wednesday 9/17 at 11:59pm

<Project/homework party Monday 9/15: 3pm-4pm in Wozniak Lounge & 6pm-8pm in 2050 VLSB
These optional events appear on http://cs6la.org/weekly.html

-Midterm 1 is next Monday 9/23 from 7pm to 9pm in various locations across campus

Closed book, paper-based exam

Announcements

<Homework 2 due Monday 9/15 at 11:59pm

-Project 1 deadline extended, due Thursday 9/18 at 11:59pm
Extra credit point if you submit by Wednesday 9/17 at 11:59pm

<Project/homework party Monday 9/15: 3pm-4pm in Wozniak Lounge & 6pm-8pm in 2050 VLSB
These optional events appear on http://cs6la.org/weekly.html

-Midterm 1 is next Monday 9/23 from 7pm to 9pm in various locations across campus
Closed book, paper-based exam

You may bring one hand-written page of notes that you created (front & back

Announcements

“Homework 2 due Monday 9/15 at 11:59pm

-Project 1 deadline extended, due Thursday 9/18 at 11:59pm
Extra credit point if you submit by Wednesday 9/17 at 11:59pm

-Project/homework party Monday 9/15: 3pm-4pm in Wozniak Lounge & 6pm-8pm in 2050 VLSB
These optional events appear on http://cs6la.org/weekly.html

+Midterm 1 is next Monday 9/23 from 7pm to 9pm in various locations across campus
Closed book, paper-based exam
You may bring one hand-written page of notes that you created (front & back)

Review session on Saturday 9/20 3pm-6pm in 2050 VLSB

Announcements

“Homework 2 due Monday 9/15 at 11:59pm

-Project 1 deadline extended, due Thursday 9/18 at 11:59pm
Extra credit point if you submit by Wednesday 9/17 at 11:59pm

+Project/homework party Monday 9/15: 3pm-4pm in Wozniak Lounge & 6pm-8pm in 2050 VLSB
These optional events appear on http://cs6la.org/weekly.html

*Midterm 1 is next Monday 9/23 from 7pm to 9pm in various locations across campus
Closed book, paper-based exam
You may bring one hand-written page of notes that you created (front & back)
Review session on Saturday 9/20 3pm-6pm in 2050 VLSB

0ffice hours on Friday & Monday will review various topics

Announcements
-Homework 2 due Monday 9/15 at 11:59pm
“Project 1 deadline extended, due Thursday 9/18 at 11:59pm
Extra credit point if you submit by Wednesday 9/17 at 11:59pm
<Project/homework party Monday 9/15: 3pm-4pm in Wozniak Lounge & 6pm-8pm in 2050 VLSB
These optional events appear on http://cs6la.org/weekly.html
+Midterm 1 is next Monday 9/23 from 7pm to 9pm in various locations across campus
Closed book, paper-based exam
You may bring one hand-written page of notes that you created (front & back)
Review session on Saturday 9/20 3pm-6pm in 2050 VLSB
0ffice hours on Friday & Monday will review various topics

*No lab or office hours on Tuesday 9/23 and Wednesday 9/24 (staff will be grading exams)

Recursive Functions

Recursive Functions

Recursive Functions

Definition: A function is called recursive if the body of that function calls itself
either directly or indirectly.

Digit Sums

-If a number a is divisible by 9, then sum_digits(a) is also divisible by 9.
<Useful for typo detection!

Recursive Functions

Definition: A function is called recursive if the body of that function calls itself,
either directly or indirectly.

Implication: Executing the body of a recursive function may require applying that function.

Recursive Functions
Definition: A function is called recursive if the body of that function calls itself,
either directly or indirectly.

Implication: Executing the body of a recursive function may require applying that function.

Recursive Functions Digit Sums

Definition: A function is called recursive if the body of that function calls itself, _

either directly or indirectly. 2+0+1+4 = 7

Implication: Executing the body of a recursive function may require applying that function.

Drawing Hands, by M. C. Escher (lithograph, 1948)
Digit Sums Digit Sums
240+1+4 = 7 2+0+1+4 = 7

«If a number a is divisible by 9, then sum_digits(a) is also divisible by 9.

