
61A Lecture 8

Wednesday, September 17

Announcements

• Project 1 is due Thursday 9/18 @ 11:59pm; Early bonus point for submitting on Wednesday!

!Project Party in Stern Main Lounge (Stern Hall in Unit 4) 8pm-10pm on Wednesday 9/17

• Midterm 1 is on Monday 9/22 from 7pm to 9pm

!2 review sessions on Saturday 9/20 3pm-4:30pm and 4:30pm-6pm in 1 Pimentel

!HKN review session moved to Sunday 9/21, time/location TBD

!Includes topics up to and including this lecture

!Closed book/note exam, except for one page of hand-written notes and a study guide

!Cannot attend? Fill out the conflict form by Wednesday 9/17 @ 5pm!

• Optional Hog strategy contest ends Wednesday 10/1 @ 11:59pm

2

Hog Contest Rules

•Up to two people submit one entry;
Max of one entry per person

•Your score is the number of entries
against which you win more than 50%
of the time

•All strategies must be deterministic,
pure functions of the current player
scores

•All winning entries will receive 2
points of extra credit

•The real prize: honor and glory

Kaylee Mann 
Yan Duan & Ziming Li 
Brian Prike & Zhenghao Qian 
Parker Schuh & Robert Chatham

Fall 2011 Winners

3

Chenyang Yuan
Joseph Hui

Fall 2012 Winners

Paul Bramsen
Sam Kumar & Kangsik Lee
Kevin Chen

Fall 2013 Winners

YOUR NAME COULD BE HERE... FOREVER!

Fall 2014 Winners

Order of Recursive Calls

The Cascade Function

• Each cascade frame is from a
different call to cascade.

• Until the Return value appears,
that call has not completed.

• Any statement can appear before
or after the recursive call.

(Demo)

5Interactive Diagram

Two Definitions of Cascade

6

def cascade(n):
 if n < 10:
 print(n)
 else:
 print(n)
 cascade(n//10)
 print(n)

def cascade(n):
 print(n)
 if n >= 10:
 cascade(n//10)
 print(n)

(Demo)

• If two implementations are equally clear, then shorter is usually better

• In this case, the longer implementation is more clear (at least to me)

• When learning to write recursive functions, put the base cases first

• Both are recursive functions, even though only the first has typical structure

Example: Inverse Cascade

1  
12  
123 
1234 
123 
12  
1

Inverse Cascade

Write a function that prints an inverse cascade:

8

grow = lambda n: f_then_g(grow, print, n//10)
shrink = lambda n: f_then_g(print, shrink, n//10)

def f_then_g(f, g, n):
 if n:
 f(n)
 g(n)

1  
12  
123 
1234 
123 
12  
1

def inverse_cascade(n):
 grow(n)
 print(n)
 shrink(n)

Tree Recursion

Tree Recursion

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

0, 1, 2, 3, 4, 5, 6, 7, 8,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n): ... , 9,227,465

 ... , 35

def fib(n):!
 if n == 0:!
 return 0!
 elif n == 1:!
 return 1!
 else:!
 return fib(n-2) + fib(n-1)

Tree-shaped processes arise whenever executing the body of a recursive function makes more
than one call to that function.

10

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

11

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

(Demo)

Repetition in Tree-Recursive Computation

fib(5)

fib(3)

fib(1)

1

fib(4)

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

This process is highly repetitive; fib is called on the same argument multiple times.

12

We can speed up this computation dramatically in a few weeks by remembering results.

Example: Counting Partitions

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

14

count_partitions(6, 4)

3 + 3 = 6

1 + 1 + 2 + 2 = 6

2 + 4 = 6

1 + 1 + 4 = 6

1 + 2 + 3 = 6
1 + 1 + 1 + 3 = 6
2 + 2 + 2 = 6

1 + 1 + 1 + 1 + 2 = 6
1 + 1 + 1 + 1 + 1 + 1 = 6

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

15

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• count_partitions(2, 4)

• count_partitions(6, 3)

• Tree recursion often involves
exploring different choices.

count_partitions(6, 4)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

16

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• count_partitions(2, 4)

• count_partitions(6, 3)

• Tree recursion often involves
exploring different choices.

def count_partitions(n, m):
 if n == 0:
 return 1
 elif n < 0:
 return 0
 elif m == 0:
 return 0

 else:!
 with_m = count_partitions(n-m, m) !
 without_m = count_partitions(n, m-1)!
 return with_m + without_m

(Demo)

Interactive Diagram

