
61A Lecture 8

Wednesday, September 17

Announcements

2

Announcements

• Project 1 is due Thursday 9/18 @ 11:59pm; Early bonus point for submitting on Wednesday!

2

Announcements

• Project 1 is due Thursday 9/18 @ 11:59pm; Early bonus point for submitting on Wednesday!

!Project Party in Stern Main Lounge (Stern Hall in Unit 4) 8pm-10pm on Wednesday 9/17

2

Announcements

• Project 1 is due Thursday 9/18 @ 11:59pm; Early bonus point for submitting on Wednesday!

!Project Party in Stern Main Lounge (Stern Hall in Unit 4) 8pm-10pm on Wednesday 9/17

• Midterm 1 is on Monday 9/22 from 7pm to 9pm

2

Announcements

• Project 1 is due Thursday 9/18 @ 11:59pm; Early bonus point for submitting on Wednesday!

!Project Party in Stern Main Lounge (Stern Hall in Unit 4) 8pm-10pm on Wednesday 9/17

• Midterm 1 is on Monday 9/22 from 7pm to 9pm

!2 review sessions on Saturday 9/20 3pm-4:30pm and 4:30pm-6pm in 1 Pimentel

2

Announcements

• Project 1 is due Thursday 9/18 @ 11:59pm; Early bonus point for submitting on Wednesday!

!Project Party in Stern Main Lounge (Stern Hall in Unit 4) 8pm-10pm on Wednesday 9/17

• Midterm 1 is on Monday 9/22 from 7pm to 9pm

!2 review sessions on Saturday 9/20 3pm-4:30pm and 4:30pm-6pm in 1 Pimentel

!HKN review session moved to Sunday 9/21, time/location TBD

2

Announcements

• Project 1 is due Thursday 9/18 @ 11:59pm; Early bonus point for submitting on Wednesday!

!Project Party in Stern Main Lounge (Stern Hall in Unit 4) 8pm-10pm on Wednesday 9/17

• Midterm 1 is on Monday 9/22 from 7pm to 9pm

!2 review sessions on Saturday 9/20 3pm-4:30pm and 4:30pm-6pm in 1 Pimentel

!HKN review session moved to Sunday 9/21, time/location TBD

!Includes topics up to and including this lecture

2

Announcements

• Project 1 is due Thursday 9/18 @ 11:59pm; Early bonus point for submitting on Wednesday!

!Project Party in Stern Main Lounge (Stern Hall in Unit 4) 8pm-10pm on Wednesday 9/17

• Midterm 1 is on Monday 9/22 from 7pm to 9pm

!2 review sessions on Saturday 9/20 3pm-4:30pm and 4:30pm-6pm in 1 Pimentel

!HKN review session moved to Sunday 9/21, time/location TBD

!Includes topics up to and including this lecture

!Closed book/note exam, except for one page of hand-written notes and a study guide

2

Announcements

• Project 1 is due Thursday 9/18 @ 11:59pm; Early bonus point for submitting on Wednesday!

!Project Party in Stern Main Lounge (Stern Hall in Unit 4) 8pm-10pm on Wednesday 9/17

• Midterm 1 is on Monday 9/22 from 7pm to 9pm

!2 review sessions on Saturday 9/20 3pm-4:30pm and 4:30pm-6pm in 1 Pimentel

!HKN review session moved to Sunday 9/21, time/location TBD

!Includes topics up to and including this lecture

!Closed book/note exam, except for one page of hand-written notes and a study guide

!Cannot attend? Fill out the conflict form by Wednesday 9/17 @ 5pm!

2

Announcements

• Project 1 is due Thursday 9/18 @ 11:59pm; Early bonus point for submitting on Wednesday!

!Project Party in Stern Main Lounge (Stern Hall in Unit 4) 8pm-10pm on Wednesday 9/17

• Midterm 1 is on Monday 9/22 from 7pm to 9pm

!2 review sessions on Saturday 9/20 3pm-4:30pm and 4:30pm-6pm in 1 Pimentel

!HKN review session moved to Sunday 9/21, time/location TBD

!Includes topics up to and including this lecture

!Closed book/note exam, except for one page of hand-written notes and a study guide

!Cannot attend? Fill out the conflict form by Wednesday 9/17 @ 5pm!

