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Two Definitions of Cascade

6

def cascade(n): 
    if n < 10: 
        print(n) 
    else: 
        print(n) 
        cascade(n//10) 
        print(n)

def cascade(n): 
    print(n) 
    if n >= 10: 
        cascade(n//10) 
        print(n)

(Demo)

• If two implementations are equally clear, then shorter is usually better

• In this case, the longer implementation is more clear (at least to me)

• When learning to write recursive functions, put the base cases first

• Both are recursive functions, even though only the first has typical structure
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0, 1, 2, 3, 4, 5, 6,  7,  8,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n):  ... ,   9,227,465

 ... ,          35

def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fib(n-2) + fib(n-1)

Tree-shaped processes arise whenever executing the body of a recursive function makes more 
than one call to that function.
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We can speed up this computation dramatically in a few weeks by remembering results.
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