<If a number a is divisible by 9, then sum_digits(a) is also divisible by 9.
-Useful for typo detection!

2+0+1+4 = 7

The Bank of 61A

1234 5678 9098 7658

OSKI THE BEAR

Digit Sums

2+0+1+4 = 7

+If a number a is divisible by 9, then sum_digits(a) is also divisible by 9.
-Useful for typo detection!

The Bank of 61A

A checksum digit is a
function of all the other
digits; It can be
computed to detect typos

1234 5678 9098 7658

0SKI THE BEAR

Digit Sums

2+0+1+4 = 7

<If a number a is divisible by 9, then sum_digits(a) is also divisible by 9.

<Useful for typo detection!

The Bank of 61A
A checksum digit is a

1234 5678 9098 755@] function of all the other
digits; It can be
computed to detect typos

OSKI THE BEAR

+Credit cards actually use the Luhn algorithm, which we'll implement after digit_sum.

Sum Digits Without a While Statement

Sum Digits Without a While Statement

def split(n):
"MSplit positive n into all but its last digit and its last digit."""

return n // 10, n % 10

Sum Digits Without a While Statement

def split(n):
"MSplit positive n into all but its last digit and its last digit."""

return n // 10, n % 10

def sum_digits(n):
"""Return the sum of the digits of positive integer n."""
if n < 10:
return n
else:
all_but_last, last = split(n)

return sum_digits(all_but_last) + last

The Anatomy of a Recursive Function

def sum_digits(n):

"""Return the sum of the digits of positive integer n."""
if n < 10:

return n
else:

all_but_last, last = split(n)

return sum_digits(all_but_last) + last

The Anatomy of a Recursive Function

+The def statement header is similar to other functions

def sum_digits(n):
"mUReturn the sum of the digits of positive integer n."""
if n < 10:
return n
else:
all_but_last, last = split(n)

return sum_digits(all_but_last) + last

The Anatomy of a Recursive Function

<The def statement header is similar to other functions

def sum_digits(n):
""“Return the sum of the digits of positive integer n."""
if n < 10:
return n
else:
all_but_last, last = split(n)

return sum_digits(all_but_last) + last

The Anatomy of a Recursive Function

-The def statement header is similar to other functions
-Conditional statements check for base cases

def sum_digits(n):
"""Return the sum of the digits of positive integer n."""
if n < 10:
return n
else:
all_but_last, last = split(n)

return sum_digits(all_but_last) + last

The Anatomy of a Recursive Function

-The def statement header is similar to other functions
<Conditional statements check for base cases

def sum_digits(n):
uuuReturn the sum of the digits of positive integer n."""
if n < 10:
return n
else:
all_but_last, last = split(n)

return sum_digits(all_but_last) + last

The Anatomy of a Recursive Function

-The def statement header is similar to other functions
<Conditional statements check for base cases

-Base cases are evaluated without recursive calls

def sum_digits(n):

“uuReturn the sum of the digits of positive integer n."""
if n < 10:

return n
else:

all_but_last, last = split(n)

return sum_digits(all_but_last) + last

The Anatomy of a Recursive Function

-The def statement header is similar to other functions
-Conditional statements check for base cases

“Base cases are evaluated without recursive calls

def sum_digits(n):

"""Return the sum of the digits of positive integer n."""
if n < 10:

return n
else:

all_but_last, last = split(n)

return sum_digits(all_but_last) + last

The Anatomy of a Recursive Function

-The ‘def statement header is similar to other functions
-Conditional statements check for base cases
-Base cases are evaluated without recursive calls

‘Recursive cases are evaluated with recursive calls
def sum_digits(n):

"""Return the sum of the digits of positive integer n."""