• Optional Hog strategy contest ends Wednesday 10/1 @ 11:59pm

2

Hog Contest Rules

3

Hog Contest Rules

•Up to two people submit one entry;
Max of one entry per person

3

Hog Contest Rules

•Up to two people submit one entry;
Max of one entry per person

•Your score is the number of entries
against which you win more than 50%
of the time

3

Hog Contest Rules

•Up to two people submit one entry;
Max of one entry per person

•Your score is the number of entries
against which you win more than 50%
of the time

•All strategies must be deterministic,
pure functions of the current player
scores

3

Hog Contest Rules

•Up to two people submit one entry;
Max of one entry per person

•Your score is the number of entries
against which you win more than 50%
of the time

•All strategies must be deterministic,
pure functions of the current player
scores

•All winning entries will receive 2
points of extra credit

3

Hog Contest Rules

•Up to two people submit one entry;
Max of one entry per person

•Your score is the number of entries
against which you win more than 50%
of the time

•All strategies must be deterministic,
pure functions of the current player
scores

•All winning entries will receive 2
points of extra credit

•The real prize: honor and glory

3

Hog Contest Rules

•Up to two people submit one entry;
Max of one entry per person

•Your score is the number of entries
against which you win more than 50%
of the time

•All strategies must be deterministic,
pure functions of the current player
scores

•All winning entries will receive 2
points of extra credit

•The real prize: honor and glory

Kaylee Mann 
Yan Duan & Ziming Li 
Brian Prike & Zhenghao Qian 
Parker Schuh & Robert Chatham

Fall 2011 Winners

3

Hog Contest Rules

•Up to two people submit one entry;
Max of one entry per person

•Your score is the number of entries
against which you win more than 50%
of the time

•All strategies must be deterministic,
pure functions of the current player
scores

•All winning entries will receive 2
points of extra credit

•The real prize: honor and glory

Kaylee Mann 
Yan Duan & Ziming Li 
Brian Prike & Zhenghao Qian 
Parker Schuh & Robert Chatham

Fall 2011 Winners

3

Chenyang Yuan
Joseph Hui

Fall 2012 Winners

Hog Contest Rules

•Up to two people submit one entry;
Max of one entry per person

•Your score is the number of entries
against which you win more than 50%
of the time

•All strategies must be deterministic,
pure functions of the current player
scores

•All winning entries will receive 2
points of extra credit

•The real prize: honor and glory

Kaylee Mann 
Yan Duan & Ziming Li 
Brian Prike & Zhenghao Qian 
Parker Schuh & Robert Chatham

Fall 2011 Winners

3

Chenyang Yuan
Joseph Hui

Fall 2012 Winners

Paul Bramsen
Sam Kumar & Kangsik Lee
Kevin Chen

Fall 2013 Winners

Hog Contest Rules

•Up to two people submit one entry;
Max of one entry per person

•Your score is the number of entries
against which you win more than 50%
of the time

•All strategies must be deterministic,
pure functions of the current player
scores

•All winning entries will receive 2
points of extra credit

•The real prize: honor and glory

Kaylee Mann 
Yan Duan & Ziming Li 
Brian Prike & Zhenghao Qian 
Parker Schuh & Robert Chatham

Fall 2011 Winners

3

Chenyang Yuan
Joseph Hui

Fall 2012 Winners

Paul Bramsen
Sam Kumar & Kangsik Lee
Kevin Chen

Fall 2013 Winners

YOUR NAME COULD BE HERE... FOREVER!

Fall 2014 Winners

Order of Recursive Calls

The Cascade Function

(Demo)

5Interactive Diagram

The Cascade Function

(Demo)

5Interactive Diagram

The Cascade Function

(Demo)

5Interactive Diagram

The Cascade Function

• Each cascade frame is from a
different call to cascade.

(Demo)

5Interactive Diagram

The Cascade Function

• Each cascade frame is from a
different call to cascade.