if n < 10:
return n
else:
all_but_last, last = split(n)

return sum_digits(all_but_last) + last

The Anatomy of a Recursive Function

-The def statement header is similar to other functions
<Conditional statements check for base cases
-Base cases are evaluated without recursive calls
“Recursive cases are evaluated with recursive calls
def sum_digits(n):
"tUReturn the sum of the digits of positive integer n."""
if n < 10:
return n
else:
all_but_last, last = split(n)

return sum_digits(all_but_last) + last

The Anatomy of a Recursive Function

+The def statement header is similar to other functions
<Conditional statements check for base cases
-Base cases are evaluated without recursive calls
“Recursive cases are evaluated with recursive calls
def sum_digits(n):
"mUReturn the sum of the digits of positive integer n."""
if n < 10:
return n
else:
all_but_last, last = split(n)

return sum_digits(all_but_last) + last

(Demo)

Recursion in Environment Diagrams

Recursion in Environment Diagrams
def fact(n):
- if n ==

return 1
else:

return n * fact(n-1)

fact(3)

Interactive Diagram

Recursion in Environment Diagrams

Recursion in Environment Diagrams

(Demo) (Demo)
def fact(n): def fact(n):
- if n == 0: - ifn==0: Global frame func fact(n) [parent=Global]
return 1 return 1 fact
else: else: - clobat
H t =

return n * fact(n-1) return n * fact(n-1) ‘ act Iparan © a;

n
fact(3) fact(3) f2: fact [parent=Globall
n2
f3: fact [parent=Global]
n 1
f4: fact [parent=Global]
nlo

Return
value |1

Recursion in Environment Diagrams Recursion in Environment Diagrams
(Demo) (Demo)
def fact(n): def fact(n):
- if n == Global frame func fact(n) [parent=Global] - if n == Global frame func fact(n) [parent=Global]
return 1 fact return 1 fact
else: else:

f1: fact [parent=Global]
n 3

return n * fact(n-1)
fact(3) £2: fact [parent=Global]

2
+The same function fact is called "

multiple times.
3: fact [parent=Global]

n1

f4: fact [parent=Global]

f1: fact [parent=Global]

return n * fact(n-1)
I n3

fact(3) £2: fact [parent=Globall

n 2

“The same function fact is called

multiple times.
3: fact [parent=Globall

n1

f4: fact [parent=Global]

n 0 n 0

Rett Rett

valie |1 valoe |1

Interactive Diagram Interactive Diagram
Recursion in Environment Diagrams Recursion in Environment Diagrams
(Demo) (Demo)
def fact(n): def fact(n):
- if n==0: Global frame func fact(n) [parent=Global] - if n==0: Global frame func fact(n) [parent=Global]
return 1 fact return 1 fact
else: else:

f1: fact [parent=Global]

return n * fact(n-1)
- n3

fact(3) f2: fact [parent=Global]

n 2

+The same function fact is called
multiple times.

3: fact [parent=Global]
-Different frames keep track of the

f1: fact [parent=Global]

return n * fact(n-1)
- n3

fact(3) £2: fact [parent=Global]

n 2

“The same function fact is called

multiple times.
3: fact [parent=Global]

-Different frames keep track of the

different arguments in each call. ni different arguments in each call. nit
f4: fact [parent=Global] *What n evaluates to depends upon f4: fact [parent=Globall
which is the current environment.
n o n o
Return Return
value i value i
Interactive Diagram Interactive Diagram
Recursion in Environment Diagrams Recursion in Environment Diagrams
(Demo) (Demo)
def fact(n): def fact(n):
- if n == Global frame func fact(n) [parent=Global] - if n == Global frame func fact(n) [parent=Global]
return 1 fact return 1 fact
else: else:

f1: fact [parent=Global]

return n * fact(n-1) 5
I n

fact(3) 2: fact [parent=Global]

n 2
+The same function fact is called -
multiple times.