• Until the Return value appears,
that call has not completed.

(Demo)

5Interactive Diagram

The Cascade Function

• Each cascade frame is from a
different call to cascade.

• Until the Return value appears,
that call has not completed.

• Any statement can appear before
or after the recursive call.

(Demo)

5Interactive Diagram

The Cascade Function

• Each cascade frame is from a
different call to cascade.

• Until the Return value appears,
that call has not completed.

• Any statement can appear before
or after the recursive call.

(Demo)

5Interactive Diagram

The Cascade Function

• Each cascade frame is from a
different call to cascade.

• Until the Return value appears,
that call has not completed.

• Any statement can appear before
or after the recursive call.

(Demo)

5Interactive Diagram

The Cascade Function

• Each cascade frame is from a
different call to cascade.

• Until the Return value appears,
that call has not completed.

• Any statement can appear before
or after the recursive call.

(Demo)

5Interactive Diagram

The Cascade Function

• Each cascade frame is from a
different call to cascade.

• Until the Return value appears,
that call has not completed.

• Any statement can appear before
or after the recursive call.

(Demo)

5Interactive Diagram

Two Definitions of Cascade

6

(Demo)

Two Definitions of Cascade

6

def cascade(n):
 if n < 10:
 print(n)
 else:
 print(n)
 cascade(n//10)
 print(n)

def cascade(n):
 print(n)
 if n >= 10:
 cascade(n//10)
 print(n)

(Demo)

Two Definitions of Cascade

6

def cascade(n):
 if n < 10:
 print(n)
 else:
 print(n)
 cascade(n//10)
 print(n)

def cascade(n):
 print(n)
 if n >= 10:
 cascade(n//10)
 print(n)

(Demo)

• If two implementations are equally clear, then shorter is usually better

Two Definitions of Cascade

6

def cascade(n):
 if n < 10:
 print(n)
 else:
 print(n)
 cascade(n//10)
 print(n)

def cascade(n):
 print(n)
 if n >= 10:
 cascade(n//10)
 print(n)

(Demo)

• If two implementations are equally clear, then shorter is usually better

• In this case, the longer implementation is more clear (at least to me)

Two Definitions of Cascade

6

def cascade(n):
 if n < 10:
 print(n)
 else:
 print(n)
 cascade(n//10)
 print(n)

def cascade(n):
 print(n)
 if n >= 10:
 cascade(n//10)
 print(n)

(Demo)

• If two implementations are equally clear, then shorter is usually better

• In this case, the longer implementation is more clear (at least to me)

• When learning to write recursive functions, put the base cases first

Two Definitions of Cascade

6

def cascade(n):
 if n < 10:
 print(n)
 else:
 print(n)
 cascade(n//10)
 print(n)

def cascade(n):
 print(n)
 if n >= 10:
 cascade(n//10)
 print(n)

(Demo)

• If two implementations are equally clear, then shorter is usually better

• In this case, the longer implementation is more clear (at least to me)

• When learning to write recursive functions, put the base cases first

• Both are recursive functions, even though only the first has typical structure

Example: Inverse Cascade

Inverse Cascade

Write a function that prints an inverse cascade:

8

1  
12  
123 
1234 
123 
12  
1

Inverse Cascade

Write a function that prints an inverse cascade:

8

1  
12  
123 
1234 
123 
12  
1

Inverse Cascade

Write a function that prints an inverse cascade:

8

1  
12  
123 
1234 
123 
12  
1

def inverse_cascade(n):
 grow(n)
 print(n)
 shrink(n)

1  
12  
123 
1234 
123 
12  
1

Inverse Cascade

Write a function that prints an inverse cascade:

8

def f_then_g(f, g, n):
 if n:
 f(n)
 g(n)

1  
12  
123 
1234 
123 
12  
1

def inverse_cascade(n):
 grow(n)
 print(n)
 shrink(n)

1  
12  
123 
1234 
123 
12  
1

Inverse Cascade

Write a function that prints an inverse cascade:

8

grow = lambda n: f_then_g(grow, print, n//10)
shrink = lambda n: f_then_g(print, shrink, n//10)

def f_then_g(f, g, n):
 if n:
 f(n)
 g(n)

1  
12  
123 
1234 
123 
12  
1

def inverse_cascade(n):
 grow(n)
 print(n)
 shrink(n)

1  
12  
123 
1234 
123 
12  
1

Inverse Cascade

Write a function that prints an inverse cascade:

8

grow = lambda n: f_then_g(grow, print, n//10)
shrink = lambda n: f_then_g(print, shrink, n//10)

def f_then_g(f, g, n):
 if n:
 f(n)
 g(n)

1  
12  
123 
1234 
123 
12  
1

def inverse_cascade(n):
 grow(n)
 print(n)
 shrink(n)

Tree Recursion

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more
than one call to that function.

10

Tree Recursion

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

Tree-shaped processes arise whenever executing the body of a recursive function makes more
than one call to that function.

10

Tree Recursion

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

0, 1, 2, 3, 4, 5, 6, 7, 8,n:

Tree-shaped processes arise whenever executing the body of a recursive function makes more
than one call to that function.

10

Tree Recursion

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

0, 1, 2, 3, 4, 5, 6, 7, 8,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n):

Tree-shaped processes arise whenever executing the body of a recursive function makes more
than one call to that function.

10

Tree Recursion

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

0, 1, 2, 3, 4, 5, 6, 7, 8,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n):

 ... , 35

Tree-shaped processes arise whenever executing the body of a recursive function makes more
than one call to that function.

10

Tree Recursion

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

0, 1, 2, 3, 4, 5, 6, 7, 8,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n): ... , 9,227,465

 ... , 35

Tree-shaped processes arise whenever executing the body of a recursive function makes more
than one call to that function.

10

Tree Recursion

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

0, 1, 2, 3, 4, 5, 6, 7, 8,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n): ... , 9,227,465

 ... , 35

def fib(n):

Tree-shaped processes arise whenever executing the body of a recursive function makes more
than one call to that function.

10

Tree Recursion

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

0, 1, 2, 3, 4, 5, 6, 7, 8,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n): ... , 9,227,465

 ... , 35

def fib(n):
 if n == 0:

Tree-shaped processes arise whenever executing the body of a recursive function makes more
than one call to that function.

10

Tree Recursion

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

0, 1, 2, 3, 4, 5, 6, 7, 8,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n): ... , 9,227,465

 ... , 35

def fib(n):
 if n == 0:
 return 0

Tree-shaped processes arise whenever executing the body of a recursive function makes more
than one call to that function.

10

Tree Recursion

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

0, 1, 2, 3, 4, 5, 6, 7, 8,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n): ... , 9,227,465

 ... , 35

def fib(n):
 if n == 0:
 return 0
 elif n == 1:

Tree-shaped processes arise whenever executing the body of a recursive function makes more
than one call to that function.

10

Tree Recursion

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

0, 1, 2, 3, 4, 5, 6, 7, 8,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n): ... , 9,227,465

 ... , 35

def fib(n):
 if n == 0:
 return 0
 elif n == 1:
 return 1

Tree-shaped processes arise whenever executing the body of a recursive function makes more
than one call to that function.

10

Tree Recursion

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

0, 1, 2, 3, 4, 5, 6, 7, 8,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n): ... , 9,227,465

 ... , 35

def fib(n):
 if n == 0:
 return 0
 elif n == 1:
 return 1
 else:

Tree-shaped processes arise whenever executing the body of a recursive function makes more
than one call to that function.

10

Tree Recursion

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

0, 1, 2, 3, 4, 5, 6, 7, 8,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n): ... , 9,227,465

 ... , 35

def fib(n):
 if n == 0:
 return 0
 elif n == 1:
 return 1
 else:
 return fib(n-2) + fib(n-1)

Tree-shaped processes arise whenever executing the body of a recursive function makes more
than one call to that function.