3: fact [parent=Global]
-Different frames keep track of the

different arguments in each call. L

-What n evaluates to depends upon f4: fact [parent=Global]

which is the current environment. o
n

Return |y

value

Interactive Diagram

f1:

fact [parent=Global]
return n * fact(n-1)
- n 3

fact(3)

: fact [parent=Global]

N2

-The same function fact is called

multiple times.
3: fact [parent=Global]

-Different frames keep track of the

different arguments in each call. L
-What n evaluates to depends upon f4: fact [parent=Global]
which is the current environment. alo
<Each call to fact solves a simpler REt“:l
problem than the last: smaller n. value

Interactive Diagram

Iteration vs Recursion

Iteration vs Recursion

Iteration is a special case of recursion

Iteration vs Recursion

Iteration is a special case of recursion

4=4.3.-2.1=24

Iteration vs Recursion

Iteration is a special case of recursion
4=4.3-2.1=24

Using while:

Iteration vs Recursion

Iteration is a special case of recursion
4=4-3-2-1=24
Using while:

def fact_iter(n):
total, k = 1, 1
while k <= n:
total, k = total*k, k+l
return total

Iteration vs Recursion

Iteration is a special case of recursion
4=4-3-2.1=24
Using while: Using recursion:

def fact_iter(n):
total, k = 1, 1
while k <=
total, k = total*k, k+l

return total

Iteration vs Recursion

Iteration is a special case of recursion

2:1=24
Using while: Using recursion:
def fact_iter(n): def fact(n):
total, k = 1, 1 if n == 0:
while k <= n: return 1
total, k = total*k, k+1 else:
return total return n * fact(n-1)

Iteration vs Recursion

Iteration is a special case of recursion

I1=4-3.2.1=24
Using while: Using recursion:
def fact_iter(n): def fact(n):
total, k = 1, 1 if n == 0:
while k <= n: return 1
total, k = total*k, k+1 else:
return total return n * fact(n-1)

Math:

Iteration vs Recursion

Iteration is a special case of recursion
4=4.3-2-1=24

Using while:

def fact_iter(n):
total, k = 1, 1
while k <= n:
total, k = total*k, k+l

else:
return total

Math: n=]k
k=1

Using recursion:

def fact(n):
if n ==
return 1

return n * fact(n-1)

Iteration vs Recursion

Iteration is a special case of recursion
41=4-3-2.1=24

Using while: Using recursion:

def fact_iter(n):
total, k = 1, 1
while k <= n:
total, k

return total

def fact(n):
if n == 0:
return 1
else:

total*k, k+l

Math: =]k

return n * fact(n-1)

o ifn=0
it ne(n—1)! otherwise

Iteration vs Recursion

Iteration is a special case of recursion
4=4.3.-2.1=24

Using while:

def fact_iter(n):

return total
Math: n=1]k
k=1

Names:

Using recursion:

def fact(n):

total, k = 1, 1 if n == 0:

while k <= n: return 1
total, k = total*k, k+l else:

return n * fact(n-1)

, 1 ifn=0
=
n-(n—1)! otherwise

Iteration vs Recursion

Iteration is a special case of recursion
4=4.3-2.1=24

Using while: Using recursion:

def fact_iter(n):
total, k =1, 1
while k <=
total, k = total*k, k+l
return total

def fact(n):
if n :

Math:

1 ifn
n-(n—1)! other

Names : n, total, k, fact_iter

return n * fact(n-1)

0

Iteration vs Recursion

Iteration is a special case of recursion
4=4.3-2-1=24

Using while:

def fact_iter(n):

def fact(n):
total, k = 1, 1 if n == 0:
while k <= n: return
total, k = total*k, k+l else:
return total return
Math ! !
ath: nl=
ne(n—1)!
Names: n, total, k, fact_iter n, fact

Using recursion:

1

n * fact(n-1)

ifn=0

otherwise

Verifying Recursive Functions

The Recursive Leap of Faith

The Recursive Leap of Faith

Photo by Kevin Lee, Preikestolen, Norway

The Recursive Leap of Faith

1

return n * fact(n-1)

Photo by Kevin Lee, Preikestolen, Norway

The Recursive Leap of Faith

1

return n * fact(n-1)

Is fact implemented correctly?

Photo by Kevin Lee, Preikestolen, Norway

The Recursive Leap of Faith

def fact(n):
if n == 0:
return 1
else:
return n * fact(n-1)

Is fact implemented correctly?

1. Verify the base case.

Photo by Kevin Lee, Preikestolen, Norway

The Recursive Leap of Faith

def fact(n):
if n == 0:
return 1
else:
return n * fact(n-1)

Is fact implemented correctly?
1. Verify the base case.

2. Treat fact as a functional abstraction!

Photo by Kevin Lee, Preikestolen, Norway

The Recursive Leap of Faith

1

return n * fact(n-1)

Is fact implemented correctly?
1. Verify the base case.
2. Treat fact as a functional abstraction!

3. Assume that fact(n-1) is correct.

Photo by Kevin Lee, Preikestolen, Norway

The Recursive Leap of Faith

def fact(n):
if n == 0:
return 1

return n * fact(n-1)

Is fact implemented correctly?

1. Verify the base case.

2. Treat fact as a functional abstraction!
3. Assume that fact(n-1) is correct.

4, Verify that fact(n) is correct,
assuming that fact(n-1) correct.

Photo by Kevin Lee, Preikestolen, Norway

Mutual Recursion

The Luhn Algorithm

The Luhn Algorithm

Used to verify credit card numbers

The Luhn Algorithm

Used to verify credit card numbers

From Wikipedia: http://en.wikipedia.org/wiki/Luhn_algorithm

The Luhn Algorithm

Used to verify credit card numbers
From Wikipedia: http://en.wikipedia.org/wiki/Luhn_algorithm

« From the rightmost digit, which is the check digit, moving left, double the value of every
second digit; if product of this doubling operation is greater than 9 (e.g., 7 * 2 = 14),
then sum the digits of the products (e.g., 10: 1 + 0 = 1, 14: 1 + 4 = 5).

The Luhn Algorithm

Used to verify credit card numbers
From Wikipedia: http://en.wikipedia.org/wiki/Luhn_algorithm

« From the rightmost digit, which is the check digit, moving left, double the value of every
second digit; if product of this doubling operation is greater than 9 (e.g., 7 * 2 = 14),
then sum the digits of the products (e.g., 10: 1 + 0 =1, 14: 1 + 4 = 5).

« Take the sum of all the digits.

The Luhn Algorithm

Used to verify credit card numbers
From Wikipedia: http://en.wikipedia.org/wiki/Luhn_algorithm

« From the rightmost digit, which is the check digit, moving left, double the value of every
second digit; if product of this doubling operation is greater than 9 (e.g., 7 * 2 = 14),
then sum the digits of the products (e.g., 10: 1 + 0 =1, 14: 1 + 4 = 5).

+ Take the sum of all the digits.

The Luhn Algorithm

Used to verify credit card numbers
From Wikipedia: http://en.wikipedia.org/wiki/Luhn_algorithm

« From the rightmost digit, which is the check digit, moving left, double the value of every
second digit; if product of this doubling operation is greater than 9 (e.g., 7 * 2 = 14),
then sum the digits of the products (e.g., 10: 1 + 0 =1, 14: 1 + 4 = 5).

» Take the sum of all the digits.

2 3 1+6=7 |7 8 3

The Luhn Algorithm

Used to verify credit card numbers
From Wikipedia: http://en.wikipedia.org/wiki/Luhn_algorithm

« From the rightmost digit, which is the check digit, moving left, double the value of every
second digit; if product of this doubling operation is greater than 9 (e.g., 7 * 2 = 14),
then sum the digits of the products (e.g., 10: 1 + 0 = 1, 14: 1 + 4 = 5).

Take the sum of all the digits.

2 3 146=7 |7 8 3 =30

The Luhn Algorithm

Used to verify credit card numbers
From Wikipedia: http://en.wikipedia.org/wiki/Luhn_algorithm

« From the rightmost digit, which is the check digit, moving left, double the value of every
second digit; if product of this doubling operation is greater than 9 (e.g., 7 * 2 = 14),
then sum the digits of the products (e.g., 10: 1 + 0 = 1, 14: 1 + 4 = 5).

+ Take the sum of all the digits.

2 3 146=7 |7 8 3 =30

The Luhn sum of a valid credit card number is a multiple of 10.