10

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

11

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

11

fib(5)

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

11

fib(5)

fib(3)

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

11

fib(5)

fib(4)fib(3)

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

11

fib(5)

fib(4)fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

11

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

11

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

11

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

11

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

11

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

11

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

11

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

11

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

11

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

11

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

11

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

11

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

11

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

11

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

11

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

11

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

11

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

11

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

(Demo)

Repetition in Tree-Recursive Computation

12

Repetition in Tree-Recursive Computation

This process is highly repetitive; fib is called on the same argument multiple times.

12

Repetition in Tree-Recursive Computation

fib(5)

fib(3)

fib(1)

1

fib(4)

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

This process is highly repetitive; fib is called on the same argument multiple times.

12

Repetition in Tree-Recursive Computation

fib(5)

fib(3)

fib(1)

1

fib(4)

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

This process is highly repetitive; fib is called on the same argument multiple times.

12

We can speed up this computation dramatically in a few weeks by remembering results.

Example: Counting Partitions

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

14

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

14

count_partitions(6, 4)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

14

count_partitions(6, 4)

3 + 3 = 6

1 + 1 + 2 + 2 = 6

2 + 4 = 6

1 + 1 + 4 = 6

1 + 2 + 3 = 6
1 + 1 + 1 + 3 = 6
2 + 2 + 2 = 6

1 + 1 + 1 + 1 + 2 = 6
1 + 1 + 1 + 1 + 1 + 1 = 6

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

14

count_partitions(6, 4)

3 + 3 = 6

1 + 1 + 2 + 2 = 6

2 + 4 = 6

1 + 1 + 4 = 6

1 + 2 + 3 = 6
1 + 1 + 1 + 3 = 6
2 + 2 + 2 = 6

1 + 1 + 1 + 1 + 2 = 6
1 + 1 + 1 + 1 + 1 + 1 = 6

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

14

count_partitions(6, 4)

3 + 3 = 6

1 + 1 + 2 + 2 = 6

2 + 4 = 6

1 + 1 + 4 = 6

1 + 2 + 3 = 6
1 + 1 + 1 + 3 = 6
2 + 2 + 2 = 6

1 + 1 + 1 + 1 + 2 = 6
1 + 1 + 1 + 1 + 1 + 1 = 6

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

14

count_partitions(6, 4)

3 + 3 = 6

1 + 1 + 2 + 2 = 6

2 + 4 = 6

1 + 1 + 4 = 6

1 + 2 + 3 = 6
1 + 1 + 1 + 3 = 6
2 + 2 + 2 = 6

1 + 1 + 1 + 1 + 2 = 6
1 + 1 + 1 + 1 + 1 + 1 = 6

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

15

count_partitions(6, 4)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

15

• Recursive decomposition: finding
simpler instances of the problem.

count_partitions(6, 4)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

15

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

count_partitions(6, 4)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

15

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

count_partitions(6, 4)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

15

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

count_partitions(6, 4)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

15

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

count_partitions(6, 4)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

15

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

count_partitions(6, 4)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

15

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

count_partitions(6, 4)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

15

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• count_partitions(2, 4)

count_partitions(6, 4)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

15

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• count_partitions(2, 4)

count_partitions(6, 4)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

15

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• count_partitions(2, 4)

• count_partitions(6, 3)

count_partitions(6, 4)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

15

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• count_partitions(2, 4)

• count_partitions(6, 3)

count_partitions(6, 4)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

15

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• count_partitions(2, 4)

• count_partitions(6, 3)

• Tree recursion often involves
exploring different choices.

count_partitions(6, 4)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

15

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• count_partitions(2, 4)

• count_partitions(6, 3)

• Tree recursion often involves
exploring different choices.

count_partitions(6, 4)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

15

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• count_partitions(2, 4)

• count_partitions(6, 3)

• Tree recursion often involves
exploring different choices.

count_partitions(6, 4)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

15

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• count_partitions(2, 4)

• count_partitions(6, 3)

• Tree recursion often involves
exploring different choices.

count_partitions(6, 4)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

16

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• count_partitions(2, 4)

• count_partitions(6, 3)

• Tree recursion often involves
exploring different choices.