The Luhn Algorithm

Used to verify credit card numbers

From Wikipedia: http://en.wikipedia.org/wiki/Luhn_algorithm

« From the rightmost digit, which is the check digit, moving left, double the value of every
second digit; if product of this doubling operation is greater than 9 (e.g., 7 * 2 = 14),
then sum the digits of the products (e.g., 10: 1 + @ = 1, 14: 1 + 4 = 5). . .

Recursion and lteration

+ Take the sum of all the digits.

1 3 8 7 4 3
2 3 1467 |7 8 3 =30
The Luhn sum of a valid credit card number is a multiple of 10. (Demo)

Converting Recursion to Iteration Converting Recursion to Iteration

Can be tricky: Iteration is a special case of recursion.

Converting Recursion to Iteration Converting Recursion to Iteration

Can be tricky: Iteration is a special case of recursion. Can be tricky: Iteration is a special case of recursion.

Idea: Figure out what state must be maintained by the iterative function. Idea: Figure out what state must be maintained by the iterative function.

def sum_digits(n):

"""Return the sum of the digits of positive integer n."""
if n < 10:

return n
else:

all_but_last, last = split(n)

return sum_digits(all_but_last) + last

Converting Recursion to Iteration Converting Recursion to Iteration

Can be tricky: Iteration is a special case of recursion. Can be tricky: Iteration is a special case of recursion.

Idea: Figure out what state must be maintained by the iterative function. Idea: Figure out what state must be maintained by the iterative function.

def sum_digits(n): def sum_digits(n):
"""Return the sum of the digits of positive integer n.""" """Return the sum of the digits of positive integer n.""*
if n < 10: if n < 10:
return n return n
else: else:

all_but_last, last = split(n)

all_but_last, last = split(n)
return sum_digits(all_but_last) + last return isum_digits(all_but_last) + last j A partial sum

What's left to sum

What's left to sum

Converting Recursion to Iteration

Can be tricky: Iteration is a special case of recursion.

Idea: Figure out what state must be maintained by the iterative function.

def sum_digits(n):

""UReturn the sum of the digits of positive integer n."""
if n < 10:

return n

else:

all_but_last, last = split(n)

return isum_digits(all_but_last) + last < A partial sum
What's left to sum

(Demo)

Converting lteration to Recursion

Converting lteration to Recursion

More formulaic: Iteration is a special case of recursion.

Converting lteration to Recursion

More formulaic: Iteration is a special case of recursion.

Idea: The state of an iteration can be passed as arguments.

Converting lteration to Recursion

More formulaic: Iteration is a special case of recursion.

Idea: The state of an iteration can be passed as arguments.

def sum_digits_iter(n):
digit_sum = 0@
while n > 0:
n, last = split(n)
digit_sum = digit_sum + last
return digit_sum

Converting lteration to Recursion

More formulaic: Iteration is a special case of recursion.

Idea: The state of an iteration can be passed as arguments.

def sum_digits_iter(n):
digit_sum = @
while n > 0:
n, last = split(n)
digit_sum = digit_sum + last
return digit_sum

def sum_digits_rec(n, digit_sum):
if n == 0:
return digit_sum
else:
n, last = split(n)
return sum_digits_rec(n, digit_sum + last)

Converting lteration to Recursion

More formulaic: Iteration is a special case of recursion.

Idea: The state of an iteration can be passed as arguments.

def sum_digits_iter(n):
digit_sum = 0
while n > 0:
n, last = split(n) T
idigit_sum = digit_sum + last Updates via assignment become...
return digit_sum

def sum_digits_rec(n, digit_sum):
if n==190
return digit_sum
else:
n, last = split(n)
return sum_digits_rec(n, digit_sum + last)

~

o

Converting lteration to Recursion

More formulaic: Iteration is a special case of recursion.

Idea: The state of an iteration can be passed as arguments.

def sum_digits_iter(n):
digit_sum = @
while n > 0:
n, last = split(n) T]
idigit_sum = digit_sum + last Updates via assignment become...
return digit_sum

def sum_digits_rec(n, digit_sum):
if n == 0:)
return digit_sum

..arguments to a recursive call }
else
n, last = split(n)
return sum_digits_rec(n, digit_sum + last)