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

16

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• count_partitions(2, 4)

• count_partitions(6, 3)

• Tree recursion often involves
exploring different choices.

def count_partitions(n, m):

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

16

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• count_partitions(2, 4)

• count_partitions(6, 3)

• Tree recursion often involves
exploring different choices.

def count_partitions(n, m):

 else:

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

16

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• count_partitions(2, 4)

• count_partitions(6, 3)

• Tree recursion often involves
exploring different choices.

def count_partitions(n, m):

 else:
 with_m = count_partitions(n-m, m)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

16

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• count_partitions(2, 4)

• count_partitions(6, 3)

• Tree recursion often involves
exploring different choices.

def count_partitions(n, m):

 else:
 with_m = count_partitions(n-m, m)
 without_m = count_partitions(n, m-1)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

16

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• count_partitions(2, 4)

• count_partitions(6, 3)

• Tree recursion often involves
exploring different choices.

def count_partitions(n, m):

 else:
 with_m = count_partitions(n-m, m)
 without_m = count_partitions(n, m-1)
 return with_m + without_m

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

16

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• count_partitions(2, 4)

• count_partitions(6, 3)

• Tree recursion often involves
exploring different choices.

def count_partitions(n, m):

 else:
 with_m = count_partitions(n-m, m)
 without_m = count_partitions(n, m-1)
 return with_m + without_m

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

16

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• count_partitions(2, 4)

• count_partitions(6, 3)

• Tree recursion often involves
exploring different choices.

def count_partitions(n, m):

 else:
 with_m = count_partitions(n-m, m)
 without_m = count_partitions(n, m-1)
 return with_m + without_m

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

16

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• count_partitions(2, 4)

• count_partitions(6, 3)

• Tree recursion often involves
exploring different choices.

def count_partitions(n, m):
 if n == 0:

 else:
 with_m = count_partitions(n-m, m)
 without_m = count_partitions(n, m-1)
 return with_m + without_m

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

16

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• count_partitions(2, 4)

• count_partitions(6, 3)

• Tree recursion often involves
exploring different choices.

def count_partitions(n, m):
 if n == 0:
 return 1

 else:
 with_m = count_partitions(n-m, m)
 without_m = count_partitions(n, m-1)
 return with_m + without_m

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

16

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• count_partitions(2, 4)

• count_partitions(6, 3)

• Tree recursion often involves
exploring different choices.

def count_partitions(n, m):
 if n == 0:
 return 1
 elif n < 0:

 else:
 with_m = count_partitions(n-m, m)
 without_m = count_partitions(n, m-1)
 return with_m + without_m

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

16

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• count_partitions(2, 4)

• count_partitions(6, 3)

• Tree recursion often involves
exploring different choices.

def count_partitions(n, m):
 if n == 0:
 return 1
 elif n < 0:
 return 0

 else:
 with_m = count_partitions(n-m, m)
 without_m = count_partitions(n, m-1)
 return with_m + without_m

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

16

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• count_partitions(2, 4)

• count_partitions(6, 3)

• Tree recursion often involves
exploring different choices.

def count_partitions(n, m):
 if n == 0:
 return 1
 elif n < 0:
 return 0
 elif m == 0:

 else:
 with_m = count_partitions(n-m, m)
 without_m = count_partitions(n, m-1)
 return with_m + without_m

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

16

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• count_partitions(2, 4)

• count_partitions(6, 3)

• Tree recursion often involves
exploring different choices.

def count_partitions(n, m):
 if n == 0:
 return 1
 elif n < 0:
 return 0
 elif m == 0:
 return 0

 else:
 with_m = count_partitions(n-m, m)
 without_m = count_partitions(n, m-1)
 return with_m + without_m

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

16

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• count_partitions(2, 4)

• count_partitions(6, 3)

• Tree recursion often involves
exploring different choices.

def count_partitions(n, m):
 if n == 0:
 return 1
 elif n < 0:
 return 0
 elif m == 0:
 return 0

 else:
 with_m = count_partitions(n-m, m)
 without_m = count_partitions(n, m-1)
 return with_m + without_m

(Demo)

Interactive Diagram

